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TO THE THEORY OF BOUNDARY VALUE PROBLEMS FOR

HYPERBOLIC TYPE EQUATIONS AND SYSTEMS

Abstract. Most well{posed boundary value problems, if considered

in spaces of higher dimension, have a lot of di�erent variants which,

unlike the original problems, do not obey the standard existence and

uniqueness conditions. This observation is, in particular, typical of

equations and systems of hyperbolic type. Just such problems are

needed to be investigated for the purpose of applications. A. V. Bit-

sadze obtained a number of results in this direction both for strictly

hyperbolic and degenerating linear and nonlinear equations. In the

subsequent years, these results stimulated investigations of his follow-

ers. Some of the results are discussed in the paper.

reziume. maGali ganzomilebis sivrceze gadasvlisas koreqtulad

dasmul sasazGvro amocanaTa umetesobas Seesabameba mravali sxvadasxva

varianti, romlebic saCKisi amocanebisagan gansxvavebiT, ukve aGar emor-

hilebian amonaxsnTa arsebobis da erTaderTobis standartul pirobebs.

es kanonzomiereba gansakuTrebiT niSandoblivia Hiperboluri tipis gan-

tolebebisa da sistemebisaTvis. praqtika moiTxovs sCored aseTi amo-

canebis gamokvlevas. a. biCaZis mier miGebuli iKo mTeli rigi Sedege-

bisa, rogorc mkacrad Hiperboluri, agreTve gadagvarebuli CrPivi da

araCrPivi gantolebebisaTvis, romlebmac SemdgomSi ganapirobes misi

mimdevrebis gamokvlevebi. hvens moxsenebaSi SevexebiT sCored am mi-

marTulebiT miGebul zogierT Sedegs.

It is common knowledge that the initial and characteristic problems for

model hyperbolic equations on a plane are uniquely solvable and their so-

lutions can be obtained explicitly. These problems, when passing from one

equation to a hyperbolic type system, as it is shown by A.V. Bitsadze [1, 2],

can have even in�nite number of linearly independent solutions. He also dis-

covered the e�ect of in
uence o�ered by lower derivatives on the correctness

of some variants of the Goursat problem. These facts impelled mathemati-

cians to investigate di�erent variants of boundary-value and characteristic

problems for hyperbolic systems. In the present paper, we will consider
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some results connected with the problem with oblique derivatives. Because

of the fact that in this case the results for a system and for one equation

are comparable, for the sake of clearness we will present this result for the

equation

u

xy

+ au

x

+ bu

y

+ cu = F; (1)

which is given in a curvilinear quadrangle bounded by arcs of the curves 


1

and 


2

coming out of the origin and lying in the �rst quadrant and also by

two characteristic segments coming out of the ends of the above-mentioned

arcs. The Poincar�e conditions
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; i = 1; 2; (2)

are given on the arcs 


1

and 


2

.

As it turned out, the directions l

1

and l

2

at the origin and the angle

between 


1

and 


2

in
uence greatly the solvability of the problem (1),(2).

Under certain conditions, this problem may appear to be well-posed in one

case and admit an in�nite number of solutions in the other [3].

In an analogous angular domain we can consider the Poincar�e problem

for the normal hyperbolic system of general type:

Au

xx

+ 2Bu

xy

+ Cu

yy

+A

1

u

x

+B

1

u

y

+ C

1

u = F: (3)

It will be assumed that the characteristics of the system (3) passing

through the origin do not get into the angle formed by the arcs 


1

and 


2

.

A number of di�erent variants is available for formulation of the Poincar�e

problem. We are dwelling upon one of them.

Let on the arc 


1

as many boundary conditions of the type (2) be given

as there are the characteristics coming out of the end of the arc 


2

and

intersecting 


1

. The number of boundary conditions on the arc 


2

is de�ned

analogously. The character of solvability of such a problem both for a

system and for an equation does not di�er in principle. In the case of the

system (3), the domain of de�nition for the solution of the problem has an

interesting structure. Along with the arcs 


1

and 


2

, it is bounded by the

characteristics coming out of the ends of these arcs. The question is: by

what kind of characteristics? If we put the characteristics coming out of the

end of the arc 


1

(


2

) in order with regard to the distance from the origin

to the point of their intersection with the arc 


2

(


1

), then we have to take

the �rst not intersecting 


2

(


1

) characteristic.

