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The linear hyperbolic system

@

2

u

@x@y
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(x; y)u+ P

1

(x; y)

@u

@x

+ P

2

(x; y)

@u

@y

+ q(x; y) (1)

is considered, where P

0

; P

1

; P

2

and q are respectively the n�nmatrices and

the n-dimensional vector whose components are measurable and essentially

bounded functions in the rectangle D

ab

= [0; a]� [0; b] or in the strip D

b

=

= R � [0; b].

For system (1) problems with general functional boundary conditions are

investigated in the rectangle D

ab

and problems on bounded, almost-periodic

and periodic solutions in the strip D

b

.

Optimal in a certain sense conditions are established, guaranteeing the

unique solvability of the problems and the stability of their solutions with

respect to small perturbations of the coe�cients of system (1) and of the

boundary conditions.
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System of partial di�erential equations of hyper-

bolic type, boundary value problem in the rectangle, classical solution, ab-

solutely continuous solution, generalized solution, periodic solution, almost-

periodic solution, bounded solution.

reziume. ganxilulia CrPivi Hiperboluri sistema

@

2

u

@x@y

= P

0

(x; y)u+ P

1

(x; y)

@u

@x

+ P

2

(x; y)

@u

@y

+ q(x; y); (1)

sadac P

0

; P

1

; P

2

da q, saTanadod, n�n matricebi da n- ganzomilebiani

veqtoria, romelTa komponentebi D

ab

= [0; a] � [0; b] sCorkuTxedSi an

D

b

= R�[0; b] zolSi gansazGvruli zomadi da arsebiTad SemosazGvruli

Punqciebia.

D

ab

sCorkuTxedSi (1) sistemisaTvis gamokvleulia amocanebi zogadi

funqcionaluri sasazGvro pirobebiT, xolo D

b

zolSi |amocanebi

SemosazGvruli, TiTqmis perioduli da perioduli amonaxsnebis Sesaxeb.

dadgenilia garkveuli azriT optimaluri pirobebi, romlebic uzrun-

velKoPen aGniSnul amocanaTa calsaxad amoxsnadobas da amonaxsnis

mdgradobas (1) sistemis koePicientebisa da sasazGvro mniSvnelobebis

mcire SeSPoTebaTa mimarT.
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Beginning from the 60ies, prob-

lems on periodic solutions in a strip or in the large as well as problems

with boundary conditions connecting the values of an unknown solution in

various characteristics have been intensively studied for partial di�erential

equations of hyperbolic type (see, e.g., [1-4, 6-10, 16, 17, 29, 31-36, 38-

47,51]). These problems naturally lead us to boundary value problems in a

rectangle with general functional boundary conditions, and also to problems

on bounded and almost-periodic in a strip solutions. This work deals just

with such a class of problems for the linear hyperbolic system

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y); (0.1)

whereP

0

, P

1

, P

2

and q are, respectively, n�nmatrices and an n-dimensional

vector whose components are real measurable and essentially bounded func-

tions given in the rectangle

D

ab

= [0; a]� [0; b]

or in the strip

D

b

= R � [0; b]

(a and b are positive numbers, R is the set of real numbers).

We start with the following two de�nitions.

A vector function u : D

ab

! R

n

(u : D

b

! R

n

) is called

a solution of system (0.1) if it is absolutely continuous in D

ab

1

(in every

rectangle contained in D

b

) and satis�es system (0.1) almost everywhere in

D

ab

(in D

b

).

A solution u : D

ab

! R

n

(u : D

b

! R

n

) of system (0.1) is

called classical if it has the continuous partial derivatives

@u

@x

,

@u

@y

and

@

2

u

@x@y

in D

ab

(in D

b

).

1

According to the well-known de�nition of an absolutely continuous function of many

variables (see [5, x570], [11] and [49]), a vector function u : D

ab

! R

n

is absolutely

continuous if and only if it admits the representation

u(x; y) = v

1

(x) + v

2

(y) +

Z

x

0

Z

y

0

v(s; t)ds dt for (x; y) 2 D

ab

;

where v

1

: [0; a] ! R

n

and v

2

: [0; b] ! R

n

are absolutely continuous and v : D

ab

! R

n

is summable.
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De�nition 0.1 was earlier used when investigating initial value problems

for hyperbolic systems with discontinuous coe�cients [11-13,49,50]. As for

boundary value problems for system (0.1), they were studied, as a rule,

in terms of the concept of a classical solution for P

i

(i = 0; 1; 2) and q

being continuous or even smooth. In fact, the concepts either of a classical

solution or of an absolutely continuous one, do not appear to be su�cient

for investigating even very simple boundary value problems.

2

Therefore

we have to extend the concept of a solution on the basis of Picone's canonic

representation of system (0.1) [37].

For an arbitrary x 2 [0; a] (y 2 [0; b]) by Z

1

(x; �) (Z

2

(�; y)) we denote the

fundamental matrix of the system of ordinary di�erential equations

dz(x; y)

dy

= P

1

(x; y)z(x; y)

�

dz(x; y)

dx

= P

2

(x; y)z(x; y)

�

;

satisfying the initial condition

Z

1

(x; 0) = E

�

Z

2

(0; y) = E

�

;

where E is the unit n� n matrix.

According to Lemma 3.2 below, if the matrix function P

2

(x; �) is abso-

lutely continuous, then a solution u : D

ab

! R

n

of system (0.1) is also a

solution of the system

@

@y

h

Z

�1

1

(x; y)Z

2

(x; y)

@

@x

�

Z

�1

2

(x; y)u(x; y)

�i

=

= Z

�1

1

(x; y)

�

P(x; y)u(x; y) + q(x; y)

�

; (0.1

0

)

where

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y) �

@P

2

(x; y)

@y

and vice versa. System (0.1

0

) is called the Picone canonic form of system

(0.1).

A vector function u : D

ab

! R

n

(u : D

b

! R

n

) is called a

generalized solution of system (0.1) if: i) u admits the representation

u(x; y) = Z

2

(x; y)[v

0

(x; y) + v

1

(y)];

where v

0

: D

ab

! R

n

(v

0

: D

b

! R

n

) is absolutely continuous (locally

absolutely continuous) and v

1

: [0; b] ! R

n

is summable; ii) equality (0.1

0

)

holds almost everywhere in D

ab

(in D

b

).

2

For the periodic boundary value problem this fact was taken into account in [51].
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In the rectangle D

ab

for system (0.1) we study boundary value problems

of four types

u(x; 0) = '

0

(x); h

�

@u(�; y)

@y

�

(y) = '

1

(y); (0.2)

@u(x; 0)

@x

�P

2

(x; 0)u(x; 0) =  

0

(x); h

�

@(�; y)

@y

�

(y) =  

1

(y); (0.3)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x); h

�

u(�; y)

�

(y) =  

1

(y); (0.4)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x);

h

�

@

@y

�

u(�; y)� Z

2

(�; y)u(0; y)

�

�

(y) =  

1

(y);

(0.5)

where '

0

: [0; a] ! R

n

is absolutely continuous,  

0

: [0; a] ! R

n

, '

1

and  

1

: [0; b] ! R

n

are summable and h is a linear continuous operator

acting from the space of absolutely continuous in [0; a] n-dimensional vector

functions to the space of measurable and essentially bounded in [0; b] n-

dimensional vector functions. We are especially interested in the case when

h(v)(y) � v(a)�v(0), i.e. when boundary conditions (0.2)-(0.5) are periodic,

u(x; 0) = '

0

(x);

@u(a; y)

@y

=

@u(0; y)

@y

+ '

1

(y); (0.2

1

)

@u(x; 0)

@x

�P

2

(x; 0)u(x; 0) =  

0

(x);

@u(a; y)

@y

=

@u(0; y)

@y

+  

1

(y);

(0.3

1

)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x);

u(a; y) = u(0; y) +  

1

(y);

(0.4

1

)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x);

@

@y

�

u(a; y)� u(0; y)

�

=  

1

(y):

(0.5

1

)

For any k 2 f2; 3; 4; 5g under a solution (a classical solution, a generalized

solution) of problem (0.1),(0.k) we understand a solution (a classical solu-

tion, a generalized solution) of system (0.1) satisfying boundary conditions

(0.k) almost everywhere in D

ab

.

The behaviour of the matrix function M

0

: [0; b] ! R

n�n

induced by

the operator h and the fundamental matrix Z

2

,

3

a�ects essentially the

3

I.e., M

0

is the matrix function satisfying the equality h(Z

2

(�; y)c) = M

0

(y)c almost

for all y 2 [0; b] and an arbitrary c 2 R

n

.
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solvability and correctness of boundary value problems of type (0.1),(0.k)

and di�erential properties of solutions of these problems. For example: 1)

if M

0

is singular at isolated points, then despite the smoothness of P

i

(i =

= 0; 1; 2) and q and the unique solvability of problem (0.1),(0.2) the latter's

solution may be non-classical (see Remark 4.2); 2) if M

0

is singular in the

set of positive measure, then problem (0.1),(0.2) may be non-Fredholmian

(see Theorems 4.1 and 4.1

0

) or may have the unique classical solution and

an in�nite set of absolutely continuous solutions (see Remark 4.3); 3) if

M

0

(y) � �, where � is the zero n�n matrix, then problem (0.1),(0.4) may

have a unique generalized solution which is not absolutely continuous (see

Remark 4.13).

Two fundamentally di�erent cases

(i) det(M

0

(y)) 6� 0

and

(ii) M

0

(y) � �.

will be treated by us separately.

The optimal in a certain sense conditions for the existence and unique-

ness of classical, absolutely continuous and generalized solutions of prob-

lems (0.1),(0.2) and (0.1),(0.4) (problems (0.1),(0.3) and (0.1),(0.5)) and for

the stability of these solutions with respect to small, in an integral sense,

perturbations of coe�cients of system (0.1) are obtained in case (i) (case

(ii)). Moreover, the e�ective methods for constructing a solution of problem

(0.1),(0.2) are developed.

The su�cient conditions for the unique solvability of problems (0.1),(0.2)

and (0.1),(0.4) are obtained also in case (ii). In this case, however, the latter

problems are ill-posed, since for their solvability it is necessary that certain

integral equalities (see equalities (4.49) and (4.84)) be ful�lled; these equal-

ities can be violated at arbitrarily small perturbations of the coe�cients of

system (0.1) or the vector functions '

k

and  

k

(k = 0; 1).

The above results and their particular cases for problems (0.1),(0.k

1

)

(k = 2; 3; 4; 5) are stated in Chapter II (xx4-6). They are proved by the

uni�ed method that consists in reducing problems under consideration to

the modi�ed characteristic initial value problem with either of the two con-

ditions below

u(x; 0) = '

0

(x);

@u(0; y)

@y

=  (y) +

+

Z

a

0

h

Q

0

(s; y)u(s; y) + 


�1

(s)Q

1

(s; y)

@u(s; y)

@s

i

ds

(0.6)

and

lim

y!0

�

@u(x; y)

@x

� P

2

(x; y)u(x; y)

�

= '(x);

u(0; y) =  (y) +

Z

y

0

Z

a

0

q(y; s; t)u(s; t)ds dt:

(0.7)
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The material required to realize the method in question is stated in Chap-

ter I. More exactly, in this chapter: (a) the su�cient conditions for the

existence and uniqueness of a solution of a system of special type operator

equations are established, on whose basis the unique solvability and cor-

rectness of auxiliary problems (0.1),(0.6) and (0.1),(0.7) are proved (see xx1

and 3); (b) new conditions for the unique solvability of the general linear

boundary value problem for a system of ordinary di�erential equations with

a parameter are obtained and the properties of matrix functions induced by

this problem are studied (see x2).

