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N. A. IzoBov AND R. A. PROKHOROVA

COPPEL-CONTI SETS OF LINEAR SYSTEMS

ABSTRACT. The paper contains a brief review of results, obtained by
the authors, on certain topics in the theory of Coppel-Conti sets of
linear systems: the solution of Conti’s problem on the inclusion prop-
erty as the parameter increases; the construction of criteria for the
roughness of these sets and their limit sets under uniformly small or
integrable perturbations; applications to the investigation of bounded
solutions of perturbed nonhomogeneous linear systems.
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We consider the Coppel-Conti sets of linear systems
T = A(t)z (14)

with piecewise continuous real coefficients A(-) : [0, 4+00) - Hom(R", R"™),
generally speaking, unbounded on the semiaxis ¢ > 0. These sets deal with
the problem of boundedness of solutions of the nonhomogeneous linear sys-
tems

y=At)y + f() (2)

raised in 1930 by O.Perron [1].
System (14) can be identified with its matrix A(-) and for convenience
will be referred to as system A.
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1. R. CoNTI’S PROBLEM

We investigate the sets LPS of linear systems (14) with Cauchy matrix
X a(t, s) satisfying

“+o00
C)(A) = sup/ X a(t, 5)|[Pds < +oo. (3)
t>0
-0

The sets LPS were introduced by W. Coppel [2] for p = 1 and by R.Conti
[3] for p > 1. In these cases they are well studied. It was proved in the
cited papers that for p > 1 the inclusion A € LPS is equivalent to the
boundedness of all solutions of system (2) with any piecewise continuous
nonhomogeneous term f that is bounded (if p = 1) or p/(p — 1) — st power
intergrable (if p > 1) on the semiaxis ¢ > 0. We extend the definition of LS
from p > 1 to all p > 0 by using the condition (3).

R. Conti [4, 5] investigated the sets LPS as a function of the parameter
p and proved [6] that the inclusion LPS C L9S does not hold for arbitrary
q > p > 1 and posed the following question:

Does the inclusion LPS C L%S hold for constants p and ¢ such that
p>q>17

In our paper [7] we obtained the positive answer to this question.

Theorem 1 ([7]). The inclusion LPS C LS is valid for all p > q > 0.

Therefore, there exist limit sets Limﬁ:o LPS, q > 0, and they satisfy the
pP—q
inclusions
Lim ILPS D LYS D> Lim LPS.

p—q—0 p—q+0

Moreover, there is no left or right continuity with respect to the parameter

p>0.
Indeed,
L? Lim LP (%] Lim LIPS\ LY %]
S\p_}lqrﬂl_o S # o, Jm S\LIS#@, ¢>0
(see [6]).

The following criterion for a system (14) to belong to the limit set has
important applications in investigating the interiors of limit sets.

Theorem 2 ([8]). A € Lim0 LPS, where 0 < q < 400, if and only if
P—a—

2 min |Xa(t,7)|<1 VE>T=Ts>1,
TE[t—T,t]

t
Jin [ Xt 9)lPds =0 Ve 0,0)

t—7—=+40
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It was also established in [8] that the following two properties of the
constants Cp(A) regarded as functions of the parameter p > 0 are satisfied
for a fixed A € Lim LPS,q> 0: 1) the function C(.(4) : (0,+¢q) — R* is

p—q—o
continuous and 2) there exists a system A € Lim LPS such that the function
p—00

C()(A) : (0,+00) — R* has the characteristic exponent X\[C(.)(A)] = +oo.

2. THE STRUCTURE OF THE INTERIOR OF THE SET LPS

We define the interior Int LPS of the set LPS as the set consisting of all
A € LPS such that A+ @Q € LPS for any piecewise continuous n X n matrix
Q(t) satisfying ||Q(t)|| < €4 for all £ > 0 and some €4 > 0.

Theorem 3 ([7]). Int LPS = LPS if and only if p > 1.