In passing to the domains of higher dimension, the situation changes

in principble. One of the reasons of this phenomenon is probably the fol-

lowing fact: for second order hyperbolic equations, the characteristics on

the plane are presented by two di�erent sets. But in the space they ap-

pear as bicharacteristics of the characteristic cones and represent connected

sets. Envelopes of these cones may have multiform con�gurations. This
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implies that formulation of various well-posed problems, including charac-

teristic ones, is quite possible. A wide range of well-posed multidimensional

analogues of the Darboux and Goursat problems for the wave equation

u

tt

� u

xx

� u

yy

= 0 (4)

belongs to A. V. Bitsadze.

It should be noted that we do not intend to elaborate well-posed formu-

lations of the problem but we are going to �nd those ones which would be

most adequate to certain physical features. One example of such problems is

a multidimensional analogue of the �rst Darboux problem for the equation

(4) in the half-plane y > 0 bounded by the cones S

�

: t� t

0

= �

p

x

2

+ y

2

,

t

0

> 0 and by the plane y = 0. It is required to determine a solution by the

boundary conditions [4]

uj

S

+
= f

1

; uj

y=0

= f

2

: (5)

The �rst Darboux problem has many analogues; some of them are ill{

posed. For example, there is the problem formulated as follows: �nd in the

domain 0 < t <

1

2

, t <

p

x

2

+ y

2

< 1� t, a solution of the equation (4) by

the boundary conditions

uj

t=0

= f

1

; uj

t=r

= f

2

; r =

p

x

2

+ y

2

: (6)

As it appeared, the corresponding homogeneous problem has an in�nite

number of linearly independent solutions, but nevertheless the problem (4),

(6) itself is solvable [5]. It is of interest that if we assume the outer cone

to be the data support, then the problem becomes overdetermined. The

problem (4), (6) itself turns into a well-posed one if we transfer the vertex

of the inner cone below the plane t = 0 [6].

As a direct extension of the Goursat problem to the space, one can con-

sider the problem with data on a �nite or in�nite light characteristic cone

for the wave equation (4). The well-posedness of this problem is well-known.

The well-posedness of an analogous problem when data support is a cone

lying strictly inside the characteristic cone, has been established in [7, 8].

In fact, this problem is a direct analogue of the second two{dimensional

Darboux problem. Similar multidimensional problem for higher order hy-

perbolic equations with constant coe�cients in the principal part has been

investigated in [3].

The two-dimensional Darboux and Goursat problems have also other

natural generalizations [3], in particular, when the data supports are half-

planes bounding dihedral angles and having de�nite orientation. If both

faces are characteristic, then we deal with the analogue of the Goursat

problem. If, however, one of the faces is characteristic and the other one

is time-oriented, then we get the direct generalization of the �rst Darboux

problem. On the faces we can specify the values of: (a) the solution itself;
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(b) the normal derivative or (c) the conditions of the type (2). The con-

ditions ensuring the unique solvability of all these problems are obtained.

Moreover, in the case of the Dirichlet problem the solutions are constructed

in quadratures.

The analogue of the second Darboux problem, i.e., when the both faces

are of time type, turned out to be more complicated. In this case it is im-

possible to construct the solution in quadratures, and the unique solvability

can be proved in Sobolev's space.

In the dihedral angles, the analogues of the Darboux problem have been

considered for equations of higher order as well. Formulation of one such

analogue for the third order equation

u

xyt

+ L(u) = F (7)

with a general second order linear di�erential operator L containing out

of the second order derivatives only mixed ones, can be found in [9]. The

problem consists in �nding a solution of the equation (7) by two boundary

conditions on one face and by one condition on the other,

M

k

(u) = f

k

; k = 1; 2; 3; (8)

where M

k

is also a general linear second order operator of an analogous to

L structure. For the problem (7), (8) to be well-posed, su�cient conditions

are established among which there appear requirements regarding the given

domain's geometry. In particular, the angle edge is parallel to none of the

coordinate planes, and bicharacteristics of the equation (7) passing through

the edge get neither on the faces nor in the angle formed the by them. These

su�cient conditions are close to the necessary ones: the problem (7), (8)

may turn out ill-posed if one of these conditions violates.