The problem

u(x; 0) = '(x); ess sup

(x;y)2D

b

�










@u(x; y)

@x










+










@u(x; y)

@y










�

< +1 (0.8)

in the strip D

b

is considered for system (0.1) in Chapter III, where the

su�cient conditions for the existence and uniqueness of its solution are also

given (see x7). When P

i

(i = 0; 1; 2) and q are periodic in the �rst argument

with a period a and '(x+ a) � '(x), this solution is also a solution of the

periodic problem

u(x; 0) = '(x); u(x+ a; y) = u(x; y): (0.9)

Other conditions for the unique solvability of problem (0.1),(0.9) fol-

low from the results of Chapter II that deals with problems (0.1),(0.k

1

)

(k = 2; 3; 4; 5) (see x8). In the last x9 the problem of the almost-periodicity

of a solution of problem (0.1),(0.8) is considered assuming that ' is almost

periodic, while P

i

(i = 0; 1; 2) and q are almost-periodic in the �rst ar-

gument. Theorem 9.1 proved here is an analogue of Favard's well-known

theorem [16]. Applying this theorem, one can obtain from the results of x7

the e�ective conditions ensuring the almost periodicity in the �rst argument

of a solution of problem (0.1),(0.8).

R = (�1;+1); R

+

= [0;+1):

R

m�n

the space of m � n matrices X = (x

ij

) with real components x

ij

(i = 1; : : : ;m; j = 1; : : : ; n) and the norm

kXk =

m

X

i=1

n

X

j=1

jx

ij

j:

R

n

= R

n�1

:

(x

ij

)

n

i;j=1

is the square matrix with components x

ij

(i; j = 1; : : : ; n)

and (x

i

)

n

i=1

is the n-dimensional column vector with components x

i

(i =

= 1; : : : ; n).

By an absolute value of the matrix X = (x

ij

) 2 R

m�n

we understand

the matrix jX j = (jx

ij

j) 2 R

m�n

with components jx

ij

j (i = 1; : : : ;m; j =

= 1; : : : ; n).
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A matrix X = (x

ij

) 2 R

m�n

is called non-negative if x

ij

� 0 (i =

= 1; : : : ;m; j = 1; : : : ; n).

The inequalities between the matrices X = (x

ij

) and Y = (y

ij

) 2 R

m�n

are understood componentwise, i.e.,

X � Y , x

ij

� y

ij

(i = 1; : : : ;m; j = 1; : : : ; n):

If X

k

= (x

ijk

) 2 R

m�n

(k = 1; : : : ; k

0

), then

max

1�k�k

0

X

k

=

�

max

1�k�k

0

x

ijk

�

:

det(X) is the determinant of the matrix X 2 R

n�n

.

r(X) is the spectral radius of the matrix X 2 R

n�n

.

X

�1

is the matrix reciprocal to X 2 R

n�n

.

diag(x

1

; : : : ; x

n

) is the diagonal n � n matrix with diagonal elements

x

1

; : : : ; x

n

.

E is the unit matrix.

� is the zero matrix.

A matrix function Z : D ! R

m�n

is called measurable, summable, con-

tinuous, etc., if its components are such.

Let D be a k-dimensional segment, k

0

2 f1; : : : ; kg, D

0

be the projection

of D onto R

k

0

and M

0

: D

0

! R

m�m

. A matrix function Z : D ! R

m�m

is

called M

0

-continuous (M

0

-summable) if it admits in D the representation

Z(x

1

; : : : ; x

k

) = M

0

(x

1

; : : : ; x

k

0

)Z

0

(x

1

; : : : ; x

k

);

where Z

0

: D ! R

m�n

is continuous (summable).

Let M

0

: [0; b] ! R

m�m

. We say that a matrix function Z : D

ab

!

! R

m�n

satis�es the Carath�eodory condition with M

0

weight if it admits

the reprezentation

Z(x; y) = M

0

(y)Z

0

(x; y)

in D

ab

, where Z

0

(�; y) : [0; a] ! R

m�n

is measurable for all y 2 [0; b],

Z

0

(x; �) : [0; b] ! R

m�n

is continuous almost for all x 2 [0; a] and

max

0�y�b

kZ

0

(�; y)k is summable in [0; a].

C (D;R

m�n

), L

1

(D;R

m�n

) and L(D;R

m�n

) are the spaces of continu-

ous, measurable and essentially bounded and summable functions Z : D !

! R

m�n

with the norms

kZk

C

= max

(x

1

;::: ;x

k

)2D

kZ(x

1

; : : : ; x

k

)k;

kZk

L

1

= ess sup

(x

1

;::: ;x

k

)2D

kZ(x

1

; : : : ; x

k

)k;

kZk

L

=

Z

� � �

Z

D

kZ(x

1

; : : : ; x

k

)kdx

1

� � � dx

k

:
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If Z = (z

ij

) 2 L

1

(D;R

m�n

), then

ess sup

(x

1

;::: ;x

k

)2D

Z(x

1

; : : : ; x

k

) =

�

ess sup

(x

1

;::: ;x

k

)2D

z

ij

(x

1

; : : : ; x

k

)

�

:

If Z 2 L(D

ab

;R

m�n

), then

kZk

(0)

L

= ess sup

(x;y)2D

ab










Z

y

0

Z

x

0

Z(s; t)dsdt










;

kZk

(1)

L

= max

(x;y)2D

ab

h

Z

y

0










Z

x

0

Z(s; t)ds










dt+

Z

x

0










Z

y

0

Z(s; t)dt










ds

i

;

kZk

(2)

L

= ess sup

(x;y)2D

ab

h










Z

x

0

Z(s; y)ds










+










Z

y

0

Z(x; t)dt










i

:

C

k

([0; a];R

m�n

) is the space of k times continuously di�erentiable matrix

functions Z : [0; a] ! R

m�n

with the norm

kZk

C

k
= max

x2[0;a]

k

X

i=0

kZ

(i)

(x)k:

e

C

k�1

([0; a];R

m�n

) is the space of matrix functions Z : [0; a] ! R

m�n

which are absolutely continuous together with their derivatives up to the

k � 1 order inclusive, with the norm

kZk

e

C

k�1

=

k�1

X

i=1

kZ

(i)

(0)k+

Z

a

0

kZ

(k)

(x)kdx:

e

C

1

(R;R

m�n

) is the space of bounded and Lipschitz continuous matrix

functions Z : R ! R

m�n

.

e

C

k�1

1

([0; a];R

m�n

) is the space of matrix functions Z : [0; a] ! R

m�n

which are Lipschitz continuous together with their derivatives up to the

k � 1 order inclusive, with the norm

kZk

e

C

k�1

1

=

k�1

X

i=1

kZ

(i)

(0)k+ ess sup

x2[0;a]

kZ

(k)

(x)kdx:

e

C ([0; a];R

m�n

)=

e

C

0

([0; a];R

m�n

);

e

C

1

([0; a];R

m�n

)=

e

C

0

1

([0; a];R

m�n

):

e

C (D

ab

;R

m�n

) is the space of absolutely continuous matrix functions Z :

D

ab

! R

m�n

with the norm

kZk

e

C

= kZ(0; 0)k+

Z

a

0










@Z(x; 0)

@x










dx+

Z

b

0










@Z(0; y)

@y










dy +

Z

a

0

Z

b

0










@

2

Z(x; y)

@x@y










dx dy:

e

C

loc

(D

b

;R

m�n

) is the space of locally absolutely continuous matrix func-

tions Z : D

b

! R

m�n

.
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If Z 2

e

C (D

ab

;R

m�n

), then

kZk

(1)

e

C

= kZ(0; 0)k+ max

(x;y)2D

ab

�

Z

x

0










@Z(s; y)

@s










ds+

Z

y

0










@Z(x; t)

@t










dt

�

;

kZk

(2)

e

C

= kZ(0; 0)k+ ess sup

(x;y)2D

ab

�










@Z(x; y)

@x










+










@Z(x; y)

@y










�

:

e

C

(�1;k�1)

1

(D

ab

;R

m�n

) is the space of measurable matrix functions Z :

D

ab

! R

m�n

such that Z(x; �) 2

e

C

k�1

1

([0; b];R

m�n

) almost for every x 2

2 [0; a], and

ess sup

(x;y)2D

ab

k

X

i=0










@

i

Z(x; y)

@y

i










< +1:

e

C

(k�1;�1)

1

(D

ab

;R

m�n

) is the space of measurable matrix functions Z :

D

ab

! R

m�n

such that Z(�; y) 2

e

C

k�1

1

([0; a];R

m�n

) almost for every y 2

2 [0; b], and

ess sup

(x;y)2D

ab

k

X

i=0










@

i

Z(x; y)

@x

i










< +1:
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CHAPTER I

x

1.

Let n, n

1

and n

2

be natural numbers, I be a �nite or an in�nite interval

of the real axis,

D = I � [0; b]

and �

1

,�

2

and � be some nonempty closed subsets of the spacesL

1

(D;R

n

1

),

L

1

(D;R

n

2

) and L

1

(D;R

n

). The boundary value problems considered in

this work are reduced to a system of operator equations of the type

z

i

(x; y) = g

i

(z

1

; z

2

)(x; y) (i = 1; 2) (1.1)

or to the equation

z(x; y) = g(z)(x; y); (1.2)

where g

i

: �

1

��

2

! �

i

(i = 1; 2) and g : � ! � are continuous operators.

By a solution of system (1.1) (equation (1.2)) we shall understand a pair

of vector functions (z

i

)

2

i=1

2 �

1

��

2

(vector function z 2 �), which satis�es

system (1.1) (equation (1.2)) almost everywhere in D.

For arbitrary y 2 [0; b] and z 2 L

1

(D;R

k

) assume

jzj

I;y

= ess sup

(x;t)2I�[0;y]

jz(x; t)j; jz(�; y)j

I

= ess sup

x2I

jz(x; y)j;

kzk

I;y

= ess sup

(x;t)2I�[0;y]

kz(x; t)k; kz(�; y)k

I

= ess sup

x2I

kz(x; y)k:

Let �

0

be a subspace of the space L

1

(I ;R

n

2

) satisfying the following

conditions:

1) if v(x) = c 2 R

n

2

for x 2 I , then v 2 �

0

;

2) if v

1

and v

2

2 �

0

and v(x) = max

1�i�2

v

i

(x), then v 2 �

0

;

3) if �

0

and � 2 �

2

, then j�(�; y)� �

0

(�; y)j 2 �

0

almost for all y 2 [0; b].

An operator l : �

0

! R

n

2

is called non-negative if for any non-negative

vector function v 2 �

0

the vector l(v) is non-negative.

