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DEVELOPMENT OF THE THEORY OF OPTIMAL SYSTEMS WITH

DELAYED ARGUMENTS IN GEORGIA

Abstract. Main results obtained by Georgian mathematicians in the

theory of optimal control are presented. These results deal with nec-

essary conditions of optimality, existence, continuous dependence on

regular perturbations of the minimum of the functional.

reziume. gadmocemulia dagvianebul argumentiani optimaluri

marTvis TeoriaSi qarTvel maTematikosTa mier miGebuli ZiriTadi Sede-

gebi. saxeldobr, moKvanilia optimalobis aucilebeli pirobebi, arse-

bobis Teorema, Teorema Punqcionalis minimumis regularul SeSPoTe-

bebze uCKvetad damokidebulebis Sesaxeb.

In 1961, an analogue of Pontryagin's maximum principle [1] was proved

for control systems with one constant delay in the phase coordinates [2].

This results became the basis for the development of mathematical theory

of optimal systems with delayed arguments in many countries, including

Georgia.

Initially, the optimal problem had the form

_x(t) = f(x(t); x(t � �); u(t)); t 2 [t

0

; t

1

]; u(�) 2 
; � > 0;
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0

]; x(t

1

) = x

1
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t
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� t

0

! min;

with f; f

x

; f

y

continuous on R

n

� R

n

� U , U � R

r

, 
 the set of piecwise

continuous functions u : [t

0

; t

1

]! U with a �nite number of discontinuities

of the �rst kind at which u(t) = u(t�), '

0

: [t

0

� �; t

0

] ! R

n

a �xed

continuous function and t

0

, x

0

�xed points.

Theorem 1 (Maximum principle). Let eu(t), t 2 [t

0

;

e

t

1

], be an optimal

control and ex(t) be the corresponding optimal trajectory. Then there ex-
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ists a non-zero solution  (t), t 2 [t

0

;

e

t

1

] of the system

_

 (t) =�H

x

( (t); ex(t); ex(t� �); eu(t))�

�H

y

( (t+ �); ex(t+ �); ex(t); eu(t+ �));

t 2 [t

0

;

e

t

1

];  (t) = 0; t >

e

t

1

;

such that:

1

0

: For each t 2 [t

0

;

e

t

1

], the maximum condition is ful�lled:

H( (t); ex(t); ex(t� �); eu(t)) =M( (t); ex(t); ex(t� �));

2

0

: At the moment

^

t

1

, the inequality

M( (

e

t

1

); ex(

e

t

1

); ex(

e

t
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� �)) � 0;

is ful�lled, where

H = h ; fi;M( ; x; y) = sup

u2U

H( ; x; y; u):

Then Theorem 1 was generalized for systems of the form [3]

_x(t) = f(t; x(t� �

1

); : : : ; x(t� �

s

); u(t)); �

s

> � � � > �

1

= 0:

Further for control systems

_x(t) = f(t; x(t� �

1

); : : : ; x(t� �

s

); u(t�m

1

h); : : : ; u(t�m

�

h));

where m

1

= 0; m

i

, i = 2; : : : ; �, are natural numbers and h > 0, necessary

conditions were proved for the optimality of a control and an initial function

in the form of an integral (pointwise) maximum principle and conditions of

transversality [4,5].

After that, analogous results were received for optimal systems contain-

ing: variable delays both in phase coordinates and in the controls [6-8];

distributed delays in the controls [9]; neutral type equations [10]; equations

with variable structure [11-13]; functional-di�erential equations [14]; equa-

tions with mixed restrictions [15]; hyperbolic partial di�erential equations

[16,17].

Problems of optimal control for the most part of the enumerated systems

were investigated within the framework of the general theory of extremal

problems which was elabarated in [18-21].