As is noted above, the Goursat problem for the wave equation (4) with

data on a characteristic cone S

�

: t � 1 = �

p

x

2

+ y

2

, 0 � t � 1, is well-

posed and its solution is de�ned in the domain contained between S

�

and

S

+

: t + 1 =

p

x

2

+ y

2

, �1 � t � 0. If instead of (4) we consider the

equation

(jtj

m

u

t

)

t

� u

xx

� u

yy

+ L(u) = F; (9)

L(u) � au

x

+ bu

y

+ cu

t

+du with given m 2 (1; 2), then instead of the cones

S

�

we have to introduce S

�

m

. The Goursat problem for the equation (9)

with data on S

�

m

is also well-posed but its solution extends only up to the

circle S

0

: x

2

+ y

2

<

�

2

2�m

�

2

of the plane t = 0. Although when m = 0

the initial conditions given on that circle de�ne a solution of the Cauchy

problem for the equation (4) in the whole conic domain, the same problem

for equation (9) is overdetermined. The problem becomes well-posed if we

prescribe on the circle only the values of the unknown solution, and as for
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the coe�cients, require

(d� a

x

� b

y

� c

t

)j

D

> 0; cj

S

0

> 0:

where D is the domain contained between S

�

m

and S

0

.

The reason of all this is the characteristic parabolic degeneration of the

equation (9) on the plane t = 0 which itself is characteristic.

Parabolic degeneration for hyperbolic equations causes various and very

interesting e�ects even on the plane. In the plane case, the principal parts

of a mixed type equation can be represented either by jtj

m

sgn tu

xx

+u

tt

or

by u

xx

+ jtj

m

sgn tu

tt

. The above-mentioned operators can be continued to

the space in di�erent ways. Likewise in di�erent ways can be extended the

results known for the two-dimensional case. Then the equation (9) is one

of the variants of such a continuation. Not less interesting is the equation

u

tt

� u

xx

� (jyj

m

u

y

)

y

+ L(u) = F; (10)

which is by its nature close to the equation (9) and has a characteristic

parabolic degeneration on the plane y = 0. It turns out that the �rst Dar-

boux problem with the data on the strip 0 < t < 1, y = 0 and on the

charcteristic surface plane (2 �m)t � 2y

2�m

2

= 0, 0 < t <

1

2

, is overdeter-

mined. In the class of generalized solutions in the space W

1

2

with weighted

norm

kuk =

Z

G

(u

2

t

+ u

2

x

+ y

m

u

2

y

+ u

2

)dG;

G : �
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y

�

, 0 < y < (

�

2

)

�

�1

, � =

2�m

2

, this problem can

be well-posed if we get rid of the data on the strip of the plane y = 0 [10].

As is known, a free (non-characteristic) parabolic degeneration has no so

considerable in
uence on the statements of classical problems and on their

solvability as it is the case for the equations (9) and (10). For example, for

the equations u

tt

�jyj

m

u

xx

�u

yy

+L(u) = F , u

tt

�t

m

(u

xx

+u

yy

)+L(u) = F ,

m > 0, with regard for the in
uence of the lower terms, the above arguments

concerning the wave equation remain valid.

