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HOW PARABOLIC FREE BOUNDARIES APPROXIMATE

HYPERBOLIC FRONTS

Abstract. Some recent results concerning existence and qualitative

behaviour of the boundaries of the suppurts of solutions of the Cauchy

problem for nonlinear �rst{order hyperbolic and second-order para-

bolic scalar conservation laws are discussed. Among other properties,

it is shown that, under appropriate assumptions, parabolic interfaces

converge to hyperbolic ones in the vanishing viscosity limit.

reziume. naSromSi mimoxilulia zogierTi bolodroindeli Sedegi

pirveli da meore rigis araCrPivi skalaruli konservatiuli gan-

tolebebisaTvis koSis amocanis amonaxsnebis arsebobisa da maTi mzide-

bis sazGvrebis Tvisebrivi KoPaqcevis Sesaxeb. sxva TvisebebTan erTad

nahvenebia, rom garkveul pirobebSi siblantis nulisken misCraPebisas

paraboluri talGuri Pronti miisCraPis Hiperbolurisaken.

We consider phenomena associated with the nonnegative solution of the

nonlinear �rst-order hyperbolic Cauchy problem

u

t

+ (f(u))

x

= 0 in R � R

+

(1)

with the initial condition

u = u

0

on R � f0g ; (2)

and the nonnegative solution of the nonlinear second-order parabolic Cauchy

problem

u

t

+ (f(u))

x

= "(a(u))

xx

in R � R

+

(3)

(in which " > 0 is a real parameter) with the same initial condition.

About the coe�cients in these equations and the initial data function,

we assume the following.

(H

1

) The function f 2 C([0;1)) \ C

1

(0;1) with f

0

locally H�older con-

tinuous on (0;1) and f(0) = 0.
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(H

2

) The function a 2 C([0;1)) \ C

2

(0;1) with a

00

locally H�older con-

tinuous on (0;1), a

0

(s) > 0 for s > 0 and a(0) = 0.

(H

3

) The function u

0

2 L

1

(R),

Z

R

ju

0

(x + h)� u

0

(x)j dx! 0 as h! 0 ; (4)

u

0

is nonnegative, and is nontrivial in the sense that

M := ess supfu

0

(x) j x 2 Rg > 0 : (5)

The problem (1),(2) may be regarded as the limit as " # 0 of the problem

(3),(2). Indeed, under the assumptions (H

1

) and (H

3

), it can be shown that

the problem (1),(2) admits a unique entropy solution. While, under the

assumptions (H

1

){(H

3

), the problem (3),(2) has a unique weak solution for

any " > 0. Moreover, the solution of the parabolic problem converges to

the entropy solution of the hyperbolic problem as " # 0 in C([0; T ];L

1

loc

(R))

for every 0 < T <1 (see [1,3{5]).

In this report, we present some new results (see [2]) concerning the rela-

tionship between fronts associated with the propagation of the support of

the entropy solution of the hyperbolic problem (1),(2) and the correspond-

ing free boundary in the solution of the parabolic problem (3),(2). More

precisely, we will study how the interface denoting the upper boundary

of the support of the solution of (3),(2), also known as the \right front",

approximates the corresponding interface of the solution of (1),(2) in the

vanishing viscosity limit " # 0.

Let us denote by u(x; t; ") the unique weak solution of the problem (3),(2)

if " > 0, and by u(x; t; 0) the unique entropy solution of the problem (1),(2).

De�ne the front

�(t; ") := supfx 2 R j w(x; t; ") > 0g ;

where

w(x; t; ") :=

1

Z

x

u(y; t; ") dy for any t > 0 (6)

and " � 0. Set also

�

0

:= supfx 2 R j w

0

(x) > 0g ;

where

w

0

(x) :=

1

Z

x

u

0

(y) dy : (7)

Our objective is to study the existence and the behavior of the front �(t; ")

(" � 0), as well as the relationship between the fronts �(�; ") for " > 0 and

the front �(�; 0).
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A crucial rôle in the analysis is played by the quantities

�

�

:= supff(s)=s j 0 < s � �g (8)

and

�

0

:= lim

�#0

�

�

= lim sup

s#0

f(s)=s : (9)

Obviously, by de�nition �

0

� �

M

.

