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ON THE ARMELLINI-TONELLI-SANSONE THEOREM

Abstract. Su�cient conditions are given guaranteeing that all solu-

tions of the equation

x

00

+ a(t)f(x) = 0 (xf(x) > 0)

tend to zero as t goes to in�nity. The conditions contain integrals in-

stead of maxima and minima in earlier results. Finally, a probabilistic

generalization of Armellini-Tonelli-Sansone theorem is formulated.

reziume. moKvanilia sakmarisi pirobebi, romlebic uzrunvelKoPen

x

00

+ a(t)f(x) = 0 (xf(x) > 0)

gantolebis Kvela amonaxsnis nulisken misCraPebas, roca t miisCraPvis

usasrulobisaken. es pirobebi integraluria gansxvavebiT adrindeli

Sedegebisagan, romlebic Seicaven maqsimumebs da minimumebs. dasasrul,

moKvanilia armenili-toneli-sansones Teoremis albaTuri ganzogadeba.

The equation

x

00

+ a(t)x = 0 (1)

describes the oscillation of a material point of unit mass under the action

of the restoring force �a(t)x; the function a : [0;1) ! (0;1) denotes the

varying elasticity coe�cient.

De�nition 1 (P. Hartman [6]). A function t 7! x

0

(t) existing and satisfy-

ing the equation (1) on the interval [0;1) is called a small solution of (1.1)

if

lim

t!1

x

0

(t) = 0 (2)

holds. The zero solution is called the trivial small solution of (1).

Let us consider the case where the elasticity coe�cient a is nondecreasing.

Then the total mechanical energy

E(t; x; x

0

) :=

(x

0

)

2

2

+ a(t)

x

2

2

(3)
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is nonincreasing along the motions. By using this fact it can be seen that

every solution of (1) is oscillatory and the successive amplitudes of the os-

cillation (i.e. maxima of jxj for any solution x which occur at the points

where x

0

= 0) are monotone. M. Biernacki [2] raised the question of the ex-

istence of a (nontrivial) solution whose amplitudes tend to zero. H. Milloux

answered this question proving the following

Theorem A (H. Milloux [9]). If a : [0;1) ! (0;1) is di�erentiable,

nondecreasing, and satis�es

lim

t!1

a(t) =1; (4)

then the equation (1) has a non-trivial small solution.

Milloux also provided an example to show that (4) cannot imply that

all solutions are small. The problem to �nd conditions guaranteeing this

essentially stronger property of the equation (1) is very old, it goes back at

least to a paper by A. Wiman [12] in 1917. For 80 years a great number

of papers have been devoted to the problem both for linear and nonlinear

equations (see the history in [3, 5, 8]). Di�erent conditions guaranteeing that

all the solutions of (1) with a(t)!1 as t!1 are small, have a common

character: they have to control the way of growth of a in some sense. The

reason is that the e�ect of the increase of a depends on the distribution of

this increase. To illuminate this phenomenon, let us consider a nontrivial

solution x of (1). Let ft

2n�1

g

1

n=1

, and ft

2n

g

1

n=1

, denote all the zeros of x(t),

and x

0

(t); respectively. Then t

1

< t

2

< � � �< t

2n�1

< t

2n

< � � � . De�ne the

modi�ed energy F by

F (t; x; x

0

) :=

1

2a(t)

(x

0

)

2

+

x

2

2

: (5)

Taking into account the equation (1), for the derivative of F with respect

to (1) we obtain

F

0

(t; x; x

0

) = �

a

0

(t)

2a

2

(t)

(x

0

)

2

� 0; (6)

i.e., F (t; x(t); x

0

(t)) is nonincreasing. To guarantee x to be small, it is

enough to show lim

t!1

F (t; x(t); x

0

(t)) = 0. By the de�nition of ft

k

g, from

(6) we get

F

0

(t

2n�1

; x(t

2n�1

); x

0

(t

2n�1

)) = �

1

2

a

0

(t

2n�1

)

a(t

2n�1

)