If A 2 L

1

(I ;R

n

2

�n

2

) and A(�)c 2 �

0

for c 2 R

n

2

, then by l

�

A

�

we shall

denote a matrix such that

l

�

A(�)c

�

= l

�

A

�

c for c 2 R

n

2

:

Let for any �

i

and

�

�

i

2 �

i

(i = 1; 2) the inequalities

kg

1

(�

1

; �

2

)(x; y)� g

1

(

�

�

1

;

�

�

2

)(x; y)k �

�

Z

y

0

g

0

(t)(k�

1

�

�

�

1

k

I;t

+ k�

2

�

�

�

2

k

I;t

) dt (1.3)
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and

jg

2

(�

1

; �

2

)(x; y)� g

2

(

�

�

1

;

�

�

2

)(x; y)j �

� A

01

j�

1

�

�

�

1

j

I;y

+

Z

y

0

A

02

(t)j�

2

�

�

�

2

j

I;t

dt+

+A

1

(x; y)j�

2

(�; y)�

�

�

2

(�; y)j

I

+A

2

(x; y)l(j�

2

(�; y)�

�

�

2

(�; y)j) (1.4)

hold almost evrywhere in D

ab

where g

0

: [0; b] ! R

+

is a summable function,

A

01

is a non-negative constant n

2

� n

1

matrix, A

02

2 L([0; b];R

n

2

�n

2

) and

A

i

2 L

1

(D;R

n

2

�n

2

) (i = 1; 2) are non-negative matrix functions,

A

i

(�; y)c 2 �

0

for y 2 [0; b]; c 2 R

n

2

(i = 1; 2)

and l : �

0

! R

n

2

is a non-negative linear operator. Besides, let

ess sup

0�y�b

r

�

l(A

2

(�; y))

�

< 1 (1.5)

and

ess sup

0�y�b

r

�

A(y)

�

< 1; (1.6)

where

A(y) = ess sup

x2I

�

A

1

(x; y) +A

2

(x; y)

�

E � l(A

2

(�; y))

�

�1

l(A

1

(�; y))

�

:(1.7)

Then system (1:1) has the unique solution (z

i

)

2

i=1

2 �

1

� �

2

. Moreover,

for an arbitrary (z

i0

)

2

i=1

2 �

1

� �

2

we have

z

im

(x; y)� z

i

(x; y) for m! +1 (i = 1; 2); (1.8)

where

z

im

(x; y) = g

i

(z

1m�1

; z

2m�1

)(x; y) (i = 1; 2; m = 1; 2; : : : ): (1.9)

To prove this lemma we need

Let B

01

be a non-negative constant n

2

�n

1

matrix, B

02

2

2 L([0; b];R

n

2

�n

2

) and B

i

2 L

1

(D;R

n

2

�n

2

) (i = 1; 2) be non-negative ma-

trix functions,

B

i

(�; y)c 2 �

0

for y 2 [0; b]; c 2 R

n

2

(i = 1; 2)

and l : �

0

! R

n

2

be a non-negative linear operator. Moreover, let

ess sup

0�y�b

r

�

l(B

2

(�; y))

�

< 1 (1.10)

and

ess sup

0�y�b

r

�

B(y)

�

< 1; (1.11)
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where

B(y) = ess sup

x2I

�

B

1

(x; y) +B

2

(x; y)

�

E � l(B

2

(�; y))

�

�1

l(B

1

(�; y))

�

: (1.12)

Then there exists a positive number � such that for vector functions

w

i

2 L

1

(D;R

n

i

) (i = 1; 2) satisfying the condition

jw

2

(�; y)j 2 �

0

almost everywhere in [0; b] and the inequalities

kw

1

(x; y)k � � +

Z

y

0

g

0

(t)(kw

1

k

I;t

+ kw

2

k

I;t

) dt (1.13)

and

jw

2

(x; y)j � � +B

01

jw

1

j

I;y

+

Z

y

0

B

02

(t)jw

2

j

I;t

dt+

+B

1

(x; y)jw

2

(�; y)j

I

+B

2

(x; y)l(jw

2

(�; y)j);

(1.14)

almost everywhere in D, the estimates

kw

i

k

I;b

� � exp

�

�

Z

b

0

g

0

(t) dt

�

(� + k�k) (i = 1; 2) (1.15)

are valid for any � 2 R

+

, � 2 R

n

2

and g

0

: [0; b] ! R

+

.

Proof. Because of the non-negativity of l and the restrictions imposed on

the space �

0

, from (1.14) we have

l(jw

2

(�; y)j) � l

�

� +B

01

jw

1

j

I;y

+

Z

y

0

B

02

(t)jw

2

j

I;t

dt

�

+

+ l(B

1

(�; y))jw

2

(�; y)j

I

+ l(B

2

(�; y))l(jw

2

(�; y)j)

and hence

�

E � l(B

2

(�; y))

�

l(jw

2

(�; y)j) � l

�

� +B

01

jw

1

j

I;y

+

+

Z

y

0

B

02

(t)jw

2

j

I;t

dt

�

+ l(B

1

(�; y))jw

2

(�; y)j

I

;

which by virtue of condition (1.10) implies

l(jw

2

(�; y)j) �

�

E � l(B

2

(�; y))

�

�1

l

�

� +B

01

jw

1

j

I;y

+

+

Z

y

0

B

02

(t)jw

2

j

I;t

dt

�

+

�

E � l(B

2

(�; y))

�

�1

l(B

1

(�; y))jw

2

(�; y)j

I

:
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According to the latter estimate and equality (1.12) we �nd from (1.14) that

jw

2

(�; y)j

I

� B

0

�

� +B

01

jw

1

j

I;y

+

Z

y

0

B

02

(t)jw

2

j

I;t

dt

�

+

+B(y)jw

2

(�; y)j

I

;

where B

0

is the non-negative constant n

2

� n

2

matrix depending on l and

B

2

only. From this and taking into account (1.11), we get

jw

2

(�; y)j

I

�

�

E � B(y)

�

�1

B

0

�

� +B

01

jw

1

j

I;y

+

Z

y

0

B

02

(t)jw

2

j

I;t

dt

�

and

kw

2

k

I;y

� �

1

�

k�k+ kw

1

k

I;y

+

Z

y

0

kB

02

(t)k kw

2

k

I;t

dt

�

;

where

�

1

= (1 + kB

01

k)kB

0

k ess sup

0�y�b

k(E �B(y))

�1

k:

By Gronwall's lemma ([19],p.37) from the latter inequality it follows that

kw

2

k

I;y

� �

2

(k�k+ kw

1

k

I;y

); (1.16)

where

�

2

= �

1

exp

�

�

1

Z

b

0

kB

02

(t)k dt

�

:

In view of (1.13) and (1.16)

kw

1

k

I;y

� � + �

2

k�k

Z

b

0

g

0

(t) dt+ (1 + �

2

)

Z

y

0

g

0

(t)kw

1

k

I;t

dt:

From this again by Gronwall's lemma we obtain

kw

1

k

I;y

�

�

� + �

2

k�k

Z

b

0

g

0

(t) dt

�

exp

�

(1 + �

2

)

Z

y

0

g

0

(t) dt

�

�

� (1 + �

2

) exp

�

(2 + �

2

)

Z

b

0

g

0

(t) dt

�

(� + k�k):

Estimates (1.15) follow from the latter inequality and (1.16), where � =

= 2(1 + �

2

)

2

is the number depending on B

0i

, B

i

(i = 1; 2) and l only. �

Proof of Lemma 1.1. In view of (1.5)-(1.7) there exists 
 2 (0; 1) such that

the matrix functions

B

i

(x; y) = 


�1

A

i

(x; y) (i = 1; 2) (1.17)

satisfy conditions (1.10) and (1.11), where B is the matrix given by (1.12).

First let us prove the existence of a solution of system (1.1).
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Let us choose arbitrarily (z

i0

)

2

i=1

2 �

1

� �

2

, compose the sequence

(z

im

)

2

i=1

(m = 1; 2; : : : ) by formulas (1.9) and show that this sequence is

fundamental in L

1

(D;R

n

1

)� L

1

(D;R

n

2

). Put

v

im

(x; y) = 


�m

�

z

im

(x; y)� z

im�1

(x; y)

�

(i = 1; 2; m = 1; 2; : : : ):

Then in view of (1.3),(1.4) and (1.17) we obtain

kv

1m

(x; y)k � 


�1

Z

y

0

g

0

(t)

�

kv

1m�1

k

I;t

+ kv

2m�1

k

I;t

�

dt

(m = 2; 3; : : : )

(1.18)

and

jv

2m

(x; y)j � B

01

jv

1m�1

j

I;y

+

Z

y

0

B

02

(t)jv

2m�1

j

I;t

dt+

+B

1

(x; y)jv

2m�1

(�; y)j

I

+B

2

(x; y)l(jv

2m�1

(�; y)j) (m = 2; 3; : : : ); (1.19)

where

B

01

= 


�1

A

01

; B

02

(t) = 


�1

A

02

(t): (1.20)

Introducing the notation

w

im

(x; y) = max

1�k�m

jv

ik

(x; y)j (i = 1; 2; m = 1; 2; : : : );

� = kv

11

k

I;b

; � = jv

21

j

I;b

; g

0

(t) = n

1




�1

g

0

(t);

from (1.18) and (1.19) we get

kw

1m

(x; y)k � � +

Z

y

0

g

0

(t)

�

kw

1m

k

I;t

+ kw

2m

k

I;t

�

dt (m = 1; 2; : : : );

jw

2m

(x; y)j � � +B

01

jw

1m

j

I;y

+

Z

y

0

B

02

(t)jw

2m

j

I;t

dt+

+B

1

(x; y)jw

2m

(�; y)j

I

+B

2

(x; y)l(jw

2m

(�; y)j) (m = 1; 2; : : : );

whence according to Lemma 1.2 it follows that

kw

im

k

I;b

� �

0

(i = 1; 2; m = 1; 2; : : : );

where �

0

is a positive constant independent of m.

Therefore

kz

im

� z

im�1

k

I;b

� �

0




m

(i = 1; 2; m = 1; 2; : : : ):

Consequently,

�

(z

im

)

2

i=1

�

+1

m=1

is a fundamental sequence in L

1

(D;R

n

1

)�

�L

1

(D;R

n

2

). Put

z

i

(x; y) = lim

m!+1

z

im

(x; y) (i = 1; 2):
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Since the sets �

i

(i = 1; 2) are complete and the operators g

i

: �

1

��

2

! �

i

(i = 1; 2) are continuous, it becomes obvious that (z

i

)

2

i=1

2 �

1

� �

2

is a

solution of system (1.1).

To complete the proof of the lemma we have to show that system (1.1)

has no solution di�erent from (z

i

)

2

i=1

. Let (�z

i

)

2

i=1

be an arbitrary solution

of this system. Then in view of (1.3) and (1.4)

kz

1

(x; y)� �z

1

(x; y)k �

Z

y

0

g

0

(t)(kz

1

� �z

1

k

I;t

+ kz

2

� �z

2

k

I;t

)dt

and

jz

2

(x; y)� �z

2

(x; y)j � A

01

jz

1

� �z

1

j

I;y

+

Z

y

0

A

02

(t)jz

2

� �z

2

j

I;t

dt+

+A

1

(x; y)jz

2

(�; y)� �z

2

(�; y)j

I

+A

2

(x; y)l(jz

2

(�; y)� �z

2

(�; y));

whence according to conditions (1.5) and (1.6) and Lemma 1.2 it follows

that

kz

i

� �z

i

k

I;b

= 0 (i = 1; 2): �

When l is the zero operator Lemma 1.1 takes the form of

Let for any �

i

and

�

�

i

2 �

i

(i = 1; 2) inequality (1:3) hold

almost everywhere in D and

jg

2

(�

1

; �

2

)(x; y)� g

2

(

�

�

1

;

�

�

2

)(x; y)j � A

01

j�

1

�

�

�

1

j

I;y

+

+

Z

y

0

A

02

(t)j�

2

�

�

�

2

j

I;t

dt+A(y)j�

2

(�; y)�

�

�

2

(�; y)j; (1.21)

where g

0

: [0; b] ! R

+

is a summable function, A

01

is a non-negative con-

stant n

2

� n

1

matrix, A

02

2 L([0; b];R

n

2

� n

2

) and A 2 L

1

(D;R

n

2

�n

2

)

are non-negative matrix functions. Moreover, it is assumed that A satis�es

condition (1:6). Then system (1:1) has the unique solution (z

i

)

2

i=1

2 �

1

��

2

and for arbitrary (z

i0

)

2

i=1

2 �

1

� �

2

conditions (1:8) hold, where

z

im

(x; y) = g

i

(z

1m�1

; z

2m�1

)(x; y) (i = 1; 2; m = 1; 2; : : : ):

Equation (1.2) is equivalent to system (1.1), where

n

1

= n; n

2

= 1; �

1

= �; �

2

= L

1

(D;R);

g

1

(z

1

; z

2

)(x; y) � g(z

1

)(x; y); g

2

(z

1

; z

2

)(x; y) � 0:

Therefore from Lemma 1.3 immediately follows

Let for any � and

�

� 2 � the inequality

kg(�)(x; y)� g(

�

�)(x; y)k �

Z

y

0

g

0

(t)k� �

�

�k

I;t

dt (1.22)
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hold almost everywhere in D, where g

0

: [0; b] ! R

+

is a summable function.

