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COPPEL{CONTI SETS OF LINEAR SYSTEMS

Abstract. The paper contains a brief review of results, obtained by

the authors, on certain topics in the theory of Coppel-Conti sets of

linear systems: the solution of Conti's problem on the inclusion prop-

erty as the parameter increases; the construction of criteria for the

roughness of these sets and their limit sets under uniformly small or

integrable perturbations; applications to the investigation of bounded

solutions of perturbed nonhomogeneous linear systems.

reziume. naSromi Seicavs avtorebis mier kopel-kontis simravlee-

bis Teoriis zogierTi sakiTxis garSemo miGebuli Sedegebis mokle

mimoxilvas. es sakiTxebia; kontis problemis gadaCKveta parametris

zrdisas harTulobis Tvisebis Sesaxeb; zemoxsenebuli simravleebisa da

maTi zGvruli simravleebis Tanabrad mcire an integrebadi SeSPoTebe-

bis mimarT mdgradobis kriteriumebis ageba; gamoKenebani SeSPoTebuli

araerTgvarovani CrPivi sistemebis SemosazGvruli amonaxsnebis gamo-

kvlevisaTvis.

We consider the Coppel{Conti sets of linear systems

_x = A(t)x (1

A

)

with piecewise continuous real coe�cients A(�) : [0;+1) ! Hom(R

n

; R

n

);

generally speaking, unbounded on the semiaxis t � 0: These sets deal with

the problem of boundedness of solutions of the nonhomogeneous linear sys-

tems

_y = A(t)y + f(t) (2)

raised in 1930 by O.Perron [1].

System (1

A

) can be identi�ed with its matrix A(�) and for convenience

will be referred to as system A.
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1. R. Conti's Problem

We investigate the sets L

p

S of linear systems (1

A

) with Cauchy matrix

X

A

(t; s) satisfying

C

p

(A) � sup

t�0

+1

Z

0

kX

A

(t; s)k

p

ds < +1: (3)

The sets L

p

S were introduced by W.Coppel [2] for p = 1 and by R.Conti

[3] for p > 1: In these cases they are well studied. It was proved in the

cited papers that for p � 1 the inclusion A 2 L

p

S is equivalent to the

boundedness of all solutions of system (2) with any piecewise continuous

nonhomogeneous term f that is bounded (if p = 1) or p=(p� 1)� st power

intergrable (if p > 1) on the semiaxis t � 0:We extend the de�nition of L

p

S

from p � 1 to all p > 0 by using the condition (3).

R. Conti [4, 5] investigated the sets L

p

S as a function of the parameter

p and proved [6] that the inclusion L

p

S � L

q

S does not hold for arbitrary

q > p � 1 and posed the following question:

Does the inclusion L

p

S � L

q

S hold for constants p and q such that

p > q � 1?

In our paper [7] we obtained the positive answer to this question.

Theorem 1 ([7]). The inclusion L

p

S � L

q

S is valid for all p > q > 0:

Therefore, there exist limit sets Lim

p!q�0

L

p

S; q > 0; and they satisfy the

inclusions

Lim

p!q�0

L

p

S � L

q

S � Lim

p!q+0

L

p

S:

Moreover, there is no left or right continuity with respect to the parameter

p > 0:

Indeed,

L

q

S n Lim

p!q+0

L

p

S 6= ?; Lim

p!q�0

L

p

S n L

q

S 6= ?; q > 0

(see [6]).

The following criterion for a system (1

A

) to belong to the limit set has

important applications in investigating the interiors of limit sets.

Theorem 2 ([8]). A 2 Lim

p!q�0

L

p

S; where 0 < q � +1; if and only if

2 min

�2[t�T;t]

kX

A

(t; �)k � 1 8t � T = T

A

� 1;

lim

t!+1

t��!+0

t

Z

�

kX

A

(t; s)k

p

ds = 0 8p 2 (0; q):
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It was also established in [8] that the following two properties of the

constants C

p

(A) regarded as functions of the parameter p > 0 are satis�ed

for a �xed A 2 Lim

p!q�o

L

p

S; q > 0 : 1) the function C

(�)

(A) : (0;+q)! R

+

is

continuous and 2) there exists a system A 2 Lim

p!1

L

p

S such that the function

C

(�)

(A) : (0;+1)! R

+

has the characteristic exponent �[C

(�)

(A)] = +1:

2. The Structure of the Interior of the Set L

p

S

We de�ne the interior IntL

p

S of the set L

p

S as the set consisting of all

A 2 L

p

S such that A+Q 2 L

p

S for any piecewise continuous n�n matrix

Q(t) satisfying kQ(t)k < "

A

for all t � 0 and some "

A

> 0:

Theorem 3 ([7]). IntL

p

S = L

p

S if and only if p � 1:

Another Conti problem on the interior of the set

T

p>0

L

p

S to coincide

with the set itself is solved (for q = +1) by the �rst of the following two

theorems about the properties of the interior of the limit sets.