F (t

2n�1

; x(t

2n�1

); x

0

(t

2n�1

));

F

0

(t

2n

; x(t

2n

); x

0

(t

2n

)) = 0:

We want to drive F (t) to zero. The last formulae show that the increase of

the function A(t) := ln a(t) makes F (t; x(t); x

0

(t)) decrease, and the increase

of A is e�ective if \it is located at the set ft

2n�1

g" and the increase of A

is ine�ective if \it is located at the set ft

2n

g." So, if we want to have only
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small solutions, we have to exclude that A(t) increases only very near to

the points of set ft

2n

g: G. Armellini called this type of behaviour \regular

growth".

De�nition 2 (G. Armellini [1]). a) Let f[�

n

; �

n

]g

1

n=1

be a family of inter-

vals such that �

1

< �

1

< �

2

< � � � < �

n

< �

n

< �

n+1

< � � � : Then the

density of the set E = [

1

n=1

[�

n

; �

n

] is de�ned by

�(E) = lim sup

n!1

1

�

n

n

X

k=1

(�

k

� �

k

):

b) A continuous, nondecreasing function A : [0;1) ! [0;1) with

lim

t!1

A(t) = 1 is of irregular growth if for each " > 0 there is a family

f[�

n

; �

n

]g

1

n=1

of intervals such that �([

1

n=1

[�

n

; �

n

]) < " and

1

X

n=1

(A(�

n+1

)�A(�

n

)) <1:

Otherwise we say that A is of regular growth.

Theorem B (G. Armellini [1]{L. Tonelli [11]{G. Sansone [10]). If a :

[0;1) ! (0;1) is di�erentiable, nondecreasing with lim

t!1

a(t) = 1; and

t 7! ln a(t) is of regular growth, then all solutions of (1) are small.

P. Hartman [6] sharpened this theorem weakening the assumption of the

regular growth of ln a(t). Generalizing Hartman's result, T.A. Chanturia

considered the nonlinear equation

x

00

+ a(t)f(x) = 0; (7)

where f : (�1;1)! (�1;1) is continuous,

xf(x) > 0 for all x 6= 0; lim

jxj!1

x

Z

0

f(r) dr =1;

and proved the following

Theorem C (T. A. Chanturia [4]). Suppose that a : [0;1) ! (0;1) is

nondecreasing and a(t) ! 1 as t ! 1 regularly in the following sense:

there is an "

0

> 0 such that

1

X

n=1

[ln a(�

n+1

)� ln a(�

n

)] =1 (8)

for every family of intervals f[�

n

; �

n

]g

1

n=1

satisfying the following conditions

(i){(iv):

(i) �

n

< �

n

< �

n+1

; n = 1; 2; : : : ; lim

n!1

�

n

=1;

(ii) lim inf

n!1

p

a(�

n

)(�

n

� �

n

) > 0;
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(iii) lim sup

n!1

p

a(�

n

)(�

n

� �

n

) < "

0

;

(iv) 0 < lim inf

n!1

R

�

n+1

�

n

p

a(t)dt � lim sup

n!1

R

�

n+1

�

n

p

a(t) dt <1:

Then all solutions of (7) are small.

Now we formulate an Armellini-Tonelli-Sansone-type theorem, in which

the growth condition appears in a simple integral form.

Theorem 3. Assume that a : [0;1) ! (0;1) is continuous, nondecreas-

ing, and lim

t!1

a(t) =1: Suppose that for every 
 > 0 and for every strictly

increasing sequence ft

n

g

1

n=1

with lim

n!1

t

n

=1, the inequality

lim inf

n!1

t

n+1

Z

t

n

p

a(t) dt � 
 (9)

implies

I =

1

X

n=1

t

n+1

Z

t

n

2

4

min

8

<

:

1

p

a(t)

t

Z

t

n

a(s) ds;

t

n+1

Z

t

p

a(s)ds

9

=

;

3

5

2

d(ln a(t)) =

=1: (10)

Then all solutions of (7) are small.