We have mentioned above the passage from the two-dimensional case to

the multi-dimensional one. We deal in fact with the passage from the mul-

tidimensional case to the spaces of lesser dimension because real processes

take place both in the space and in time. Mathematical models of such

processes are very complicated and therefore we have to consider these pro-

cesses which possess some kind of symmetry. This is done for the sake of

the dimension lowering and model simpli�cation. The idea of the dimension

lowering is not new. On this basis, successfully applicable powerful methods

have been constructed. The results we mentioned above were achieved in

part by realization of this idea. It has successfully been applied [4] to the

construction of whole classes of exact solutions of nonlinear equations and
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of the second order special systems of the kind

n

X

i;j=1

a

ij

(x)[u

x

i

x

j

� b(u)u

x

i

u

x

j

] +

n

X

i=1

c

i

(x)u

x

i

+ d(x; u) = 0: (11)

Such equations appear in modelling di�erent processes. A.V. Bitsadze's

method is based on the description of the structure of the family of level

manifolds of solutions of the equation under consideration. He seeks for the

solution in the class of functions with the same families of level manifolds.

This correspondence is expressed by a simple relation u = '(v) which allows

one by a suitable choice of the function ' to reduce the equation (11) to a

linear one with respect to v.

It often is more convenient to consider level manifolds referring not to a

solution of the given equation but to special combinations of its values and

derivatives. For hyperbolic equations, it is more e�cient to introduce as

such combinations analogues of Riemann's characteristic invariants which

follow from di�erential relations on the characteristics. For some classes of

second order nonlinear equations with real characteristics whose di�erential

relations are quite integrable, one can construct general integrals in the

sense of Monge{Darboux. In [11, 12], for the Dubreil{Jacotin equation on

the plane

(u

2

y

� 1)u

xx

� 2u

x

u

y

u

xy

+ u

2

x

u

yy

= 0; (12)

the general integral with two arbitrary, smooth enough, functions f and

g is constructed which has the form f(u + y) + g(u � y) + x = 0. The

latter made it possible to discover a number of new facts for the Cauchy

problem. In particular, it is shown that discontinuous initial data may cause

discontinuites not only of solutions but also of their domains of de�nition. It

is proved that in many cases initial data may become a reason of parabolic

degeneration of the equation (12) in the domain of de�nition of a solution

even if the data support is free from such a degeneration. Moreover, in

such domains there may exist subdomains which are free from the in
uence

of initial perturbations. As a rule, these subdomains are bounded by the

envelopes of the both families of characteristics and therefore, along their

boundaries the equation has a strong parabolic degeneration.

The general integral of the equation (12) has been applied to the inves-

tigation of the inverse Cauchy problems. The problem of �nding the initial

values of a solution and its derivatives by means of two arbitrarily given

one-parametric families of characteristics is considered in [13]. Su�cient

conditions of unique solvability of such a problem are etablished. The de-

pendence of characteristics on the solutions of the equation (12) allows one

to formulate these problems. The same dependence makes di�cult the con-

sideration of characteristic problems, the Darboux and Goursat problems

among them, even in the process of their posing. For the characteristic

problem to be well-posed, it is necessary to take into account the structure
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of the corresponding invariants. The general integral has been constructed

on their basis, and therefore it can serve as a basis in posing the problems.

Di�erent variants of characteristic problems have been presented in [11, 12].

For the equation (12), for example, there is a problem formulated as follows:

two arbitrary arcs, one being characteristic and belonging to one of the fam-

ilies and the other being free, on which the values of solutions are given,

come out of a certain �xed point. It is required to determine a solution and

its domain of de�nition by the above-mentioned data. In the given posing,

representation of curves and their inclusion into the characteristic families

or into the set of free curves is of importance. Su�cient conditions for solv-

ability of such problems are established and in some cases we managed to

count the solutions.

As is shown in [14], analogous posings are also possible for the equation

of nonlinear oscillations u

4

y

u

xx

� u

yy

= cuu

4

y

x

�2

. But such an approach is

far from being universal, since for some classes of nonlinear equations the

characteristics can form families with quite speci�c properties. In partic-

ular, the family of curves corresponding to an independent of the solution

characteristic root is completely determined. Then, naturally, there is no

need in attributing an arbitrarily taken arc to some family of characteristics.

One has to take a curve endowed with the appropriate properties.

Many similar well-known facts regarding the solvability of multidimen-

sional and nonlinear problems are available in literature. Our present infor-

mation is far from the full description. Separate results cannot be consid-

ered as independent ones. They are interconnected and are the subject of

a theory in the process of its formation.
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