Theorem 4 ([8]). Int Lim

p!q�0

L

p

S = Lim

p!q�0

L

p

S if and only if 1 < q � +1:

Theorem 5 ([8]). Int Lim

p!q+0

L

p

S = Lim

p!q+0

L

p

S if and only if 1 � q < +1:

We also considered [9] the similar problem whether systems (1

A

) and

(1

B

) with coe�cients close in some integral metric simultaneously belong to

either of the sets L

p

S; Lim


!p�0

L




S and Lim


!p+0

L




S:We obtained the following

general result for the integral interior Int

q

L

p

S � fA 2 L

p

S : B 2 L

p

S; for

kB � Ak

q

� f

+1

R

0

kB(r) � A(�)k

q

d�g

1=q

< +1g; q > 0; of the set L

p

S

and for the similar interiors Int

q

Lim


!p�0

L




S and Int

q

Lim


!p+0

L




S of the sets

Lim


!p�0

L




S and Lim


!p+0

L




S:

Theorem 6 ([9]). Int

q

M =M if and only if

1) p > 1 and q � p=(p� 1) if M = L

p

S;

2) p > 1 and q > p=(p� 1) if M = Lim


!p�0

L




S;

3) p > 1 and q � p=(p� 1) if M = Lim


!p+0

L




S:

Since inclusions L

q

S � L

p

S are valid for all q > p > 0, the similar

inclusions IntL

q

S � IntL

p

S are valid for their interiors. For the integral

interiors Int

q

L

p

S with di�erent q > 0 but the same p the opposite inclusion

is valid, at least for p � 1: This is given by the following theorem.

Theorem 7 ([9]). Int

q

L

p

S � Int

l

L

p

S for p � 1 and q < l:
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The interior Int

q

L

p

S of L

p

S; which is clearly a part of the interior

Int

q0

L

p

S � fA 2 L

p

S : A + Q 2 L

p

S for any Q(t) ! 0; t ! +1;

and kQk

q

< +1g of this set for all p > 0 and q > 0; does not coincide with

the latter for some p > 0 and q > 0: The following assertion is valid in the

case of small perturbations vanishing at in�nity.

Theorem 8 ([9]). The interior Int

0

L

p

S of L

p

S with respect to perturba-

tions Q(t) vanishing at in�nity (! 0 as t! +1; ) i.e., the set Int

0

L

p

S �

fA 2 L

p

S : A +Q 2 L

p

S for any Q(t) ! 0 as t ! +1g; coincides for all

p > 0 with the usual interior IntL

p

S:

3. Some Generalizations

In this section we consider, instead of a constant p > 0; a function p(t) > 0

piecewise continuous for t � 0 and equal at the points of discontinuity to

one of its limit values p(t � 0) > 0: We consider two generalizations of the

set L

p

S and obtain results for them analogous to Theorem 1 and 2.

First we introduce the set

L

p(t)

1

=

�

A :

t

Z

0

kX

A

(t; �)k

p(t)

d� � c

p

(A) � const < +1; t � 0

�

:

We have the following properties of L

p(t)

1

S:

1

�

:

S

p>0

L

p

S �

S

p(t)>0

L

p(t)

1

S and

S

p(t)>0

L

p(t)

1

S n

S

p>0

L

p

S 6= ?;

2

�

:

T

p(t)

L

p(t)

1

S 6= ? and

T

p(t)�q(t)

L

p(t)

1

6= ? for each �xed q(t) > 0:

The analog of Theorem 1 for the set L

p(t)

1

is

Theorem 9 ([7]). If p(t) > 0 is piecewise continuous for t � 0 and such

that for some c > 0, d � 0 and a measurable set M � [0;+1) with

lim

t��!+1

mesf[�; t] \Mg=(t� �) > 0;

the inequality

k

X

i=1

inf

�2[0;�]\M

p(t)

p(t� i�+ �)

� c ln k � d

holds for the positive integers k = 1; : : : ; [t=�] and su�ciently large con-

stants � > 1; then L

p(t)

1

S � L

q(t)

1

S for each piecewise continuous q(t) such

that 1 � q(t)=p(t) � const > 0, t � 0.

The conclusion of Theorem 9 holds for:

1) a function p(t) � const > 0 bounded on the half-line t � 0;

2) a function p(t) > 0 such that there are constants a; b 2 (0; 1) for which

p(t)=p(�) � a when � 2 [b t; t] and t � 1;

3) a function p(t) > 0 nondecreasing for t � 0;
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4) each power function p(t) = t

m

and a piecewise continuous q(t) such

that 1 � q(t)=p(t) � const > 0; t � 1:

The structure of the interior of L

p(t)

1

S for p(t) � 1 is established by the

following analog of Theorem 2.