Then equation (1:2) has the unique solution z 2 � and for arbitrary z

0

2 �

we have

z

m

(x; y)� z(x; y) for m! +1; (1.23)

where

z

m

(x; y) = g(z

m�1

)(x; y) (m = 1; 2; : : : ): (1.24)

Remark 1.1. From the above arguments it becomes clear that if condi-

tions of Lemma 1.1 take place, then

kz

i

� z

im

k

I;b

� �

0




m

(m = 1; 2; : : : );

where 
 2 (0; 1) and �

0

> 0 are constants independent of m. If conditions

of Lemma 1.4 hold, then

kz � z

m

k �

�

m

0

m!

(m = 1; 2; : : : ):

x

2.

In this section for a system of linear di�erential equations

dz(x; y)

dx

= A(x; y)z(x; y) + c(x; y) (2.1)

depending on a parameter y 2 [0; b], we investigate boundary value problems

of the type

h(z(�; y))(y) = '(y); (2.2)

where

A(�; y) = (a

ij

(�; y)) 2 L

1

([0; a];R

n�n

) for y 2 [0; b];


 = sup

(x;y)2D

ab

kA(x; y)k < +1;

c(�; y) 2 L

1

([0; a];R

n

); '(y) 2 R

n

for y 2 [0; b]

(2.3)

and h is a linear continuous operator acting from the space

e

C ([0; a];R

n

) to

a subspace of the space L

1

([0; b];R

n

).

The operator h uniquely de�nes matrix functions

H

0

2 L

1

([0; b];R

n�n

); H 2 L

1

(D

ab

;R

n�n

) (2.4)
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such that

h(u)(y) = H

0

(y)u(0) +

Z

a

0

H(s; y)u

0

(s) ds

for u 2

e

C ([0; a];R

n

); y 2 [0; b]:

4

(2.5)

Along with (2.1),(2.2) let us consider the corresponding homogeneous boun-

dary value problem

dz(x; y)

dx

= A(x; y)z(x; y); (2.1

0

)

h(z(�; y))(y) = 0: (2.2

0

)

By Z

0

(�; y) will be meant a fundamental matrix of system (2.1

0

), satis-

fying the initial condition

Z

0

(0; y) = E:

By M

0

and M we denote matrix functions given by the equalities

M

0

(y) = H

0

(y) +

Z

a

0

H(s; y)

@Z

0

(s; y)

@s

ds;

M(x; y) = H(x; y)Z

0

(x; y) +

Z

a

x

H(s; y)

@Z

0

(s; y)

@s

ds:

(2.6)

Moreover, we shall use the notation

I

M

0

= fy 2 [0; b] : detM

0

(y) 6= 0g:

In view of (2.5) and (2.6),

h(Z

0

(�; y)u(�))(y) = M

0

(y)u(0) +

Z

a

0

M(s; y)u

0

(s) ds

for u 2

e

C ([0; a];R

n

); y 2 [0; b]:

(2.7)

It is easily seen that the condition

y 2 I

M

0

(2.8)

is necessary and su�cient for problem (2.1

0

),(2.2

0

) to have only the trivial

solution.

4

See Lemma 2.1.
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h

In this subsection we shall give some results of Dunford-Pettis' theorem

([20],Ch.XI, x1, Theorem 6) on the integral representation of the operator

h which will be necessary in the sequel.

1

h is the linear continuous operator acting from

e

C ([0; a];R

n

)

to L

1

([0; b];R

n

) if and only if representation (2.5) is valid. H

0

and H here

are the matrix functions satisfying conditions (2.4).

Proof. It is easy to see that if the matrix functions H

0

and H satisfy condi-

tions (2.4), then the operator h given by equality (2.5) is a linear continuous

operator acting from

e

C ([0; a];R

n

) to L

1

([0; b];R

n

). Let us now show the

converse: if h :

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) is a linear continuous oper-

ator, then representation (2.5) is valid. For an arbitrary vector function

v 2 L([0; a];R

n

) assume that

l(v)(x) =

Z

x

0

v(s) ds

and

�

h(v)(y) = h(l(v))(y):

It follows from the continuity of operators l : L([0; a];R

n

) !

e

C ([0; a];R

n

)

and h :

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) that

�

h is a linear continuous op-

erator acting from L([0; a];R

n

) to L

1

([0; b];R

n

). Therefore, according to

the above-mentioned Dunford-Pettis theorem, there exists a unique matrix

function H 2 L

1

(D

ab

;R

n�n

) such that

�

h(v)(y) =

Z

a

0

H(s; y)v(s) ds for v 2 L([0; a];R

n

); y 2 [0; b]: (2.9)

On the other hand, since c ! h(c)(y) is a linear continuous operator

acting from R

n

to L

1

([0; b];R

n

), there exists a unique matrix function

H

0

2  L

1

([0; b];R

n�n

) such that

h(c)(y) = H

0

(y)c for c 2 R

n

; y 2 [0; b]: (2.10)

Let u 2

e

C ([0; a];R

n

) be an arbitrary vector function. Then

u(x) = u(0) + l(u

0

)(x) for x 2 [0; a]:

Therefore, in view of (2.9) and (2.10), we have

h(u)(y) = h(u(0))(y) +

�

h(u

0

)(y) =

= H

0

(y)u(0) +

Z

a

0

H(s; y)u

0

(s) ds for y 2 [0; b]:

Consequently, representation (2.5) is valid, where H

0

and H are the

matrix functions satisfying conditions (2.4). �
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2

5

h is a linear continuous operator acting from

e

C ([0; a];R

n

)

to C ([0; b];R

n

) if and only if representation (2.5) is valid, where

H

0

2 C ([0; b];R

n�n

); H 2 L

1

(D

ab

;R

n�n

) (2.11)

and

Z

x

0

H(s; �) ds 2 C ([0; b];R

n�n

) for x 2 [0; a]: (2.12)

Proof. Let h :

e

C ([0; a];R

n

) ! C ([0; b];R

n

) be a linear continuous operator.

Then, according to Lemma 2.1

1

representation (2.5) is valid, where H

0

and

H are matrix functions satisfying conditions (2.4). On the other hand,

H

0

(�)(c) = h(c) 2 C ([0; b];R

n

) for c 2 R

n

and

�

Z

x

0

H(s; �) ds

�

c = h(�

c;x

) 2 C ([0; b];R

n

) for c 2 R

n

; x 2 [0; a];

where

�

c;x

(s) =

(

sc for 0 � s � x

xc for s > x

:

Consequently conditions (2.11) and (2.12) hold. Thus the �rst part of

the lemma is proved.

Assume now that H

0

and H are the matrix functions satisfying conditions

(2.11) and (2.12), and h is an operator admitting representation (2.5). First

of all let us show that h acts from

e

C ([0; a];R

n

) to C ([0; b];R

n

). To do this,

it is enough to show that for an arbitrary v 2 L([0; a];R

n

) the condition

w(�) =

Z

a

0

H(s; �)v(s) ds 2 C ([0; b];R

n

) (2.13)

holds.

Without loss of generality we may assume that




0

= sup

(x;y)2D

ab

kH(x; y)k < +1: (2.14)

Let v

k

: [0; a] ! R

n

(k = 1; 2; : : : ) be a sequence of continuously di�eren-

tiable vector functions satisfying conditions

Z

a

0

kv

k

(s)� v(s)k ds! 0 for k ! +1: (2.15)

Put

w

k

(y) =

Z

a

0

H(s; y)v

k

(s) ds:

5

This lemma can also be obtained from B.Z.Vulikh's theorem ([48], Theorem 2).
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Then

w

k

(y) = H

1

(a; y)v

k

(a)�

Z

a

0

H

1

(s; y)v

0

k

(s) ds;

where

H

1

(x; y) =

Z

x

0

H(s; y) ds;

whence, in view of (2.11) and (2.12), it follows that

w

k

2 C ([0; b];R

n

) (k = 1; 2; : : : ):

On the other hand, in view of (2.14) and (2.15),

sup

y2[0;b]

kw

k

(y)� w(y)k � 


0

Z

a

0

kv

k

(s)� v(s)k ds! 0 for k ! +1:

Now, applying the well-known Weierstrass theorem, the validity of condi-

tion (2.13) becomes evident. Hence h is a continuous operator acting from

e

C ([0; a];R

n

) to C ([0; b];R

n

). �

3

Let k be an arbitrary positive integer. h is a linear con-

tinuous operator acting from

e

C ([0; a];R

n

) to

e

C

k�1

1

([0; b];R

n

) if and only if

condition (2.5) holds, where

H

0

2

e

C

k�1

1

([0; b];R

n�n

) (2.16)

and

H 2

e

C

(�1;k�1)

1

(D

ab

;R

n�n

): (2.17)

Proof. It is evident that if the matrix functions H

0

and H satisfy conditions

(2.16) and (2.17), respectively, then operator the h, given by the equality

(2.5), transforms

e

C ([0; a];R

n

) into

e

C

k�1

1

([0; b];R

n

) and is linear and con-

tinuous. Let us show the converse: if h :

e

C ([0; a];R

n

) !

e

C

k�1

1

([0; b];R

n

)

is a linear continuous operator, then (2.5) is valid and H

0

and H satisfy

conditions (2.16) and (2.17), respectively.

For an arbitrary vector function u 2

e

C ([0; a];R

n

) we put

h

(i)

(u)(y) =

d

i

dy

i

h(u)(y) (i = 0; : : : ; k):

It is evident that h

(k)

and h

(i)

(�)(0) (i = 0; : : : ; k � 1) are linear continuous

operators acting from

e

C ([0; a];R

n

) respectively to L

1

([0; b];R

n

) and R

n

.

According to Lemma 2.1

1

,

h

(k)

(u)(y) = H

0k

(y)u(0) +

Z

a

0

H

k

(s; y)u

0

(s) ds

for u 2

e

C ([0; a];R

n

); y 2 [0; b];
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and

h

(i)

(u)(0) = H

0i

u(0) +

Z

a

0

H

i

(s)u

0

(s) ds (i = 0; 1; : : : ; k � 1);

where

H

0k

2 L

1

([0; b];R

n�n

); H

k

2 L

1

(D

ab

;R

n�n

);

H

0i

2 R

n�n

; H

i

2 L

1

([0; a];R

n�n

) (i = 0; : : : ; k � 1):

Therefore from the identity

h(u)(y) =

k�1

X

i=0

y

i

i!

h

(i)

(u)(0) +

1

(k � 1)!

Z

y

0

(y � t)

k�1

h

(k)

(u)(t) dt

there follows representation (2.5), where

H

0

(y) =

k�1

X

i=0

y

i

i!

H

0i

+

1

(k � 1)!

Z

y

0

(y � t)

k�1

H

0k

(t)dt;

and

H(x; y) =

k�1

X

i=0

y

i

i!

H

i

(x) +

1

(k � 1)!

Z

y

0

(y � t)

k�1

H

k

(x; t) dt

are the matrix functions satisfying conditions (2.16) and (2.17). �

4

Let k be an arbitrary positive integer. h is a linear contin-

uous operator acting from

e

C ([0; a];R

n

) to C

k

([a; b];R

n

) if and only if (2.5)

is valid, where

H

0

2 C

k

([0; b];R

n�n

);

the matrix function H satis�es condition (2:17), and

Z

x

0

H(s; �) ds 2 C

k

([0; b];R

n�n

) for x 2 [0; a]:

This lemma can be proved similarly to Lemma 2.1

3

, with the only di�er-

ence that instead of Lemma 2.1

1

we use Lemma 2.1

2

.