Another Conti problem on the interior of the set (| LPS to coincide
p>0
with the set itself is solved (for ¢ = 4+00) by the first of the following two

theorems about the properties of the interior of the limit sets.

Theorem 4 ([8]). Int L1m LPS = Lim LS if and only if 1 < ¢ < +o0.

p—q—0

Theorem 5 ([8]). Int Lim LPS = Lim L”S if and only if 1 < ¢ < 4o0.

p—q+0 p—q+0

We also considered [9] the similar problem whether systems (14) and
(1g) with coefficients close in some integral metric simultaneously belong to
either of the sets LPS, Lim L”S and Lim LYS. We obtained the following

y—=p—0 y—p+0
general result for the integral interior Int, LPS = {A € LPS : B € LPS, for

+o00
1B - All, =1 f |IB(r) — A(1)||%dT}Y/? < 400}, ¢ > 0, of the set LPS
and for the 51m11ar interiors Int, Lim L7S and Int, Lim L7S of the sets

y—p—0 y—p+0
Lim L7S and Lim L"S.
Y—p—0 Y—p+0

Theorem 6 ([9]). Int, M = M if and only if
1)p>1andq>p/(p—1) if M = LPS;
2)p>landg>p/(p—1) if M = Lim L7S;
)y p>landq>p/(p—1)if M = LHEOLWS
—p
Since inclusions L?S C LPS are valid for all ¢ > p > 0, the similar
inclusions Int L4S C Int LPS are valid for their interiors. For the integral

interiors Int, LPS with different ¢ > 0 but the same p the opposite inclusion
is valid, at least for p > 1. This is given by the following theorem.

Theorem 7 ([9]). Int, LPS C Int; LPS for p> 1 and ¢ <.
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The interior Int, LPS of LPS, which is clearly a part of the interior
Intyo LPS = {A € LPS : A+ Q € LPS for any Q(t) — 0, t = +o0,
and ||Ql|; < 400} of this set for all p > 0 and ¢ > 0, does not coincide with
the latter for some p > 0 and ¢ > 0. The following assertion is valid in the
case of small perturbations vanishing at infinity.

Theorem 8 ([9]). The interior Intg LS of LPS with respect to perturba-
tions Q(t) vanishing at infinity (— 0 as t = +00,) i.e., the set Intqg LPS =
{AeLPS: A+Q € LPS for any Q(t) — 0 as t — +oo}, coincides for all
p > 0 with the usual interior Int LPS.

3. SOME GENERALIZATIONS

In this section we consider, instead of a constant p > 0, a function p(¢) > 0
piecewise continuous for ¢ > 0 and equal at the points of discontinuity to
one of its limit values p(t & 0) > 0. We consider two generalizations of the
set LPS and obtain results for them analogous to Theorem 1 and 2.

First we introduce the set

t
2 = {a: [ IXae. PO <64 = const < 400, ¢20}.
0

We have the following properties of L} ®g.
1. yrrSc U LPYSand | IS\ U LPS # @

p>0 p(t)>0 p(t)>0 p>0
2°. N Lf(t)S #@ and ) L’f(t) # @ for each fixed ¢(t) > 0.
p(t) p(t)>a(t)

The analog of Theorem 1 for the set L’f(t) is

Theorem 9 ([7]). If p(t) > 0 is piecewise continuous for t > 0 and such
that for some ¢ > 0, d > 0 and a measurable set M C [0,+00) with
lim mes{[r,{]NM}/({t—T) >0,
t—7—+00
the inequality
k

S it p(t)
m — T AN
ref0,0]nM p(t —i© + 1)

i=1

>clnk—-d

holds for the positive integers k = 1,...,[t/O] and sufficiently large con-

stants © > 1, then L’f(t)S C Lf(t)S for each piecewise continuous q(t) such
that 1 > q(t)/p(t) > const >0, t > 0.