Theorem 10 ([7]). The equality IntL

p(t)

1

S = L

p(t)

1

holds if and only if

there is an interval [t

0

;+1) on which p(t) is nonicreasing and not smaller

than 1.

Finally we inverstigate linear-system sets

L

p(t)

0

S =

�

A :

�

Z

0

kX

A

(�; �)k

p(t)

d� � c

p

(A) < +1; 0 � � � t < +1

�

;

corresponding to functions p(t); these sets are clearly empty if lim

t!+1

p(t)= 0.

We have the following inclusions

[

p>0

L

p

S �

[

p(t)>0

L

p(t)

0

S �

[

p(t)>0

L

p(t)

1

S

and each of them is strict.

The properties of these sets ensure that they are nearer to the sets L

p

S

than to the L

p(t)

1

S. The following result corresponding to Theorem 1 holds

for L

p(t)

0

S.

Theorem 11 ([7]). The inclusion L

p(t)

0

S � L

q(t)

0

S holds for each q(t) for

which 1 � q(t)=p(t) � const > 0; t � t

0

:

The following assertion distinguishes a di�erence between properties of

L

p(t)

0

S and L

p

S:

Theorem 12 ([7]). The inclusion L

p(t)

0

� L

q(t)

0

holds for each function

q(t) such that p(t) � q(t) � �

q

min f1; p(t)g; where �

q

= const 2 (0; 1) and

t � t

0

; if and only if lim

t!+1

p(t) < +1:

We have the following necessary and su�cient condition for the coinci-

dence of the set L

p(t)

0

S with its interior Int L

p(t)

0

S:

Theorem 13 ([7]). IntL

p(t)

0

S = L

p(t)

0

S 6= ? if and only if p(t) > 0 is

bounded on the half-line t � 0 and is larger than or equal to 1 on some

interval [t

0

;+1):
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4. The Coppel{Conti sets M

p

S of Unstable Linear Systems

We also considered the Coppel{Conti setsM

p

S of unstable linear systems

(1

A

) whose Cauchy matrix X

A

(t; �) satis�es the inequality

+1

Z

t

kX

A

(t; �)k

p

d� � c

p

(A) < +1; t � 0:

These sets (if p � 1) connect with the existence of a unique bounded

solution of system (2) for any vector-valued function f 2 L

q

[0;+1) with

q = p=(p� 1) conjugate to p:

The Conti problem for these sets is also solved positively.

Theorem 14 ([10]). The inclusion M

q

S �M

p

S is valid for all q>p>0.

For the interior IntM

p

S of the setM

p

S, we have the assertion analogous

to Theorem 2.

Theorem 15 ([10]). IntM

p

S =M

p

S if and only if p � 1:

5. Linear Systems with L

p

-dichotomy

Finally we consider the general case of linear systems with an L

p

-dicho-

tomy. This notion is the extension of the concept of exponential dichotomy

[11, 12]. It has been inverstigated by W.A.Coppel [2, 12], R.Conti [3{6], P.

Talpalaru [13], V.Staikos [14] and other authors. It is known [2, 3], that the

system (2) has at least one solution bounded on R

+

for any f 2 L

q

[0;+1);

q � 1; if and only if the system (1

A

) is L

p

-dichotomous with 1=p+1=q = 1:

We extend the de�nition of L

p

-dichotomy from p � 1 to all p > 0:

Denote by X

A

(t) the fundamental matrix of (1

A

); X

A

(0) = E:

De�nition. We say that the system (1

A

) is L

p

-dichotomous on R

+

; 0 <

p < +1, and write A 2 L

p

D if there exist complementary projectors P

1

and P

2

such that

t

Z

0

kX

A

(t)P

1

X

�1

A

(�)k

p

d�+

+1

Z

t

kX

A

(t)P

2

X

�1

A

(�)k

p

d� � C

p

(A) < +1; t � 0:

The asymptotic behavior of solutions of an L

p

-dichotomous system is

described by the following lemma (see [2, 15] for p � 1:)

Lemma 1. If the system (1

A

) is L

p

-dichotomous with some p > 0; then

a) lim

t!+1

x(t) = 0 for any solution x(t) with x(0) 2 B

1

= P

1

R

n

; b) any

solution x(t) with x(0) 2 R

n

nB

1

satis�es lim

t!+1

kx(t)k = +1:
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The property of exponential dichotomy is known to be self-dual [11] in

the following sense: if a linear system (1

A

) is exponentially dichotomous

with projectors P

1

and P

2

; then the adjoint linear system _y = �A

T

(t)y is

also exponentially dichotomous with projectors P

T

2

and P

T

1

: The property

of L

p

-dichotomy, however, is not self-dual in this sense.