In the singular case �

0

=1 then, irrespective of the initial data u

0

, there

holds �(t; ") =1 for all t > 0 and " � 0. In this case, both the hyperbolic

problem and the parabolic problem display in�nite speed of propagation.

On the other hand, if �

0

<1, then the hyperbolic problem (1),(2) displays

�nite speed of propagation, i.e., if �

0

<1, then there holds �(t; 0) <1 for

all t > 0. For the parabolic equation, �nite speed of propagation holds only

under the additional necessary and su�cient condition

(H

4

)

�

Z

0

a

0

(s)

maxfs;�f(s)g

ds <1 for some � > 0 ;

which ensures that the di�usion is \slow" enough.

This is the content of the following theorems.

Theorem 1. Let the assumptions (H

1

) and (H

3

) hold.

(a) If �

0

=1, then �(t; 0) =1 for all t > 0.

(b) If �

0

< 1, then, as an extended function, �(�; 0) is lower semi-

continuous and continuous from the right on [0;1) with �(0; 0) =

�

0

, and

�(t; 0) � �(t

0

; 0) + �

M

(t� t

0

) for all t > t

0

� 0 : (10)

Moreover if �

0

> �1, then �(�; 0) is continuous on [0;1) with

�(t; 0) � �(t

0

; 0) + �

0

(t� t

0

) for all t > t

0

� 0 : (11)

Theorem 2. Let " > 0 and the assumptions (H

1

){(H

3

) hold.

(a) If �

0

=1 or the assumption (H

4

) is negated, then �(t; ") =1 for

all t > 0.

(b) If �

0

< 1 and (H

4

) is satis�ed, then, as an extended function,

�(�; ") is lower semi-continuous and continuous from the right on

[0;1) with �(0; ") = �

0

, and

�(t; ") � �(t

0

; ") + �

M

(t� t

0

) +Q

M

(t� t

0

; ") (12)

for all t > t

0

� 0 ;

where

Q

M

(t; ") := inf

�>�

M

8

<

:

(� � �

M

)t+ "

M

Z

0

a

0

(s)

�

s

� f(s)

ds

9

=

;

:
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Moreover, if �

0

> �1, then �(�; ") is continuous on [0;1) with

�(t; ") � �(t

0

; ") + �

0

(t� t

0

) for all t > t

0

� 0 : (13)

In the general situation with �

0

> �1 we also completely clarify the

relation between the parabolic free boundaries and the hyperbolic front. If

�

0

=1, or, if j�

0

j <1 and �

0

=1, then by Theorems 1 and 2, �(t; ") =1

for all t > 0 and " � 0. Whereas if j�

0

j < 1, �

0

<1 and (H

4

) is negated,

then �(t; 0) <1 = �(t; ") for all t > 0 and " > 0. Thus in both these cases,

the relation is clear from Theorems 1 and 2. In the case where j�

0

j < 1,

�

0

< 1 and (H

4

) holds with �(t; ") < 1 for all t � 0 and " � 0, we can

prove the following result concerning the convergence of the interfaces as

" # 0.

Theorem 3. Suppose that assumptions (H

1

){(H

4

) hold, j�

0

j < 1 and

�

0

<1. Then

�(�; ")! �(�; 0) as " # 0

in C([0; T ]) \ C

0+�

([�; T ]) for all 0 < � < T <1 and 0 < � < 1.

We conclude that in case �

0

is �nite, the hyperbolic front is the vanishing

viscosity limit of the free boundary of the parabolic problem when the latter

displays �nite speed of propagation.

With regard to the singular situation �

0

= �1, we obtain the following

weaker result.