The conclusion of Theorem 9 holds for:

1) a function p(t) > const > 0 bounded on the half-line ¢ > 0;

2) a function p(t) > 0 such that there are constants a,b € (0, 1) for which
p(t)/p(T) > a when 7 € [bt,t] and t > 1;

3) a function p(t) > 0 nondecreasing for ¢ > 0;
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4) each power function p(t) = ™ and a piecewise continuous ¢(t) such
that 1 > q(t)/p(t) > const >0, t > 1.

The structure of the interior of Lf(t)S for p(t) > 1 is established by the
following analog of Theorem 2.

Theorem 10 ([7]). The equality Int Lf(t)S = L’f(t) holds if and only if
there is an interval [to, +00) on which p(t) is nonicreasing and not smaller
than 1.

Finally we inverstigate linear-system sets
€
rMs = {A : / X4, NPDdr < cp(4) < +00,0< E<t < +oo},
0

corresponding to functions p(t); these sets are clearly empty if lim p(¢t)= 0.
t—too

We have the following inclusions

Uresc | msc | i”s

p>0 p(t)>0 p(t)>0

and each of them is strict.

The properties of these sets ensure that they are nearer to the sets LP.S
than to the Lf(t)S . The following result corresponding to Theorem 1 holds
for Lg(t)S .

Theorem 11 ([7]). The inclusion Lg(t)S C Lg(t)S holds for each q(t) for
which 1 > q(t)/p(t) > const > 0, t > to.

The following assertion distinguishes a difference between properties of
LE"S and LPS.

Theorem 12 ([7]). The inclusion Lg(t) C Lg(t) holds for each function
q(t) such that p(t) > q(t) > A, min {1,p(t)}, where A\, = const € (0,1) and
t > to, if and only ift 1ir+n p(t) < +o0.

—+4o0

We have the following necessary and sufficient condition for the coinci-
dence of the set Lg(t)S with its interior Int Lg(t)S.

Theorem 13 ([7]). Int Lg(t)S = Lg(t)S # @ if and only if p(t) > 0 is
bounded on the half-line t > 0 and is larger than or equal to 1 on some
interval [tg,+00).
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4. THE COPPEL-CONTI SETS MPS OF UNSTABLE LINEAR SYSTEMS

We also considered the Coppel-Conti sets MPS of unstable linear systems
(14) whose Cauchy matrix X 4(¢,7) satisfies the inequality

+o00
/ |Xa(t,7)||Pdr < cp(A) < +o00, t>0.
t

These sets (if p > 1) connect with the existence of a unique bounded
solution of system (2) for any vector-valued function f € L4[0, 4+00) with
q =p/(p— 1) conjugate to p.

The Conti problem for these sets is also solved positively.

Theorem 14 ([10]). The inclusion M9S C MPS is valid for all ¢>p>0.

For the interior Int MPS of the set MPS, we have the assertion analogous
to Theorem 2.

Theorem 15 ([10]). Int M?S = MPS if and only if p > 1.

5. LINEAR SYSTEMS WITH LP-DICHOTOMY

Finally we consider the general case of linear systems with an LP-dicho-
tomy. This notion is the extension of the concept of exponential dichotomy
[11, 12]. Tt has been inverstigated by W.A.Coppel [2, 12], R.Conti [3-6], P.
Talpalaru [13], V.Staikos [14] and other authors. It is known [2, 3], that the
system (2) has at least one solution bounded on R* for any f € L,[0, +0),
g > 1, if and only if the system (14) is LP-dichotomous with 1/p+1/q = 1.

We extend the definition of LP-dichotomy from p > 1 to all p > 0.

Denote by X 4(t) the fundamental matrix of (14), X4(0) = E.

Definition. We say that the system (14) is LP-dichotomous on R*, 0 <
p < 4oo, and write A € LPD if there exist complementary projectors P;
and P such that

t “+o0
/||XA(t)P1X;1(T)||PdT+/ XA P X M (7)||PdT < Cp(A) < +00,t > 0.
0 t

The asymptotic behavior of solutions of an LP-dichotomous system is

described by the following lemma (see [2, 15] for p > 1.)