Now let's formulate necessary conditions for the optimal problem with

single delays both in the phase coordinates and in the controls:

_x(t) = f(t; x(t); x(�(t)); u(t); u(�(t))); (1)

t 2 [t

0

; t

1

] � J = [a; b]; u(�) 2 


1

;
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0
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0
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0

) = x

0

; '(�) 2 �; (2)

q
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; x(t

1

)) = 0; i = 1; : : : ; l; (3)

q
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where the function f : J � O

2

� G

2

! R

n

is continuous and continuously

di�erentiable with respect to (x; y) 2 O

2

O � R

n

and G � R

r

are open

sets; � : R

1

! R

1

� : R

1

! R

1

are absolutly continuous functions satis-

fying �(t) < t, _� (t) > 0, �(t) < t,

_

�(t) > 0; 


1

= 
 ([�(a); b]; U) is the

set of all measurable functions u : [�(a); b] ! U such that the conditions

cl(u([�(a); b])) is a compact lying in G; � = �([�(a); b]; N) is the set of all

piecewise continuous functions ' : [�(a); b] ! N with a �nite number of

points of discontinuity; N � O is a convex bounded set; q

i

: J

2

�O

2

! R

1

,

i = 0; : : : ; l, are functions continuously di�erentiable with respect to all

arguments.

De�nition 1. An element z = (t

0

; t

1

; x

0

; '(�); x(�); u(�)) is said to be ad-

missible, if (t

0

; t

1

; x

0

; '(�); u(�)) 2 J

2

�O � �� 


1

, x(t) 2 O, t 2 [t

0

; t

1

], is

absolutely continuous on [t

0

; t

1

] and satis�es (2), (3), and the pair (x(�); u(�))

satis�es (1) almost everywhere on [t

0

; t

1

].

The set of admissible elements will be denoted by �.

De�nition 2. An element ez 2 � is called optimal if for an arbitrary ele-

ment z 2 �, is ful�lled the inequality

q
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(

e
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1

; ex
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; ex(t

1

)) � q

0

(t

0
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1
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0

; x(t

1

)):

The problem of optimal control consists in �nding an optimal element.

Theorem 2. Let ez = (

e

t

0

;

e

t

1

; ex

0

; e'(�); ex(�); eu(�)) be an optimal element,

�(
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2 (a; b), i = 0; 1; let the function (eu(t); eu(�(t))) be continuous
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e

t

0
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0

= 
(

e

t

0

) and the function ( _
(t); e'(�(t)); e'(t)) be contin-

uous at the point

e

t

0

. Then there exist a non-zero vector � = (�

0

; : : : ; �

l

),

�

0

� 0, and a solution  (t) of the equation
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e

f

x

[t]�  (
(t))

e

f

y

[
(t)] _
(t); t 2 [

e

t

0

; t

1

];  (t) = 0; t >

e

t

1

;

such that the following conditions are ful�lled:

3

0

: The integral maximum principle
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4

0

: The transversality conditions
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Here

e

f [t] = f(t; ex(t); ex(�(t)); eu(t); eu(�(t)));

e

f

x

[t] = f

x

(t; ex(t); ex(�(t)); eu(t); eu(�(t)));

the tilde over Q denotes that the corresponding gradient is calculated at

the point (

e

t

0

;

e

t

1

; ex

0

; ex(

e

t

1

)); 
(t) is the function inverse to �(t). If the rank

of the matrix

(

e

Q

t

0

;

e

Q

t

1

;

e

Q

x

0

;

e

Q

x

1

)

is equal to 1 + l, then 	(t) 6� 0.

The researches [22-29] are dedicated to theorems of existence and regular

perturbations in optimal systems with delays.

Now let's formulate for a simpli�ed case basic theorems obtained in this

direction.

Consider the optimal problem

_x(t) = f(t; x(t); x(�(t)); u(t); u(�(t))); (4)

t 2 J

0

= [t

0

; t

1

]; u(�) 2 
([�(t

0

); t

1

]; U);

x(t) = '

0

(t); t 2 [�(t

0

); t

0

); x(t

0

) = x

0

; x(t

1

) = x
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; (5)

I(z) =

t

1

Z

t

0

f

0

(t; x(t); x(�(t)); u(t); u(�(t)))dt ! min; z 2 �

1

; (6)

where U is a compact set; '

