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Abstract. By using the WKB method, we found the asymptotic

distribution of the zeros of some sets of polynomials orthogonal with

respect to varying weights, including the so called relativistic ortho-

gonal polynomials.

reziume. WKB meTodis gamoKenebiT napovnia cvalebadi Conis

mimarT orTogonalur polinomTa zogierTi klasis nulebis asimpto-

turi ganaCileba, maT Soris e.C. relativistur polinomTa klasisac.

1. Introduction

Given a real function f : I ! R of the real variable x, the normalized

distribution of zeros of f in I is de�ned by

~�

f

(x; I) :=

1

N

f

(I)

X

f(x

k

) = 0

(x

k

2 I)

�(x� x

k

); (1.1)

where �(x � x

k

) is the Dirac distribution concentrated in x

k

, and N

f

(I) is

the total number of zeros of f in I . We consider second order di�erential

equations of hypergeometric type

�(x)y

00

n

+ �(x;n)y

0

n

+ �

n

y

n

= 0; (1.2)

i.e., second order homogeneous linear di�erential equations in which � and

� are polynomials of degree not greater than 2 and 1, respectively, and �

n

is a constant de�ned by

�

n

= �n�

0

� (n(n� 1)=2)�

00

: (1.3)
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We deal with the problem of �nding the zeros' asymptotic distribution of

the sequence fP

n

(x)g in I , i.e. the limit

lim

n!1

~�

P

n

(x; I) = [�(x; I)]

0

(1.4)

by using the WKB (Wentzel-Kramers-Brillouin) approximation method [3],

where I is the limiting support of the measures with respect to which the

polynomial sequence fP

n

(x)g satisfy a varying orthogonality property. Fol-

lowing an approach of A. Zarzo [2], we will study the problem of �nding

the asymptotic distribution of zeros of the set of polynomial solutions of

the hypergeometric di�erential equations of the type (1.2) in the orthogo-

nality interval, by using the WKB method (see [3]). We will consider in

detail some particular cases of asymptotic distribution of zeros of some sets

of polynomials orthogonal with respect to varying weights (see [4]), and

mainly the so called relativistic polynomials (see [5]-[11]). These polynomi-

als have been studied in several recent papers (see [12]-[15]). Some other

sets have been also introduced (see [16]-[17]).

2. Definitions and Notation

We recall three canonical forms for the second homogenous linear di�er-

ential equation which are used in what follows.

1. Selfadjoint form:

[a(x)y

0

]

0

+ c(x)y = 0; (a(x) > 0): (2.1)

By putting y(x) = [a(x)]

�1=2

u(x), we pass to the

2. Jacobi form:

u

00

+ S(x)u = 0: (2.2)

If S(x) 2 C

2

(�) and S(x) > 0, in � � [a; b], setting

!(x) =

x

Z

a

p

S(t)dt; v(x) = [S(x)]

1=4

u(x);

V (!(x)) = v(x); i:e: V (!) = v(x(!));

we obtain the

3. Liouville-Green form:

d

2

d!

2

V (!) + [1��(!)]V (!) = 0; (2.3)

where

�(!(x)) � �(x) =

4S(x)S

00

(x)� 5[S

0

(x)]

2

16[S(x)]

3

:

We recall the following
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De�nition 1. The di�erential equation (2.1) ((2.2)) is called disconjugate

in the interval I if its only solution having more than one zero in I is the

trivial solution.

De�nition 2. The di�erential equation (2.2) is called oscillatory in the

interval I if there exists a nontrivial solution having in�nitely many zeros

in I .

A simple result of M. Picone [18] ensures that dealing with oscillatory

di�erential equations in the selfadjoint form (2.1), it is su�cient to consider

equations in intervals where

a(x)c(x) � 0;

otherwise the equation should be disconjugate.

3. WKB Approximation

We follow here somewhat closely the exposition and notation of A. Zarzo

[2]. The WKB (Wentzel-Kramers-Brillouin) approximation can be applied

to the equation (2.3) if j�(x)j = j�(!(x))j < 1 in � � [a; b] � I . In this

case, the WKB approximation leads to the equation

d

2

d!

