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ABSTRACT. By using the WKB method, we found the asymptotic
distribution of the zeros of some sets of polynomials orthogonal with
respect to varying weights, including the so called relativistic ortho-
gonal polynomials.
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1. INTRODUCTION

Given a real function f : I — R of the real variable z, the normalized
distribution of zeros of f in I is defined by

praT) = % S b - o), (1.1)
flzr) =0
(wk € I)

where §(z — z;) is the Dirac distribution concentrated in zj, and Ny (I) is
the total number of zeros of f in I. We consider second order differential
equations of hypergeometric type

()Y, + 7(x;0)y; + Anyn =0, (1.2)

i.e., second order homogeneous linear differential equations in which ¢ and
T are polynomials of degree not greater than 2 and 1, respectively, and A,
is a constant defined by

An = —n7' — (n(n —1)/2)0". (1.3)
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We deal with the problem of finding the zeros’ asymptotic distribution of
the sequence {P,(z)} in I, i.e. the limit

lim py, (a31) = [u(as D)) (1.4)
by using the WKB (Wentzel-Kramers-Brillouin) approximation method [3],
where [ is the limiting support of the measures with respect to which the
polynomial sequence {P,(z)} satisfy a varying orthogonality property. Fol-
lowing an approach of A. Zarzo [2], we will study the problem of finding
the asymptotic distribution of zeros of the set of polynomial solutions of
the hypergeometric differential equations of the type (1.2) in the orthogo-
nality interval, by using the WKB method (see [3]). We will consider in
detail some particular cases of asymptotic distribution of zeros of some sets
of polynomials orthogonal with respect to varying weights (see [4]), and
mainly the so called relativistic polynomials (see [5]-[11]). These polynomi-
als have been studied in several recent papers (see [12]-[15]). Some other
sets have been also introduced (see [16]-[17]).

2. DEFINITIONS AND NOTATION

We recall three canonical forms for the second homogenous linear differ-
ential equation which are used in what follows.

1. Selfadjoint form:
la(@)y') + c(z)y =0, (alz) > 0). (2.1)

By putting y(z) = [a(x)]~"/?u(z), we pass to the
2. Jacobi form:

u" + S(x)u =0. (2.2)
If S(z) € C*(A) and S(z) > 0, in A = [a, b], setting

w@z/wﬂmav@zwwww@,

V(w(z)) = v(x), ie V(w) =v(z(w)),

we obtain the
3. Liouville-Green form:

where

45 (x)S" (z) — 5[S"(z)]?
16[S(x)]? '
We recall the following



84

Definition 1. The differential equation (2.1) ((2.2)) is called disconjugate
in the interval I if its only solution having more than one zero in I is the
trivial solution.

Definition 2. The differential equation (2.2) is called oscillatory in the
interval I if there exists a nontrivial solution having infinitely many zeros
in I.

A simple result of M. Picone [18] ensures that dealing with oscillatory
differential equations in the selfadjoint form (2.1), it is sufficient to consider
equations in intervals where

a(x)c(z) > 0,

otherwise the equation should be disconjugate.

3. WKB APPROXIMATION

We follow here somewhat closely the exposition and notation of A. Zarzo
[2]. The WKB (Wentzel-Kramers-Brillouin) approximation can be applied
to the equation (2.3) if |¢(z)| = |p(w(z))] < 1in A = [a,b] C I. In this
case, the WKB approximation leads to the equation

d2
dw?

Solutions of this equation are given by

V(w)+V(w)=0. (3.1)

Vwks(w) = Asinfw + B], (3.2)

where A, B are arbitrary constants. Then, returning to the variable x, an
approximate solution of eq. (2.2) is given by

Uiy (W) = A[S(x)] "% sinjw + B], (z € A). (3.3)

But w(z) is a positive increasing function in A, so the zeros of ugs(x) can
be ordered in the form

T < T <3< <2 <---,
where w(z) + B must be a zero of sin(z), and therefore
w(zy) =kr—B, (k=0,1,2,...). (3.4)

Consider the function
1
N () 1= 0(z). (3.5)

Therefore

1 . .
Nuwis (@r+5) = Nuyw (@1) = —[(k + j)m = B —kn + B] = j,
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and consequently, the associated set function
Nuwkb (A) = Nuwkb (b) - Nuwkb (a)a Zf A= [a7 b]a
can be considered as a counting function of the zeros of wu,kp in [a, b].

Definition 3. The function

purslu(@)] = puss(#8) = 7 Nuwy(2) = /5@, (36)

is called the WKB approximation of the density of zeros in A of solutions
of the differential equation (2.2).