Theorem 4. Suppose that the assumptions (H

1

){(H

4

) hold and �

0

= �1.

Then

lim inf

"#0

�(t; ") � �(t; 0) for all t > 0 ;

and, if there exists a t

0

� 0 such that lim sup

"#0

�(t

0

; ") < 1, then there

holds

lim sup

"#0

�(t; ") � lim sup

s"t

�(s; 0) for all t > t

0

:

It is known (see [3]) that in the above case both problems (1), (2) and

(3), (2) admit instantaneous shrinking, this is to say that one can have

�

0

=1 and �(t; ") <1 for all t > 0, and deferred instantaneous shrinking,

where �(t; ") = 1 for all 0 � t < � and �(t; ") < 1 for all t > � for some

0 < � <1.

It is informative to provide a synopsis of the previous results for the

prototype equations

u

t

+ �(u

n

)

x

= 0 (14)

and

u

t

+ �(u

n

)

x

= "(u

m

)

xx

(15)

with � 2 f�1; 0; 1g, n > 0 and m > 0 real parameters.

This is made in the following theorem.
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Theorem 5. Let � 2 f�1; 0; 1g, n > 0 and m > 0 be real constants, and

suppose that u

0

satis�es the assumption (H

3

).

(i) If n < 1 and � = 1, then there holds �(t; ") = 1 for all t > 0 and

" � 0.

(ii) If n = 1, there holds �(t; 0) = �

0

+ �t for all t > 0. Moreover:

(a) If m � 1, then �(t; ") =1 for all t > 0 and " > 0.

(b) If m > 1, then �

0

+ �t � �(t; ") � �

0

+ �t+R(t; ";M) for all

t > 0 and " > 0, where

R(t; ";M) = C"

1=2

t

1=2

M

(m�1)=2

(16)

for some constant C which depends only on m.

(iii) If n > 1 and � = �1, there holds �(t; 0) = �

0

for all t > 0. More-

over:

(a) If m � 1, then �(t; ") =1 for all t > 0 and " > 0.

(b) If m > 1, then �

0

� �(t; ") � �

0

+R(t; ";M) for all t > 0 and

" > 0, where R(t; ";M) is given by (16) or by

R(t; ";M) =

8

<

:

C"

(n�1)=(2n�m�1)

t

(n�m)=(2n�m�1)

for m < n

C"fln("

�1

tM

n�1

+ 1) + 1g for m = n

C"M

m�n

for m > n

(17)

for some constant C which depends only on m and n.

(iv) If n > 1 and � = 1, then there holds �

0

� �(t; 0) � �

0

+M

n�1

t for

all t > 0. Moreover:

(a) If m � 1, then �(t; ") =1 for all t > 0 and " > 0.

(b) If m > 1, then �

0

� �(t; ") � �

0

+M

n�1

t+R(t; ";M) for all

t > 0 and " > 0, where R(t; ";M) is given by (16) or by

R(t; ";M) = C"M

m�n

fln("

�1

tM

2n�m�1

+ 1) + 1g (18)

for some constant C which depends only on m and n.

(v) If n < 1 and � = �1, then there holds �(t; 0) � �

0

�M

n�1

t for all

t > 0. Moreover:

(a) If m � n, then �(t; ") =1 for all t > 0 and " > 0.

(b) If m > n, then �(t; ") � �

0

�M

n�1

t+R(t; ";M) for all t > 0

and " > 0, where R(t; ";M) is given by

R(t; ";M) =

8

<

:

C"

(1�n)=(m+1�2n)

t

(m�n)=(m+1�2n)

for m < 1

C"

1=2

t

1=2

ln

1=2

("t

�1

M

2(1�n)

+ 1) for m = 1

C"

1=2

t

1=2

M

(m�1)=2

for m > 1

(19)

or by

R(t; ";M) = C"M

m�n

fln("

�1

tM

2n�m�1

+ 1) + 1g (20)

for some constant C which depends only on m and n.
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