0

(�) 2 �([�(t

0

); t

0

]; O); F = (f

0

; f) : J

0

�O

2

�

U

2

! R

1+n

is a Carath�eodory function satisfying the following conditions:

for each compact set K � O, there exist m

K

(�) and L

K

(�) 2 L

1

(J

0

; R

1

+

),

R

1

+

= [0;1) such that

jF (t; x; y; u; v)j � m

K

(t) 8(t; x; y; u; v) 2 J �K

2

� U

2

;

jF (t; x

0
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; u; v)� F (t; x

00

; y

00

; u; v)j � L

K
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00
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8(t; x
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00
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; u; v) 2 J �K

4

� U

2

;

�

1

is the set of admissible elements z = (x(�); u(�)).

Now we introduce the set P . To this aim, divide the interval [�

0

; t

1

] into

subintervals [s

i

; s

i+1

], i = �1; 0; : : : ;m, s

0

= t

0

, s

m+1

= t

1

, s

i

= �(s

i+1

),
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i = �1; 0; : : : ;m� 1, �(t

1

) � s

m

< t

1

, and put

P (t; x

0

; y

0

; : : : ; x

m

; y

m

) = fq = (q

0

; : : : ; q

m

);

q

i

= _%

i

(t)F ( _%

i

(t); x

i

; y

i

; u

i

; u

i�1

); i = 0; : : : ;m;

u

i

2 U; i = �1; : : :mg; t 2 [s

0

; s

1

];

where %(t) is the function inverse to �(t) and %

i

(t) = %(%

i�1

(t)). We assume

that %

0

(t) = t and %(t) = t

1

if t � �(t

1

)

Theorem 3. For the problem (4){(6), an optimal element ez = (ex(�); eu(�))

exists if the following conditions are satis�ed:

5

0

:�

1

6= �;

6

0

: There exists a compact K

0

� O such that x(t) 2 K

0

, t 2 J

0

, 8z =

(x(�); u(�)) 2 �

1

;

7

0

: The set P (t; x

0

; y

0

; : : : ; x

m

; y

m

) is convex for each �xed t 2 [s

0

; s

1

],

(x

i

; y

i

) 2 O

2

, i = 0; : : : ;m:

Theorem 4. Let the assumptions of Theorem 3 hold. Then for every � > 0

there is a � = �(�) > 0 such that for every (�x

0

; �'(�); �F (�)) satisfying

j�x

0

j+ sup

t2J

0

j�'(t)j+ max

t

0

;t

00

2J

0

x;y;2K

1

�

�

�

�

t

00

Z

t

0

�F (t; x; y)dt

�

�

�

�

� �;

�F = (�f

0

; �f);

the perturbed problem

_x(t) = f(t; x(t); x(�(t)); u(t); u(�(t))) + �f(t; x(t); x(�(t)));

x(t) = '

0

(t) + �'(t); t 2 [�(t

0

); t

0

);

x(t

0

) = x

0

+ �x

0

; jx

1

� x(t

1

)j � �;

I(z; �)=

t

1

Z

t

0

[f

0

(t; x(t); x(�(t)); u(t); u(�(t))) + �f

0

(t; x(t); x(�(t)))]dt!min;

has a solution ez

�
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lim

�!0

I(ez

�

; �) = I(ez):

Here '

0

(�) + �'(�) 2 �([�(t

0

); t

0

]; O), x

0

+ �x

0

2 O, the Careth�eodory

functions �F : J

0

�O

2

! R

1+n

satisfy the conditions

j�F (t; x; y)j � m
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�K
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)j � L

�F

(t)(jx

0

� x

00
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0
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0
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; y
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) 2 J

0

�K

4
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;

Z

J

0

(m
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�F
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K

1

� O is a compact set containing a neighborhood of K

0

, m

�F

(�); L

�F

(�) 2

L

1

(J

0

; R

1

+

).

In conclusion note that computational algoritms of the optimal control

elabarated in [30,31] are extended for the linear system [6]

_x(t) = A(t)x(t) + B(t)x(t� �) + C(t)u(t) +

+D(t)u(t� �) + f(t); � > 0:
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