Z

0

M

0

M

1

If

A 2 L

1

(D

ab

;R

n�n

); (2.18)

then

Z

0

2 L

1

(D

ab

;R

n�n

) (2.19)
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and

@Z

0

@x

2 L

1

(D

ab

;R

n�n

): (2.20)

In the case when

Z

x

0

A(s; �) ds 2 C ([0; b];R

n�n

) for x 2 [0; a]; (2.21)

then instead of (2.19) we have

Z

0

2 C (D

ab

;R

n�n

): (2.22)

Proof. In view of (2.3) and (2.18) it is clear that the matrix function Z

0

is

measurable and satis�es inequalities










@Z

0

(x; y)

@x










� 








Z

0

(x; y)







and

kZ

0

(x; y)k � n+ 


Z

x

0

kZ

0

(s; y)k ds

almost everywhere in D

ab

. From this, using Gronwall's lemma, we obtain

kZ

0

(x; y)k � n exp(
x);










@Z

0

(x; y)

@x










� n
 exp(
x): (2.23)

Hence Z

0

satis�es conditions (2.19) and (2.20).

Assume now that (2.21) holds. Then, in view of (2.3), the matrix function

A

1

(x; y) =

Z

x

0

A(s; y) ds

is continuous in D

ab

. Therefore it is clear that the function

!(�) = max

0�x�a; 0�y;�y�b

jy��yj��

kA

1

(x; y)�A

1

(x; �y)k (2.24)

satis�es the condition

lim

�!0

!(�) = 0: (2.25)

In view of (2.3), (2.23) and (2.24), from the equality

Z

0

(x; y)� Z

0

(x; �y) =

Z

x

0

[A(s; y)�A(s; �y)]Z

0

(s; y) ds+

+

Z

x

0

A(s; �y)[Z

0

(s; y)� Z

0

(s; �y)] ds = [A

1

(x; y)�A

1

(x; �y)]Z

0

(x; y)�

�

Z

x

0

[A

1

(s; y)�A

1

(s; �y)]A(s; y)Z

0

(s; y) ds+

Z

x

0

A(s; �y)[Z

0

(s; y)�Z

0

(s; �y)]ds
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it follows that

kZ

0

(x; y)� Z

0

(x; �y)k � 


1

!(jy � �yj) + 


Z

x

0

kZ

0

(s; y)� Z

0

(s; �y)k ds

for 0 � x � a; 0 � y; �y � b;

where




1

= n(1 + a
) exp(
a);

whence, according to Gronwall's lemma, we get

kZ

0

(x; y)� Z

0

(x; �y)k � 


0

!(jy � �yj) for 0 � x � a; 0 � y; �y � b; (2.26)

where 


0

= 


1

exp(
a). The validity of (2.22) becomes evident if we take

into account the above estimate and conditions (2.20) and (2.25). �

2

If

A 2

e

C

(�1;0)

1

(D

ab

;R

n�n

); (2.27)

then

Z

0

2

e

C (D

ab

;R

n�n

); (2.28)

@Z

0

@x

;

@Z

0

@y

and

@

2

Z

0

@x@y

2 L

1

(D

ab

;R

n�n

): (2.29)

When

A and

@A

@x

2 C (D

ab

;R

n�n

); (2.30)

then instead of (2.29) we have

@Z

0

@x

;

@Z

0

@y

and

@

2

Z

0

@x@y

2 C (D

ab

;R

n�n

): (2.31)

Proof. In view of (2.27) there exists a positive number l

0

such that the

function ! given by (2.24) satis�es the inequality

!(�) � l

0

� for � � 0:

Therefore from (2.26) we get

kZ

0

(x; y)� Z

0

(x; �y)k � 


0

l

0

jy � �yj for 0 � x � a; 0 � y; �y � b: (2.32)

Taking into account the above arguments and conditions (2.3),(2.23) and

(2.27), it follows from the identity

@Z

0

(x; y)

@x

= A(x; y)Z

0

(x; y) (2.33)
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that

@Z

0

@x

2

e

C

(�1;0)

1

(D

ab

;R

n�n

); (2.34)

@

2

Z

0

(x; y)

@x@y

= A(x; y)

@Z

0

(x; y)

@y

+

@A(x; y)

@y

Z

0

(x; y) (2.35)

and

@Z

0

(x; y)

@y

= Z

0

(x; y)

Z

x

0

Z

�1

0

(s; y)

@A(s; y)

@y

Z

0

(s; y) ds: (2.36)

The validity of conditions (2.28) and (2.29) becomes evident if we take into

consideration (2.32)-(2.35) together with (2.3),(2.20) and (2.27).

In the case when conditions (2.30) hold, conditions (2.31) follow from

equalities (2.33),(2.35) and (2.36).

6

�

By virtue of Lemmas 2.1

1

- 2.1

4

, 2.2

1

and 2.2

2

, from (2.6) we get the

following propositions:

1

If h :

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) is a linear continuous

operator and the matrix function A satis�es condition (2.18), then

M

0

2 L

1

([0; b];R

n�n

); M 2 L

1

(D

ab

;R

n�n

):

2

Let h :

e

C ([0; a];R

n

) ! C ([0; b];R

n

) be a linear continuous

operator and let the matrix function A satisfy conditions (2.18),(2.21). Then

M

0

2 C ([0; b];R

n�n

); M 2 L

1

(D

ab

;R

n�n

)

and

Z

x

0

M(s; �) ds 2 C ([0; b];R

n�n

) for x 2 [0; a]:

3

Let h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear continuous

operator and let the matrix function A satisfy condition (2.27). Then

M

0

2

e

C

1

([0; b];R

n�n

)

and

M 2

e

C

(�1;0)

1

(D

ab

;R

n�n

): (2.37)

6

This fact is a consequence of the well-known Peano theorem on the di�erentiability

of a solution of the Cauchy problem with respect to a parameter ([19], Theorem 3.1).
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4

Let h :

e

C ([0; a];R

n

) ! C

1

([0; b];R

n

) be a linear continuous

operator and let the matrix function A be continuous and have a continuous

partial derivative in the second argument. Then

M

0

2 C

1

([0; b];R

n�n

);

the matrix function M satis�es condition (2.37) and

Z

x

0

M(s; �) ds 2 C

1

([0; b];R

n�n

) for x 2 [0; a]:

Let the parameter y 2 [0; b] be such that

M(x; y)Z

�1

0

(x; y)c(x; y) = M

0

(y)c

0

(x; y) for 0 � x � a;

'(y) = M

0

(y)'

0

(y);

(2.38)

where

c(�; y) 2 L([0; a];R

n

) and '

0

(y) 2 R

n

:

Then the vector function

z(x; y) = Z

0

(x; y)

h

'

0

(y)�

Z

a

0

c

0

(s; y) ds+

Z

x

0

Z

�1

0

(s; y)c(s; y) ds

i

(2.39)

is a solution of problem (2.1),(2.2), which is unique if and only if condition

(2.8) holds.

Proof. According to the Cauchy formula,

7

the vector function

z(x; y) = Z

0

(x; y)

h

�+

Z

x

0

Z

�1

0

(s; y)c(s; y) ds

i

(2.40)

is a solution of system (2.1) for every � 2 R

n

and, vice versa, for every

solution of this system there exists � 2 R

n

such that representation (2.40)

is valid.

If we substitute (2.40) into (2.2), then with regard to (2.7) and (2.38) we

shall �nd

M

0

(y)�+

Z

a

0

M(s; y)Z

�1

0

(s; y)c(s; y) ds = '(y)

and

M

0

(y)� = M

0

(y)

h

'

0

(y)�

Z

a

0

c

0

(s; y) ds

i

: (2.41)

7

See [19], Ch.4, x2, Corollary 2.1.
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Consequently the vector function (2.40) is a solution of problem (2.1),(2.2)

if and only if � is a solution of the system of linear algebraic equations

(2.41). It is obvious that

� = '

0

(y)�

Z

a

0

c

0

(s; y) ds

is a solution of this system which is unique if and only if condition (2.8)

holds. �

According to Lemmas 2.2

1

, 2.2

2

and 2.3

1

-2.3

4

, from Lemma 2.4 we get

the following assertions.

1

Let h :

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) be a linear continuous

operator, the matrix function A satisfy condition (2.18) and

mes I

M

0

= b:

Moreover, let

c 2 L

1

(D

ab

;R

n

); ' 2 L([0; b];R

n

); � 2 L([0; b];R

n

);

where

�(y) = kM

�1

0

(y)k+ kM

�1

0

(y)'(y)k:

Then for almost every y 2 [0; b] problem (2.1),(2.2)has the unique solution

z(�; y), and

ess sup

(x;y)2D

ab

�

kz(x; y)k+










@z(x; y)

@x










�

�

�(y) < +1:

2

Let h :

e

C ([0; a];R

n

) ! C ([0; b];R

n

) be a linear continuous

operator, A 2 C (D

ab

;R

n�n

) and I

M

0

= [0; b]. Moreover, let

c 2 C (D

ab

;R

n

); ' 2 C ([0; b];R

n

):

Then for every y 2 [0; b] problem (2.1),(2.2) has the unique solution z(�; y),

and

z and

@z

@x

2 C (D

ab

;R

n

):

3

Let h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear contin-

uous operator, the matrix function A satisfy condition (2.27), and I

M

0

=

= [0; b]. Let, in addition,

c 2

e

C

(�1;0)

1

(D

ab

;R

n

); ' 2

e

C ([0; b];R

n

):

Then for every y 2 [0; b] problem (2.1),(2.2) has the unique solution z(�; y)

and

z 2

e

C (D

ab

;R

n

):
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4

Let h :

e

C ([0; a];R

n

) ! C

1

([0; b];R

n

) be a linear continuous

operator, A : D

ab

! R

n�n

and c : D

ab

! R

n

be continuous and have the

continuous partial derivatives

@A

@y

and

@c

@y

, ' : [0; b] ! R

n

be continuously

di�erentiable and I

M

0

= [0; b]. Then for every y 2 [0; b] problem (2.1),(2.2)

has the unique solution z(�; y), where z : D

ab

! R

n

is continuous and has

the continuous partial derivatives

@z

@x

,

@z

@y

and

@

2

z

@x@y

.

M

�1

0

(y) For every k 2 f1; : : : ; ng let e

k

denote

an n-dimensional column vector whose k-th component is unity and the

remainder are zero. We have

If I

M

0

6= ?, then

kM

�1

0

(y)k =

n

X

k=1

kz

k

(0; y)k for y 2 I

M

0

; (2.42)

where every z

k

(�; y) is a solution of system (2.1

0

) satisfying the condition

h(z

k

(�; y))(y) = e

k

: (2.43)

Proof. According to Lemma 2.4, problem (2.1

0

),(2.43) has the unique solu-

tion z

k

(�; y) for every k 2 f1; : : : ; ng and y 2 I

M

0

. Let Z(x; y) be a matrix

with columns z

1

(x; y), : : : ; z

n

(x; y). Then

Z(x; y) = Z

0

(x; y)Z(0; y):

Hence, in view of (2.7) and (2.43), we have

E = M

0

(y)Z(0; y) for y 2 I

M

0

:

Consequently, equality (2.42) is valid. �

Let us introduce the notation

A

0

(s; x; y) = �; A

1

(s; x; y) = A(s; y);

A

j+1

(s; x; y) =

Z

x

s

A(�; y)A

j

(s; �; y) d� (j = 1; 2; : : : );

(2.44)

M

00

(y) = H

0

(y); M

0j

(y) = H

0

(y) +

+

Z

a

0

H(s; y)A(s; y)

h

E+

j�1

X

i=0

Z

s

0

A

i

(�; s; y) d�

i

ds (j = 1; 2; : : : ): (2.45)

If the inequality

detM

0 k�1

(y) 6= 0
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holds for any y 2 [0; b] and natural k, then for every natural m we put

B

1m

(s; x; y)=

h

E+

m�1

X

i=0

Z

x

0

A

i

(�; x; y) d�

i

M

�1

00

(y)H(s; y)A(s; y); (2.46)

B

km

(s; x; y) =

h

E +

m�1

X

i=0

Z

x

0

A

i

(�; x; y) d�

i

M

�1

0 k�1

(y)�

�

Z

a

s

H(�; y)A(�; y)A

k�1

(s; �; y) d� for k > 1 (2.47)

and

B

0

km

(y) = max

0�x�a

h

Z

x

0

jA

m

(s; x; y)�B

km

(s; x; y)j ds+

+

Z

a

x

jB

km

(s; x; y)j ds

i

: (2.48)

Let there exist natural k and m and a nonempty set I

0

� [0; b]

such that

detM

0 k�1

(y) 6= 0 for y 2 I

0

(2.49)

and

r

�

B

0

km

(y)

�

< 1 for y 2 I

0

: (2.50)

Then I

0

� I

M

0

and

kM

�1

0

(y)k � �

0

k(E �B

0

km

(y))

�1

k kM

�1

0k�1

(y)k for y 2 I

0

; (2.51)

where �

0

is a positive constant.