Lemma 2 ([16]). For any p > 0 there exists an L

p

-dichotomous system

such that for any q > 0 the adjoint system is not L

q

-dichotomous.

We obtained [16] that the sets L

p

D satisfy the same narrowing property

as its two extreme subsets L

p

S andM

p

S corresponding to the cases P

1

= E

and P

1

= 0, respectively.

Theorem 16 ([16]). Any linear system L

p

-dichotomous with p > 0 is also

L

q

-dichotomous with any q; 0 < q < p; and the same projectors.

This theorem follows from the following criterion for a linear system to

be L

p

-dichotomous.

Introduce the sets

T

1

�

(t) = f� 2 [0; t] : kX

A

(t)P

1

X

�1

A

(�)k � �g;

T

2

�

(t) = f� 2 [t;+1) : kX

A

(t)P

2

X

�1

A

(�)k � �g

for any � > 0:

Theorem 17 ([16]). A linear system (1

A

) is L

p

-dichotomous with some

p > 0 and projectors P

1

and P

2

if and only if the following conditions are

satis�ed for some �; 0 < � < 1 :

mesfT

1

�

(t)

[

T

2

�

(t)g � c(�) <1; t � 0;

Z

T

1

1

(t)

kX

A

(t)P

1

X

�1

A

(�)k

p

d� +

Z

T

2

1

(t)

kX

A

(t)P

2

X

�1

A

(�)k

p

d� � C <1; t � 0:

As to the structure of the integral interior of L

p

D, we have

Theorem 18 ([13, 16]). If p and q are conjugate numbers, then Int

q

L

p

D=

L

p

D:

From here we have the important property of roughness with respect to

uniformly small perturbations for the set L

1

D:
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6. A Linear Boundary Value Problem on R

+

We consider the perturbed nonhomogeneous linear system

_y = F (t)y + g(t) (4)

for which we study the following boundary value problem on R

+

: the exis-

tence and asymptotic behavior of bounded solutions.

Using the foregoing properties of the usual and integral interiors of the

Coppel{Conti sets, the inclusion property and the Coppel{Conti theorem [2,

3] we obtain some applications to the above-mentioned boundary problem.

Theorem 19 ([17]). Let F (t) = A(t) + B(t) + D(t); g(t) = f(t) + '(t):

If A 2 L

p

S (respectively, A 2 M

p

S) for some p > 1; then there exists an

"

A

> 0 such that all solutions of the system (5) are bounded (respectively,

there exists a unique bounded solution) for any piecewise continuous matrix

B(�) with kB(t)k < "

A

for any t � t

B

� 0; for any matrix D(t) with

kD(t)k 2 L

q

[0;+1); q � p=(p�1), for any vector function f(�) bounded on

the positive semiaxis, and for any '(�) 2 L

q

[0;+1); q � p=(p� 1):

If p = 1; then the matrix D(�) and the function '(�) are to be omitted in

this assertion.

If p > 1; then a �nite sum of the vector-valued functions '

i

(�) 2

2 L

q(i)

[0;+1) with arbitrary q(i) � p=(p� 1) can be taken for '(�):

In the general case where the system (1

A

) is L

p

-dichotomous, p � 1;

the dimension of the subspace of all bounded solutions of (1

A

) coincides

with the dimension of the corresponding subspace of the system (1

A+B

) if

kB(t)k 2 2 L

q

[0;+1) with q = p=(p� 1):

It follows

Theorem 20 ([16]). Let F (t) = A(t) + B(t): If A 2 L

p

D; p > 1; then

for any matrix B(�); kB(t)k 2 L

q

[0;+1) with q conjugate to p; and for

any vector-function g(�) 2 L

r

[0;+1) with r � p=(p � 1), the system (4)

has a k-parameter family of solutions y(t) such that lim

t!+1

y(t) = 0, where

k = rankP

1

.

References

1. O. Perron, Die Stabilit�atsfrage bei Di�erential gleichungen (3). Mat. Z. 32(1930),

703{728.

2. W. A. Coppel, Stability and asymptotic behavior of di�erential equations. Heath

Math. Monographs, Boston, 1965.

3. R. Conti, On the boundedness of solutions of ordinary di�erential equations.

Funkcial. Ekvac. 9(1966), 23{26.

4. R. Conti, Quelques propri�et�ees de l' op�erateur d'�evolution. Coll. Mat. 18(1967),

73{75.

5. R. Conti, Linear Di�erential Equations and Control. Academic Press, New York,

1976.



98

6. R. Conti, On a class of asymptotically stable linear di�erential equations. Tôhoku
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