Lemma 1. If the system (14) is LP-dichotomous with some p > 0, then
a) lim xz(t) = 0 for any solution z(t) with ©(0) € By = PiR™, b) any
t——+o00

solution x(t) with x(0) € R™ \ By satisfies tii_in lz()|| = +oo.
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The property of exponential dichotomy is known to be self-dual [11] in
the following sense: if a linear system (14) is exponentially dichotomous
with projectors P; and P», then the adjoint linear system § = —A” (t)y is
also exponentially dichotomous with projectors PJ and P[. The property
of LP-dichotomy, however, is not self-dual in this sense.

Lemma 2 ([16]). For any p > 0 there exists an LP-dichotomous system
such that for any q > 0 the adjoint system is not L9-dichotomous.

We obtained [16] that the sets LP D satisfy the same narrowing property
as its two extreme subsets LPS and MPS corresponding to the cases P, = F
and P; = 0, respectively.

Theorem 16 ([16]). Any linear system LP-dichotomous with p > 0 is also
L2-dichotomous with any q, 0 < q < p, and the same projectors.

This theorem follows from the following criterion for a linear system to
be LP-dichotomous.
Introduce the sets

To(t) ={r € [0,8]: [Xa(P X' (T)]| > o},
Ta(t) = {7 € [t, +00) : [|Xa() P2 X' (7)]| > o}

for any a > 0.

Theorem 17 ([16]). A linear system (14) is LP-dichotomous with some
p > 0 and projectors Py and P» if and only if the following conditions are
satisfied for some a, 0 < a < 1:

mes{T}(t) | JT2(t)} < ¢(a) < 00, t>0;

[ @R @rdr+ [ IXa0PXF P < 0 <o, 120

T (t) ¢ (t)

As to the structure of the integral interior of LPD, we have

Theorem 18 ([13,16]). Ifp and q are conjugate numbers, then Int, LP?D =
L*D.

From here we have the important property of roughness with respect to
uniformly small perturbations for the set L'D.
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6. A LINEAR BOUNDARY VALUE PROBLEM ON Rt

We consider the perturbed nonhomogeneous linear system

y=F(t)y+g() (4)

for which we study the following boundary value problem on RT: the exis-
tence and asymptotic behavior of bounded solutions.

Using the foregoing properties of the usual and integral interiors of the
Coppel-Conti sets, the inclusion property and the Coppel-Conti theorem [2,
3] we obtain some applications to the above-mentioned boundary problem.

Theorem 19 ([17]). Let F(t) = A(t) + B(t) + D(t), g(t) = f(t) + ¢(2).
If A € LPS (respectively, A € MPS) for some p > 1, then there exists an
€4 > 0 such that all solutions of the system (5) are bounded (respectively,
there exists a unique bounded solution) for any piecewise continuous matric
B(:) with ||B(t)|| < €a for any t > tp > 0, for any matriz D(t) with
ID(t)]| € Lq[0,4+00), ¢ > p/(p—1), for any vector function f(-) bounded on
the positive semiaxis, and for any ¢(-) € Ly[0,+00), ¢ > p/(p —1).

If p =1, then the matriz D(-) and the function p(-) are to be omitted in
this assertion.

If p > 1, then a finite sum of the vector-valued functions p;(-) €
€ Ly [0, +00) with arbitrary ¢(i) > p/(p — 1) can be taken for o(-).

In the general case where the system (14) is LP-dichotomous, p > 1,
the dimension of the subspace of all bounded solutions of (14) coincides
with the dimension of the corresponding subspace of the system (144p) if
IB(1)]| € € Ly[0, +00) with g = p/(p— 1).

It follows

Theorem 20 ([16]). Let F(t) = A(t) + B(t). If A € L*D, p > 1, then
for any matriz B(:), ||B(t)|| € L4[0,+00) with ¢ conjugate to p, and for
any vector-function g(-) € L,[0,+o00) with r > p/(p — 1), the system (4)
has a k-parameter family of solutions y(t) such that t_li_rglooy(t) = 0, where

k =rank P;.
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