Proof. Let z(�; y) be an arbitrary solution of system (2.1

0

). Then for any

natural j we have

z(x; y)=

h

E +

j�1

X

i=0

Z

x

0

A

i

(s; x; y) ds

i

z(0; y)+

Z

x

0

A

j

(s; x; y)z(s; y) ds:(2.52

j

)

In view of (2.5),(2.44) and (2.45), from (2.52

k

) we �nd that

h

�

z(�; y)

�

(y) = M

00

(y)z(0; y) +

Z

a

0

H(s; y)A(s; y)z(s; y) ds for k = 1

and

h

�

z(�; y)

�

(y) = M

0 k�1

(y)z(0; y) +

+

Z

a

0

�

Z

a

s

H(�; y)A(�; y)A

k�1

(s; �; y) d�

�

z(s; y) ds for k > 1:
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Hence, by virtue of (2.49) it follows that

z(0; y) = M

�1

00

(y)h

�

z(�; y)

�

(y)�M

�1

00

(y)

Z

a

0

H(s; y)A(s; y)z(s; y) ds

for k = 1; y 2 I

0

and

z(0; y)=M

�1

0k�1

(y)h

�

z(�; y)

�

(y)�M

�1

0k�1

(y)

Z

a

0

�

Z

a

s

H(�; y)�

�A(�; y)A

k�1

(s; �; y) d�

�

z(s; y)ds for k > 1; y 2 I

0

:

If we substitute the value z(0; y) into the formula (2.52

m

), then, in view

of the notation (2.46) and (2.47), we shall get

z(x; y) =

h

E +

m�1

X

i=0

Z

x

0

A

i

(s; x; y) ds

i

M

�1

0 k�1

(y)h

�

z(�; y)

�

(y) +

+

Z

x

0

[A

m

(s; x; y)�B

km

(s; x; y)]z(s; y) ds�

Z

a

x

B

km

(s; x; y)z(s; y) ds for y 2 I

0

;

whence, with regard to (2.48), we obtain

�z(y) � B

0

km

(y)�z(y) +A

0

m

(y)jM

�1

0 k�1

(y)j

�

�

h

�

z(�; y)

�

(y)

�

�

for y 2 I

0

;

where

�z(y) = max

0�x�a

jz(x; y)j

and

A

0

m

(y) = max

0�x�a

�

�

�

E +

m�1

X

i=0

Z

x

0

A

i

(�; x; y) d�

�

�

�

:

By condition (2.50) it follows that

�z(y) �

�

E �B

0

km

(y)

�

�1

A

0

m

(y)jM

�1

0 k�1

(y)j

�

�

h

�

z(�; y)

�

(y)

�

�

for y 2 I

0

;

and, consequently,

kz(x; y)k � kA

0

m

(y)k







�

E �B

0

km

(y)

�

�1







kM

�1

0k�1

(y)k







h

�

z(�; y)

�

(y)







for 0 � x � a; y 2 I

0

:

However, in view of (2.3),

�

0

= n sup

0�y�b

kA

0

m

(y)k < +1:

Thus we have proved that an arbitrary solution z(�; y) of system (2.1

0

)

admits the estimate

kz(x; y)k �

�

0

n







�

E �B

0

km

(y)

�

�1







kM

�1

0k�1

(y)k







h

�

z(�; y)

�

(y)







for 0 � x � a; y 2 I

0

;

(2.53)
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where �

0

is independent of I

0

and z(�; y). It is easily seen that for every

y 2 I

0

problem (2.1

0

),(2.2

0

) has only the trivial solution, i.e. I

0

� I

M

0

.

By virtue of Lemma 2.4, for every y 2 I

0

and k 2 f1; : : : ; ng problem

(2.1

0

),(2.43) has the unique solution z

k

(�; y). On the other hand, in view of

(2.53)

kz

k

(x; y)k �

�

0

n







�

E �B

0

km

(y)

�

�1







kM

�1

0k�1

(y)k

for 0 � x � a; y 2 I

0

(k = 1; : : : ; n):

With regard to these inequalities, from (2.42) we get (2.51). �

Remark 2.1. Let h :

e

C ([0; a];R

n

) ! C ([0; b];R

n

) be a linear continuous

operator, the matrix function A satisfy condition (2.21) and let I

0

� [0; b]

be a closed set. Then, as follows from Lemmas 2.2

1

and 2.3

2

, for conditions

(2.49) and (2.50) to be ful�lled for some k and m, it is not only su�cient

but also necessary that

I

0

� I

M

0

:

Let

h(u)(y) �

�

u

i

(a

i

(y))

�

n

i=1

; (2.54)

where a

i

: [0; b] ! [0; a] (i = 1; : : : ; n) are measurable functions. Moreover,

let there exist a nonempty set I

0

� [0; b] such that the matrix function A is

bounded in [0; a]� I

0

and

r

�

A

0

(y)

�

<

�

2a

for y 2 I

0

; (2.55)

where

A

0

(y) = ess sup

0�x�a

jA(x; y)j:

Then I

0

� I

M

0

and

kM

�1

0

(y)k � �

0







�

E �

2a

�

A

0

(y)

�

�1







for y 2 I

0

; (2.56)

where �

0

is a positive constant.

Proof. Let z(�; y) = (z

i

(�; y))

n

i=1

be an arbitrary solution of (2.1

0

). Then

z

i

(x; y) = z

i

(a

i

(y); y) +

n

X

j=1

Z

x

a

i

(y)

a

ij

(s; y)z

j

(s; y) ds (i = 1; : : : ; n)

and

jz

i

(x; y)j�jz

i

(a

i

(y); y)j+

n

X

j=1

a

0

ij

(y)

�

�

�

Z

x

a

i

(y)

jz

j

(s; y)j ds

�

�

�

(i = 1; : : : ; n);

(2.57)
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where

a

0

ij

(y) = ess sup

0�x�a

ja

ij

(x; y)j:

By Minkovsky's inequality it follows that

�

Z

a

0

z

2

i

(x; y) dx

�

1=2

� a

1=2

jz

i

(a

i

(y); y)j+

+

n

X

j=1

a

0

ij

(y)

�

Z

a

0

�

�

�

Z

x

a

i

(y)

jz

j

(s; y)j ds

�

�

�

2

dx

�

1=2

(i = 1; : : : ; n): (2.58)

However, by Virtinger's inequality,

8

Z

a

0

�

�

�

Z

x

a

i

(y)

jz

j

(s; y)j ds

�

�

�

2

dx �

�

2a

�

�

2

Z

a

0

z

2

j

(x; y) dx (i; j = 1; : : : ; n):

Taking into account the above inequalities and condition (2.54), we get from

(2.58)

�z(y) � a

1=2

jh(z(�; y))(y)j+

2a

�

A

0

(y)�z(y);

where

�z(y) =

��

Z

a

0

z

2

i

(x; y) dx

�

1=2

�

n

i=1

:

From this inequality, in view of condition (2.55), one arrives at the following

estimate

�z(y) � a

1=2

�

E �

2a

�

A

0

(y)

�

�1

jh(z(�; y))(y)j for y 2 I

0

;

by which means from (2.57) we get

jz(x; y)j � jh(z(�; y))(y)j+ a

1=2

A

0

(y)�z(y) �

� jh(z(�; y))(y)j+ aA

0

(y)

�

E �

2a

�

A

0

(y)

�

�1

jh(z(�; y))(y)j =

=

�

E +

(� � 2)a

�

A

0

(y)

�

�

E �

2a

�

A

0

(y)

�

�1

jh(z(�; y))(y)j:

The fact that A

0

is bounded in the set I

0

results in

kz(x; y)k �

1

n

�

0







�

E �

2a

�

A

0

(y)

�

�1







kh(z(�; y))(y)k for y 2 I

0

; (2.59)

where

�

0

= n sup

y2I

0










E +

(� � 2)a

�

A

0

(y)










is a constant independent of z(�; y).

By virtue of (2.59) it follows from Lemmas 2.4 and 2.6 that I

0

� I

M

0

and estimate (2.56) is valid. �

8

See [18], Ch.VI, Theorem 256.



33

If problem (2.1

0

),(2.2

0

) is periodic, i.e.

h

�

z(�; y)

�

(y) = z(a; y)� z(0; y); (2.60)

then H

0

(y) � 0, H(x; y) � E and, consequently,

M

0

(y) � Z

0

(a; y)�E:

The lemmas below have something to do with the considered case.

Let condition (2.60) hold and there exist a nonempty set

I

0

� [0; b], a diagonal matrix function

A

0

(x; y) = diag[a

01

(x; y); : : : ; a

0n

(x; y)] (2.61)

and a non-negative matrix function B : I

0

! R

n�n

such that for every

y 2 I

0

a

0i

(�; y) : [0; a] ! R (i = 1; : : : ; n) are summable and of constant

sign,

sup

y2I

0

Z

a

0

ja

0i

(s; y)j ds < +1 (i = 1; : : : ; n); (2.62)

Z

a

0

a

0i

(s; y) ds 6= 0 for y 2 I

0

(i = 1; : : : ; n); (2.63)

r

�

B(y)

�

< 1 for y 2 I

0

(2.64)

and

jA(x; y)�A

0

(x; y)j � jA

0

(x; y)jB(y) for 0 � x � a; y 2 I

0

: (2.65)

Then I

0

� I

M

0

and

kM

�1

0

(y)k � �

0










�

E �B(y)

�

�1

�

Z

a

0

A

0

(s; y) ds

�

�1










for y 2 I

0

; (2.66)

where �

0

is a positive constant.