2

V (!) + V (!) = 0: (3.1)

Solutions of this equation are given by

V

wkb

(!) = A sin[! +B]; (3.2)

where A, B are arbitrary constants. Then, returning to the variable x, an

approximate solution of eq. (2.2) is given by

u

wkb

(!) = A[S(x)]

�

1

4

sin[! +B]; (x 2 �): (3.3)

But !(x) is a positive increasing function in �, so the zeros of u

wkb

(x) can

be ordered in the form

x

1

< x

2

< x

3

< � � � < x

k

< � � � ;

where !(x

k

) +B must be a zero of sin(x), and therefore

!(x

k

) = k� �B; (k = 0; 1; 2; : : : ): (3.4)

Consider the function

N

u

wkb

(x) :=

1

�

!(x): (3.5)

Therefore

N

u

wkb

(x

k+j

)�N

u

wkb

(x

k

) =

1

�

[(k + j)� �B � k� +B] = j;
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and consequently, the associated set function

N

u

wkb

(�) = N

u

wkb

(b)�N

u

wkb

(a); if � := [a; b];

can be considered as a counting function of the zeros of u

wkb

in [a; b].

De�nition 3. The function

�

wkb

[u(x)] := �

wkb

(x; �) =

d

dx

N

u

wkb

(x) =

1

�

p

S(x); (3.6)

is called the WKB approximation of the density of zeros in � of solutions

of the di�erential equation (2.2).

Consider the equation (2.2). Let I = I

S>0

be an interval in which the

function S(x) > 0 belongs to C

2

, and let � � [a; b] � I . Consider the

Liouville-Green form of (2.2) denoting

�(!(x)) � �(x) =

4S(x)S

00

(x) � 5[S

0

(x)]

2

16[S(x)]

3

; (3.7)

and by M

�

and m

�

respectively the maximum and minimum value of �(x)

in �. By using the Sturm comparison theorem, Zarzo proved the following

Proposition 1 (Zarzo). Under the preceding hypotheses and notation, if

8x 2 �

�(x) < 1; (3.8)

then there exists an absolute constant K > 0 such that

p

1�M

�

N

wkb

(�)�K � N

u

(�) �

p

1�m

�

N

wkb

(�) +K;

where N

u

(�) is the number of zeros of any solution of (2:2) in � and

N

wkb

(�) := N

u

wkb

(�) =

1

�

!(b) =

1

�

b

Z

a

p

S(x)dx =

b

Z

a

�

wkb

[u(x)]dx:

Then it is possible to deduce a necessary and su�cient condition in order

that (2:2) to be oscillatory in � � [a; b]. Namely, this is true if and only if

the corresponding u

wkb

(x) has the same property in �. A general procedure

in order to �nd the asymptotic distribution of zeros of polynomial solutions

of the hypergeometric di�erential equation (1:2) has been found. In order

to include the case of unbounded intervals, suppose that it is possible to

choose two sequences of positive real numbers fs

n

g and fr

n

g such that

lim

n!1

r

n

s

n

n

= 0 and there exist the �nite limits:

lim

n!1

�

s

n

r

2

n

�(

x

r

n

;n)

�

=: �(x;1);

lim

n!1

�

s

n

r

n

n

�(

x

r

n

;n)

�

=: �(x;1):
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If we consider the polynomial

P (x) := �f[�(x;1)]

2

+ 2[2�

0

(0;1) + �

00

(0;1)]�(0;1)g;

then the following general result holds true.

Proposition 2 (Zarzo). Under the above hypotheses and notation, the

weak-star convergence property holds true:

~�[y

n

(

x

r

n

)] :=

1

n

X

y

n

(�)=0

�(t� r

n

�)

�

�!~�

0

(t); (n!1);

where t :=

x

r

n

;

~�

0

(t) = lim

n!1

�

wkb

[y

n

(t)]

N

wkb

(I

�

S>0

(n))

=

1

2�

p

P (t)

j�(t;1)j

; (t 2 I

�

S>0

(1))

and, by de�nition,

I

�

S>0

(1) = lim

n!1

I

�

S>0

(n) := ft 2 R : P (t) > 0g:

3.1. Examples.

Example 1. Relativistic Hermite polynomials. The di�erential equation is

(1 +

�

2

N

)y

00

�

2

N

(N + n� 1)�y

0

+

n

N

(2N + n� 1)y = 0:

We have

�(�;1) = �

2

N

�; �(�;1) = 1 +

�

2

N

;

s

n

= r

n

= 1;

P (�) = �

�

4

N

2

�

2

+ 2[2(�

2

N

) +

2

N

](1 +

�

2

N

)

�

=

4

N

;

~�

0

(�) =

1

2�

q

4

N

1 +

�

2

N

=

p

N

�

1

N + �

2

:

This formula is always true, but it is necessary to distinguish many cases in

relation to the sign of S(x) (see A. Zarzo [2], p. 184)).

Example 2. Relativistic Jacobi polynomials. The di�erential equation is

�(x;N)y

00

n

+ �(x;n;N)y

0

n

+ �

n

(N)y

n

= 0:
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We have

�(x;N) =

�

N + �

N � �

�

2�

N � �

x� x

2

�

;

�(x;n;N) =

�

N(� � �) + �(2n� 3=2)

N � �

�

N(�+ � + 2) + �(2n� 3=2)

N � �

x

�

;

�

n

(N) =

n

N � �

(N(� + � + n+ 1) + �(n� 1=2)):

Putting s

n

= r

n

= 1, we obtain

�(x;1) =

2�

N

(1� x); �(x;1) =

�

N + �

N � �

�

2�

N � �

x� x

2

�

;

P (x) = 4

(N + �)

2

N

2

(1� x)

�

x+

N + �

N � �

�

;

~�

0

(x) =

1

2�

p

P (x)

j(1� x)(x +

N+�

N��

)j

=

N + �

�N

1

q

(1� x)[x +

N+�

N��

]

;

and this density tends to the density of classical Jacobi polynomials in the

non relativistic limit N !1.

Example 3. A class of Jacobi polynomials orthogonal with respect to

varying weights. We consider here the polynomials: J

(�

n

;�

n

)

n

, satisfying

the di�erential equation

(1� x

2

)y

00

+ (�

n

� �

n

� (�

n

+ �

n

+ 2)x)y

0

+ n(�

n

+ �

n

+ n+ 1)y = 0;

�

n

= �n�

0

�

n(n� 1)

2

�

00

= n(�

n

+ �

n

+ n+ 1):

We will limit ourselves to the case essentially considered by W. Gawronski

and B. Shawyer [4]:

�

n

= An�+ �(n); �(n) = O(1); (n!1);

�

n

= Bn� + �(n); �(n) = O(1); (n!1):

For 8�; �, we suppose

An�+ �(n) > �1) A� � 0;

Bn� + �(n) > �1) B� � 0:
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Then

�(x;1) =: lim

n!1

�(x;n)

n

=

= lim

n!1

�

n

� �

n

� (�

n

+ �

n

+ 2)x

n

=

=

n(B� �A�) � [n(A�+B�)x + 2x]

n

+ o(1) =

= (B� �A�) � (A�+B�)x;

�(x;1) =: 1� x

2

:

By putting s

n

= r

n

= 1, we obtain

P (x) =� [(A� +B�)

2

+ 4(A�+B� + 1)]x

2

+ 2(B

2

�

2

�A

2

�

2

)x �

� [(B� �A�)

2

� 4(A�+B� + 1)];

~�

0

(x) =

1

2�

p

P (x)

j1� x

2

j

:

In particular, if A� = B�, we �nd

P (x) = 4(2A�+ 1)� 4(A�+ 1)

2

x

2

;

~�

0

(x) =

1

�

p

(2A�+ 1)� (A�+ 1)

2

x

2

j1� x

2

j

:

E.g., if A = 1; � > �

1

2

the numerator has two zeros, symmetric with re-

spect to the origin, which can belong or not to the interval [�1; 1]. As a

consequence, the asymptotic distribution of zeros of such polynomial set is

certainly di�erent from the standard (arcsin) one.

Remark. The preceding results do not work in the case of the so called

Relativistic Laguerre Polynomials ([9]{[10]). The problem of �nding the

asymptotic distribution of zeros of this set of polynomials is still open.
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