Consider the equation (2.2). Let I = Isso be an interval in which the
function S(z) > 0 belongs to C?, and let A = [a,b] C I. Consider the
Liouville-Green form of (2.2) denoting

_ 48(x)S" (x) - 5[S"(x))?
16[S(2)]? ’

and by M, and mg respectively the maximum and minimum value of ¢(z)
in A. By using the Sturm comparison theorem, Zarzo proved the following

b(w(z)) = ()

(3.7)

Proposition 1 (Zarzo). Under the preceding hypotheses and notation, if
Ve e A

p(z) <1, (3.8)

then there exists an absolute constant K > 0 such that

\/1— M¢kab(A) —-K< Nu(A) <4 /1-— m¢kab(A) + K,

where Ny (A) is the number of zeros of any solution of (2.2) in A and

b b
Nyks(A) := Ny, (A) = %w(b) = %/\/S(a:)da: = /pwkb[u(a:)]da:.

a

Then it is possible to deduce a necessary and sufficient condition in order
that (2.2) to be oscillatory in A = [a, b]. Namely, this is true if and only if
the corresponding u,xp () has the same property in A. A general procedure
in order to find the asymptotic distribution of zeros of polynomial solutions
of the hypergeometric differential equation (1.2) has been found. In order
to include the case of unbounded intervals, suppose that it is possible to
choose two sequences of positive real numbers {s,} and {r,} such that
lim;, 0“2 = 0 and there exist the finite limits:

lim {Snriff(r—;n)} =: o (1; 00),

T
n—00 n
T

lim {S"T"T(E;n)} = 7(z;00).

n—oo n
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If we consider the polynomial
P(z) := —{[7(x;00)]* + 2[27(0; 00) + 0" (0; 00)]o(0; 00) },

then the following general result holds true.

Proposition 2 (Zarzo). Under the above hypotheses and mnotation, the
weak-star convergence property holds true:

(N =1 S 6= &5 (), (n > o)
" yn (£)=0

where t := £,
rn

» . PwkbYn (1)] 1 /P(t) .
§(t) = lim = =— ; (t € I§50(00))
n—00 Nypp(I§5o(n)) 2w |o(t; 00)] 5>0
and, by definition,
I§oo(00) = nll_}n;o I50(n) :={t € R: P(t) > 0}.
3.1. Examples.

Example 1. Relativistic Hermite polynomials. The differential equation is

2
2
(1+ %)y” - N(N+n— 1)&y' + %(2N+n— 1)y =0.

We have

This formula is always true, but it is necessary to distinguish many cases in
relation to the sign of S(z) (see A. Zarzo [2], p. 184)).

Example 2. Relativistic Jacobi polynomials. The differential equation is

o(x; Nyl + 7(z;n; N)yl, + An(N)y, = 0.
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We have
U(x,N)—[N_ﬁ—N_ﬁz—a: ,

r(wsns N) = [N(ﬁ —a)+B(2n—3/2) N(a+B8+2)+p(2n— 3/2)4
) 10 N—ﬁ N—ﬂ ,
Mn(N) =—"— (N(a + B+n+1) + B(n — 1/2)).

N3

T(z;00) = %(1 —x), o(x;00) = {xi—g — NQfﬂx_an] ’

P(z) _4(N]_V|_2ﬂ) (1—2x) [w—l— xi—g] ,

ﬁ'(a:):i P(w) :N+ﬂ 1
G = Y (e e =)

and this density tends to the density of classical Jacobi polynomials in the
non relativistic limit N — oo.

Example 3. A class of Jacobi polynomials orthogonal with respect to

varying weights. We consider here the polynomials: ,(La"’ﬁ "), satisfying

the differential equation

(]- - 21‘2)y” + (ﬂn - Qp — (an + ﬂn + 2)37)?/ + n(an + ﬂn +n+ ]-)y =0,
/ TL(TL - 1) "

A, = —nT =0 =n(a, + Bn+n+1).

We will limit ourselves to the case essentially considered by W. Gawronski
and B. Shawyer [4]:

an = Ana +€(n), €(n) = 0(1), (n — 00),
ﬂn = B?’Lﬁ +X(n)7 X(n) = 0(1)7 (n - OO)

For Va, 3, we suppose

Ana+e¢e(n) > -1 = Aa >0,
Bnf + x(n) > —-1= BB >0.
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Then
. T(xin)
7(z;00) =: nILHgO =
_ le ﬂn_an_(o;Ln+ﬂn+2)x —
_ n(BB — Aa) — [n(Aa + BB)x + 2x] +o1) =

= (B — Aa) — (Aan-l- Bf)z,

o(z;00) =: 1 — 22
By putting s, = r, = 1, we obtain
P(z) = — [(Aa + BB)* + 4(Aa + BB + 1)]2* + 2(B*3* — A’a®)z —
— (BB — Aa)? — 4(Aa + BB + 1)),

Pw) = oo D

T2l —a?]
In particular, if Ao = Bf3, we find
P(z) = 42Aa + 1) — 4(Aa + 1)%22,

) = % V (24« +|11)_—$(2f|1a + 1)2352‘

Eg,if A=1a> —% the numerator has two zeros, symmetric with re-
spect to the origin, which can belong or not to the interval [—1,1]. As a
consequence, the asymptotic distribution of zeros of such polynomial set is
certainly different from the standard (arcsin) one.

Remark. The preceding results do not work in the case of the so called
Relativistic Laguerre Polynomials ([9]-[10]). The problem of finding the
asymptotic distribution of zeros of this set of polynomials is still open.
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