Proof. First of all let us note that in view of conditions (2.62),

�

1

= sup

y2I

0










exp

�

Z

a

0

jA

0

(s; y)j ds

�










< +1;

�

0

= sup

0<juj��

1

njuj

j exp(u)� 1j

< +1:

Let y 2 I

0

and z(�; y) be an arbitrary solution of (2.1

0

). Then

dz(x; y)

dx

= A

0

(x; y)z(x; y) + [A(x; y) �A

0

(x; y)]z(x; y):

Therefore, according to conditions (2.61),(2.63) and Lemma 2.4, we have

z(x; y)=exp

�

Z

x

0

A

0

(�; y) d�

�h

exp

�

Z

a

0

A

0

(s; y) ds

�

�E

i

�1

h

�

z(�; y)

�

(y)+
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+

h

E�exp

�

Z

a

0

A

0

(s; y) ds

�i

�1

Z

x

0

exp

�

Z

x

s

A

0

(�; y) d�

�

[A(s; y)�

�A

0

(s; y)]z(s; y) ds+exp

�

Z

a

0

A

0

(s; y) ds

�h

E�exp

�

Z

a

0

A

0

(s; y) ds

�i

�1

�

�

Z

a

x

exp

�

Z

x

s

A

0

(�; y) d�

�

[A(s; y)�A

0

(s; y)]z(s; y) ds: (2.67)

If we assume

�z(y) = max

0�x�a

jz(x; y)j;

then, in view of conditions (2.61), (2.63) and (2.65) and taking into account

the fact that functions a

i

(�; y) (i = 1; : : : ; n) are of constant sign, we obtain

from (2.67) that

jz(x; y)j �

�

0

n

�

�

�

Z

a

0

A

0

(s; y) ds

�

�

�

�1

�

�

h

�

z(�; y)

�

(y)

�

�

+

+

�

�

�

E � exp

�

Z

a

0

A

0

(s; y) ds

�

�

�

�

�1

h

�

�

�

Z

x

0

exp

�

Z

x

s

A

0

(�; y) d�

�

A

0

(s; y) ds

�

�

�

+

+ exp

�

Z

a

0

A

0

(s; y) ds

�

�

�

�

Z

a

x

exp

�

Z

x

s

A

0

(�; y) d�

�

A

0

(s; y) ds

�

�

�

i

B(y)�z(y) =

=

�

0

n

�

�

�

Z

a

0

A

0

(s; y) ds

�

�

�

�1

�

�

h

�

z(�; y)

�

(y)

�

�

+

+

�

�

�

E � exp

�

Z

a

0

A

0

(s; y) ds

�

�

�

�

�1

h

�

�

�

E � exp

�

Z

x

0

A

0

(�; y) d�

�

�

�

�

+

+

�

�

�

exp

�

Z

x

0

A

0

(�; y) d�

�

� exp

�

Z

a

0

A

0

(�; y) d�

�

�

�

�

i

B(y)�z(y) =

=

�

0

n

�

�

�

Z

a

0

A

0

(s; y) ds

�

�

�

�1

�

�

h

�

z(�; y)

�

(y)

�

�

+B(y)�z(y)

and

�z(y) � B(y)�z(y) +

�

0

n

�

�

�

Z

a

0

A

0

(s; y) ds

�

�

�

�1

�

�

h

�

z(�; y)

�

(y)

�

�

:

By virtue of inequality (2.64), we have

j�z(y)j �

1

n

�

0

�

�

�

�

E �B(y)

�

�1

�

Z

a

0

A

0

(s; y) ds

�

�1

�

�

�

�

�

h

�

z(�; y)

�

(y)

�

�

:

Consequently,

kz(x; y)k �

�

0

n










�

E �B(y)

�

�1

�

Z

a

0

A

0

(s; y) ds

�

�1
















h

�

z(�; y)

�

(y)







for 0 � x � a; y 2 I

0

:

According to this estimate, it follows from Lemmas 2.4 and 2.6 that I

0

� I

M

0

and estimate (2.66) is valid. �
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Let condition (2.60) hold and there exist a nonempty set

I

0

� [0; b] and functions �

i

: I

0

! f�1; 1g (i = 1; : : : ; n) such that

�a

ii

(y) = ess sup

0�x�a

�

�

i

(y)a

ii

(x; y)

�

< +1;

�a

ij

(y)=ess sup

0�x�a

ja

ij

(x; y)j<+1 (i 6=j; i; j = 1; : : : ; n) for y 2 I

0

(2.68)

and for every y 2 I

0

the real parts of eigenvalues of the matrix

�

A(y) =

�

�a

ij

(y)

�

n

i;j=1

are negative. Then I

0

� I

M

0

and

kM

�1

0

(y)k � �k

�

A

�1

(y)k for y 2 I

0

; (2.69)

where � > 0 is a constant.

Proof. From the asymptotic stability of the matrix

�

A(y) (the real parts of

eigenvalues of

�

A(y) are negative for y 2 I

0

) we have

�a

ii

(y) < 0 for y 2 I

0

(i = 1; : : : ; n) (2.70)

and the matrix

B(y) =

�

(1� �

ij

)

�a

ij

(y)

j�a

ii

(y)j

�

n

i;j=1

;

where �

ij

, Kronecker's symbol, satis�es condition (2.64).

Assume

A

0

(x; y) = diag[a

11

(x; y); : : : ; a

nn

(x; y)];

�

A

0

(y) = diag[�a

11

(y); : : : ; �a

nn

(y)]:

Then by (2.68) and (2.70),

j

�

A

0

(y)j � jA

0

(x; y)j for 0 � x � a; y 2 I

0

and

jA(x; y) �A

0

(x; y)j �

�

(1� �

ij

)�a

ij

(y)

�

n

i;j=1

= j

�

A

0

(y)jB(y) �

� jA

0

(x; y)jB(y) for 0 � x � a; y 2 I

0

:

Consequently, all conditions of Lemma 2.9 are ful�lled. Therefore I

0

� I

M

0

and estimate (2.66), where �

0

> 0 is a constant, takes place. On the other

hand,

�

E �B(y)

�

�1

=

�

A

�1

(y)

�

A

0

(y)

and










�

A

0

(y)

�

Z

a

0

A

0

(s; y) ds

�

�1










=

n

X

i=1

j�a

ii

(y)j

�

�

�

Z

a

0

a

ii

(s; y) ds

�

�

�

�1

�

n

a

for y 2 I:

According to these conditions, from (2.66) there follows estimate (2.69),

where � =

n

a

�

0

. �
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x

3.

In this section for the linear hyperbolic system

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y) (3.1)

we shall investigate two modi�cations of the characteristic initial value prob-

lem

u(x; 0) = '

0

(x);

@u(0; y)

@y

=  (y) +

+

Z

a

0

�

Q

0

(s; y)u(s; y) + 


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

�

ds

(3.2)

and

lim

y!0

�

@u(x; y)

@x

� P

2

(x; y)u(x; y)

�

= '(x);

u(0; y) =  (y) +

Z

y

0

Z

a

0

Q(y; s; t)u(s; t)dsdt;

(3.3)

where

P

i

2 L

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2 L

1

(D

ab

;R

n

);

'

0

2

e

C ([0; a];R

n

); 


1

(x) = 1 + k'

0

0

(x)k;

(3.4)

and the vector and matrix functions ' : [0; a] ! R

n

,  : [0; b] ! R

n

and

Q

i

: D

ab

! R

n�n

(i = 0; 1), Q : [0; b] � D

ab

! R

n�n

are summable.

Moreover, there exists a summable function � : [0; b] ! [0;+1) such that

kQ(y; s; t)k � �(y) for y 2 [0; b]; (s; t) 2 D

ab

: (3.5)

For an arbitrary x 2 [0; a] (y 2 [0; b]) by Z

1

(x; �)

�

Z

2

(�; y)

�

we mean the

fundamental matrix of the system of ordinary di�erential equations

dz

dy

= P

1

(x; y)z

�

dz

dx

= P

2

(x; y)z

�

;

which satis�es the initial condition

Z

1

(x; 0) = E (Z

2

(0; y) = E):

Before we proceed to formulating the conditions of the unique solvability

of problems (3.1),(3.2) and (3.1),(3.3), we have to establish some properties

of solutions of system (3.1).



37

Every solution u of system (3.1) satis�es the conditions

ess sup

(x;y)2D

ab

h







@u(x; y)

@x







�

�

1 +







@u(x; 0)

@x







�i

< +1 (3.6)

and

ess sup

(x;y)2D

ab

h







@u(x; y)

@y







�

�

1 +







@u(0; y)

@y







�i

< +1: (3.7)

Proof. According to conditions (3.4) and due to the absolute continuity of

u, there exists a positive number 
 such that

kP

1

(x; y)k � 


and

Z

y

0







P

0

(x; t)u(x; t) + P

2

(x; t)

@u(x; t)

@t

+ q(x; t)







dt � 


almost for every (x; y) 2 D

ab

. Therefore from the equality

@u(x; y)

@x

=

@u(x; 0)

@x

+

Z

y

0

�

P

0

(x; t)u(x; t) +

+ P

1

(x; t)

@u(x; t)

@x

+ P

2

(x; t)

@u(x; t)

@t

+ q(x; t)

�

dt

we get







@u(x; y)

@x







� (1 + 
)

�

1 +







@u(x; 0)

@x







�

+ 


Z

y

0







@u(x; t)

@x







dt:

It follows from the above inequality and Gronwall's lemma that







@u(x; y)

@x







� (1 + 
)

�

1 +







@u(x; 0)

@x







�

exp(
b):

Hence, inequality (3.6) holds. The validity of inequality (3.7) can be proved

similarly. �

If P

2

(x; �) : [0; b] ! R

n�n

is absolutely continuous almost for

every x 2 [0; a], then every solution of (3.1) is a solution of the system

@

@y

�

Z

�1

1

(x; y)Z

2

(x; y)

@

@x

�

Z

�1

2

(x; y)u

��

=

= Z

�1

1

(x; y)

�

P(x; y)u(x; y) + q(x; y)

�

; (3.8)

where

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y)�

@P

2

(x; y)

@y

; (3.9)
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and, vice versa, every solution of (3.8) is a solution of (3.1).

Proof. Let u : D

ab

! R

n

be an arbitrary absolutely continuous vector

function. Then, by virtue of the equalities

@Z

�1

1

(x; y)

@y

= �Z

�1

1

(x; y)P

1

(x; y)

and

@Z

�1

2

(x; y)

@x

= �Z

�1

2

(x; y)P

2

(x; y)

we have

@

@x

�

Z

�1

2

(x; y)u(x; y)

�

= �Z

�1

2

(x; y)P

2

(x; y)u(x; y) + Z

�1

2

(x; y)

@u(x; y)

@x

and

@

@y

�

Z

�1

1

(x; y)Z

2

(x; y)

@

@x

�

Z

�1

2

(x; y)u(x; y)

��

=

=

@

@y

�

Z

�1

1

(x; y)

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

��

=

= Z

�1

1

(x; y)

�

@

2

u(x; y)

@x@y

+

�

P

1

(x; y)P

2

(x; y)�

@P

2

(x; y)

@y

�

u(x; y)�

�P

1

(x; y)

@u(x; y)

@x

�P

2

(x; y)

@u(x; y)

@y

�

:

The latter equality shows that u is a solution of system (3.1) if and only if

it is a solution of system (3.8). �

If

P

2

2

e

C

(�1;0)

1

(D

ab

;R

n�n

); (3.10)

then an arbitrary generalized solution u of system (3.1) admits the repre-

sentation

u(x; y) = Z

2

(x; y)

h

v

0

(y) +

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)v

1

(s)ds

i

+

+Z

2

(x; y)

Z

x

0

Z

y

0

Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

ds dt;

(3.11)

where

v

0

(y) = u(0; y); v

1

(x) = lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

(3.12)

and, vice versa, whatever summable vector functions v

0

: [0; b] ! R

n

and

v

1

: [0; a] ! R

n

might be, the summable vector function u : D

ab

! R

n

,
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admitting representation (3:11), is a generalized solution of system (3:1)

satisfying conditions (3:12).

Proof. Let u be an arbitrary generalized solution of (3.1). Then, in view of

conditions (3.4),(3.9) and (3.10), the vector function

Z

�1

1

(�; �)(P(�; �)u(�; �) + q(�; �)) : D

ab

! R

n

as well as the vector functions v

0

: [0; b] ! R

n

and v

1

: [0; a] ! R

n

de�ned

by (3.12), is summable. As for the vector function

Z

�1

1

(x; �)Z

2

(x; �)

@

@x

�

Z

�1

2

(x; �)u(x; �)

�

: [0; b] ! R

n

;

it is absolutely continuous almost for all x 2 [0; a] according to Lemma 2.2

2

.