To illuminate the relationship between Theorem C and Theorem 3, we

formulate a corollary of Theorem 3.

Corollary 4. Assume that a : [0;1)! (0;1) is continuous, nondecreas-

ing, lim

t!1

a(t) = 1, and there are � > 0 and � > 0 such that 0 < h and

R

t

t�h

p

a(s) ds < � imply

t

Z

t�h

a(s) ds � �

p

a(t)

t

Z

t�h

p

a(s) ds (11)

for all t large enough.

Suppose that for every 
 > 0 there is an " (0 < " < 
) such that (8) holds

for every family of intervals f[�

n

; �

n

]g

1

n=1

satisfying the following conditions

(i){(iii):

(i) �

n

< �

n

< �

n+1

, n = 1; 2; : : : , lim

n!1

�

n

=1;

(ii)

R

�

n

�

n

p

a(t) dt = ", n = 1; 2; : : : ;

(iii) 0 < 
 � " � lim inf

n!1

R

�

n+1

�

n

p

a(t) dt � lim sup

n!1

R

�

n+1

�

n

p

a(t) dt <1:

Then all solutions of (7) are small.
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Proof. If a sequence ft

n

g satis�es (9), then de�ne f�

n

; �

n

g such that

�

n

< t

n

< �

n

;

�

n

Z

t

n

p

a(t) dt =

t

n+1

Z

�

n

p

a(t) dt =

"

2

n = 1; 2; : : :

hold. Then the conditions (i)-(iii) are satis�ed, which implies (8). We show

that (10) is satis�ed, too. In fact,

I �

1

X

n=1

t

n+1

Z

t

n

2

4

minf�

t

Z

t

n

p

a(s) ds;

t

n+1

Z

t

p

a(s) dsg

3

5

2

d(ln a(t)) �

� �

2

1

X

n=1

�

n+1

Z

�

n

"

2

d(ln a(t)) =

= �

2

"

2

1

X

n=1

[ln a(�

n+1

)� ln a(�

n+1

)] =

=1

because of (8). �

If we compare Corollary 4 with Theorem C, we can see that Corollary

4 requires (8) of less sequences f�

n

; �

n

g, than Theorem C does. Among

others, this is true because the condition (ii) in Corollary 4 uses integrals,

while (i) and (ii) in Theorem C contain rough estimates for the same integral

R

�

n

�

n

p

a(t) dt:

Finally, we would like to sketch a new approach to the problem. As is

known, (4) alone is not su�cient for the property that all solutions of (1)

tend to zero as t goes to in�nity. On the other hand, the assumption of

regular growth is too restrictive in certain cases; e.g., step function coe�-

cients are never of regular growth. So it is natural to ask: how often does it

happen that, under the only assumption (4), all solutions of (1) tend to zero

Let us formulate exactly this problem for the case of (1) with step function

coe�cient.

Let the sequence fa

n

g

1

n=1

be given such that

0 � a

1

< a

2

< � � � < a

n

< a

n+1

< � � � ; n = 1; 2; : : : ; lim

n!1

a

n

=1;

and let us choose a sequence ft

n

g

1

n=1

at random such that

0 = t

0

< t

1

< � � � < t

n

< t

n+1

< � � � ; n = 1; 2; : : : ; lim

n!1

t

n

=1:

What is the probability that for given x

0

and x

0

0

, the solution x with x(0) =

x

0

, x

0

(0) = x

0

0

satis�es lim

t!1

x(t) = 0? The following theorem can be proved.
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Theorem 5 (L. Hatvani{L. Stach�o). Let t

n+1

� t

n

, n = 1; 2; : : : , be a uni-

formly distributed random variable on [0; 1]. Then for every solution x of

the equation

x

00

+ a

k

x = 0; t

k�1

� t < t

k

; k = 1; 2; : : : ;

it holds almost surely that lim

t!1

x(t) = 0.
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