Moreover,

Z

2

(x; y)

@

@x

�

Z

�1

2

(x; y)u(x; y)

�

=

@u(x; y)

@x

� P

2

(x; y)u(x; y): (3.13)

Therefore, the integration of equality (3.8) from 0 to y yields

Z

�1

1

(x; y)Z

2

(x; y)

@

@x

�

Z

�1

2

(x; y)u(x; y)

�

=

= v

1

(x) +

Z

y

0

Z

�1

1

(x; t)

�

P(x; t)u(x; t) + q(x; t)

�

dt

and, consequently,

@

@x

�

Z

�1

2

(x; y)u(x; y)

�

= Z

�1

2

(x; y)Z

1

(x; y)v

1

(x) +

+

Z

y

0

Z

�1

2

(x; y)Z

1

(x; y)Z

�1

1

(x; t)

�

P(x; t)u(x; t) + q(x; t)

�

dt:

Then, because of the fact that the vector function

Z

�1

2

(�; y)u(�; y) : [0; a] ! R

n

is absolutely continuous almost for every y 2 [0; b], we get equality (3.11).

Assume now that v

0

: [0; b] ! R

n

, v

1

: [0; a] ! R

n

and u : D

ab

! R

n

are

arbitrary summable vector functions. Moreover, u admits representation

(3.11), i.e.

u(x; y) = Z

2

(x; y)[v

0

(y) + v(x; y)];

where

v(x; y) =

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)v

1

(s)ds+

+

Z

x

0

Z

y

0

Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

ds dt:

Then by Lemmas 2.2

1

and 2.2

2

and conditions (3.4),(3.9) and (3.10), the

vector function v : D

ab

! R

n

is absolutely continuous. It is also evident
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that the vector function u satis�es system (3.8) and conditions (3.12) almost

everywhere in D

ab

. Consequently, u is a generalized solution of system

(3.1). �

Problem (3.1),(3.2) has one and only one solution u, and

u

k

(x; y)� u(x; y); 


�1

1

(x)

@u

k

(x; y)

@x

� 


�1

1

(x)

@u(x; y)

@x

;




�1

2

(y)

@u

k

(x; y)

@y

� 


�1

2

(y)

@u(x; y)

@y

for k ! +1;

(3.14)

where




2

(y) = 1 + k (y)k+

Z

a

0

[kQ

0

(s; y)k+ kQ

1

(s; y)k]ds; (3.15)

u

0

(x; y) � 0 and

u

k

(x; y) = '

0

(x) +

Z

y

0

 (t)dt +

+

Z

y

0

Z

a

0

�

Q

0

(s; t)u

k�1

(s; t) + 


�1

1

(s)Q

1

(s; t)

@u

k�1

(s; t)

@s

�

ds dt+

+

Z

y

0

Z

x

0

�

P

0

(s; t)u

k�1

(s; t) + P

1

(s; t)

@u

k�1

(s; t)

@s

+

+P

2

(s; t)

@u

k�1

(s; t)

@t

+ q(s; t)

�

ds dt: (3.16)

Proof. Let n

1

= 2n, n

2

= n and 


0

> 0 be large such that

r(A) < 1; where A � 


�1

0

ess sup

(x;y)2D

ab

jP

2

(x; y)j: (3.17)

For arbitrary vector functions z

1

= (z

i

1

)

1

i=0

2 L

1

(D

ab

;R

n

1

), where z

i

1

2

2 L

1

(D

ab

;R

n

) (i = 0; 1) and z

2

2 L

1

(D

ab

;R

n

2

), assume that

g

0

1

(z

1

; z

2

)(x; y) = '

0

(x) +

Z

y

0

 (t)dt+

+

Z

y

0

Z

a

0

[Q

0

(s; t)z

0

1

(s; t) +Q

1

(s; t)z

1

1

(s; t)]ds dt+

+

Z

y

0

Z

x

0

[P

0

(s; t)z

0

1

(s; t) + 


1

(s)P

1

(s; t)z

1

1

(s; t) +

+


2

(t) exp(


0

s)P

2

(s; t)z

2

(s; t) + q(s; t)]ds dt; (3.18)

g

1

1

(z

1

; z

2

)(x; y) = 


�1

1

(x)

@

@x

g

0

1

(z

1

; z

2

)(x; y);

g

1

(z

1

; z

2

)(x; y) = (g

i

1

(z

1

; z

2

)(x; y))

1

i=0

;

(3.19)
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and

g

2

(z

1

; z

2

)(x; y) = 


�1

2

(y) exp(�


0

x)

@

@y

g

0

1

(z

1

; z

2

)(x; y): (3.20)

Let us show that problem (3.1),(3.2) is equivalent to the system of functional

equations (1.1).

Indeed, let problem (3.1),(3.2) have a solution u. Introduce the notation

z

0

1

(x; y) = u(x; y); z

1

1

(x; y) = 


�1

1

(x)

@u(x; y)

@x

;

z

1

(x; y) = (z

i

1

(x; y))

1

i=1

; z

2

(x; y) = 


�1

2

(y) exp(�


0

x)

@u(x; y)

@y

:

(3.21)

According to Lemma 3.1,

(z

i

)

2

i=1

2 L

1

(D

ab

;R

n

1

)� L

1

(D

ab

;R

n

2

):

On the other hand, it becomes evident from equalities (3.18)-(3.21) that

(z

i

)

2

i=1

is a solution of system (1.1).

The converse is obvious: if z

i

1

2 L

1

(D

ab

;R

n

) (i = 1; 2), z

1

= (z

i

1

)

1

i=0

,

z

2

2 L

1

(D

ab

;R

n

2

) and (z

i

)

2

i=1

is a solution of system (1.1), then u(�; �) =

z

0

1

(�; �) is a solution of problem (3.1),(3.2), and equalities (3.21) are valid.

To complete the proof of this lemma, it remains to show that system

(1.1) in the space L

1

(D

ab

;R

n

1

) � L

1

(D

ab

;R

n

2

) has the unique solution

(z

i

)

2

i=1

and conditions (1.8) hold, where z

i0

(x; y) � 0 (i = 1; 2) and (z

ik

)

+1

k=1

(i = 1; 2) are the sequences given by (1.9).

According to conditions (3.4) and the restrictions imposed on the vector

and matrix functions '

0

;  and Q

i

(i = 1; 2), it follows from (3.18)-(3.20)

that operators g

i

: L

1

(D

ab

;R

n

1

)�L

1

(D

ab

;R

n

2

) ! L

1

(D

ab

;R

n

i

) (i = 1; 2)

satisfy, for arbitrary �

i

and

�

�

i

2 L

1

(D

ab

;R

n

i

) (i = 1; 2), inequalities (1.3)

and (1.21) almost everywhere in D

ab

, where I = [0; a],

g

0

(t) = 


2

(t)

h

1 +

�

1 +

Z

a

0




1

(s)ds

�

ess sup

(x;y)2D

ab

�

kP

0

(x; y)k+

+kP

1

(x; y)k+ exp(


0

x)kP

2

(x; y)k

�

i

;

A

01

= ess sup

0�y�b

h




�1

2

(y)

Z

a

0

(jQ

0

(s; y)j+ jQ

1

(s; y)j)ds

i

+

+ ess sup

0�y�b

Z

a

0

(jP

0

(s; y)j+ 


1

(s)jP

1

(s; y)j)ds; A

02

(y) � �

and

A(y) � A:

The validity of Lemma 3.4 becomes evident if we take condition (3.17)

into account and apply Lemma 1.3. �
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0

If P

i

: D

ab

! R

n�n

(i = 0; 1; 2), q : D

ab

! R

n

,  :

[0; b] ! R

n

are continuous, '

0

: [0; a] ! R

n

is continuously di�erentiable

and Q

i

: D

ab

! R

n

(i = 0; 1) satisfy the Carath�eodory conditions,

9

then

problem (3.1),(3.2) is uniquely solvable, its solution u is classical and

u

k

(x; y)� u(x; y);

@u

k

(x; y)

@x

�

@u(x; y)

@x

;

@u

k

(x; y)

@y

�

@u(x; y)

@y

for k !1;

(3.22)

where u

0

(x; y) = 0 and for an arbitrary natural k the vector function u

k

is

given by equality (3.16).

Proof. By Lemma 3.4, problem (3.1),(3.2) has the unique solution u and

conditions (3.14) hold. On the other hand, according to the restrictions

imposed on P

i

(i = 0; 1; 2);  ; '

0

and Q

i

(i = 0; 1), it becomes clear from

(3.16) that

u

k

;

@u

k

@x

and

@u

k

@y

2 C (D

ab

;R

n

) (k = 1; 2; : : : );




1

2 C ([0; a]; (1;+1)); 


2

2 C ([0; b]; (1;+1)):

Therefore, by virtue of the well-known Weierstrass theorem, it follows from

(3.14) that u is a classical solution and conditions (3.22) take place. �

If condition (3.10) holds, then problem (3.1),(3.3) has one

and only one generalized solution u and




�1

(y)u

k

(x; y)� 


�1

(y)u(x; y);

@u

k

(x; y)

@x

�P

2

(x; y)u

k

(x; y)�

�

@u(x; y)

@x

�P

2

(x; y)u(x; y) for k ! +1;

(3.23)

where 
(y) = 1 + k (y)k+ �(y); u

0

(x; y) = 0 and

u

k

(x; y) = Z

2

(x; y)

h

 (y) +

Z

y

0

Z

a

0

Q(y; s; t)u

k�1

(s; t)ds dt

i

+

+Z

2

(x; y)

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)'(s)ds + Z

2

(x; y)

Z

x

0

Z

y

0

Z

�1

2

(s; y)�

�Z

1

(s; y)Z

�1

1

(s; t)[P(s; t)u

k�1

(s; t) + q(s; t)]dsdt: (3.24)

Proof. According to Lemma 3.3, an arbitrary generalized solution of prob-

lem (3.1), (3.3) is a solution of the system of integral equations

u(x; y) = Z

2

(x; y)

h

 (y) +

Z

y

0

Z

a

0

Q(y; s; t)u(s; t)ds dt

i

+

9

I.e., Q

i

(�; y) : [0; a]! R

n�n

are measurable for all y 2 [0; b], Q

i

(x; �) : [0; b]! R

n�n

are continuous almost for all x 2 [0; a] and there exists a summable function 
 : [0; a] !

! [0;+1) such that kQ

i

(x; y)k � 
(x) almost for all (x; y) 2 D

ab

(i = 0; 1).
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+Z

2

(x; y)

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)'(s)ds + Z

2

(x; y)

Z

x

0

Z

y

0

Z

�1

2

(s; y)�

�Z

1

(s; y)Z

�1

1

(s; t)[P(s; t)u(s; t) + q(s; t)]ds dt (3.25)

and, vice versa, an arbitrary summable solution of this system is a general-

ized solution of problem (3.1),(3.3 ). On the other hand, in view of condi-

tions (3.4)-(3.6), it becomes clear that a summable function u : D

ab

! R

n

is a solution of system (3.25) if and only if the vector function

z(x; y) = 


�1

(y)u(x; y)

belongs to L

1

(D

ab

;R

n

) and is a solution of functional equation (1.2), where

g(z)(x; y) = 


�1

(y)Z

2

(x; y)

h

 (y) +

Z

y

0

Z

a

0

Q(y; s; t)
(t)z(s; t)ds dt

i

+

+


�1

(y)Z

2

(x; y)

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)'(s)ds+ 


�1

(y)Z

2

(x; y)�

�

Z

x

0

Z

y

0

Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)[P(s; t)
(t)z(s; t) + q(s; t)]ds dt:

It follows from conditions (3.4)-(3.6) that the operator g transforms the

space L

1

(D

ab

;R

n

) into itself and for every � and

�

� 2 L

1

(D

ab

;R

n

) satis-

�es inequality (1.22), where I = [0; a], g

0

(t) = c

0

�(t) and c

0

is a positive

constant. Therefore, by virtue of Lemma 1.4,system (1.2) has the unique

solution and condition (1.23) holds, where z

0

(x; y) � 0 and (z

k

)

1

k=1

is a se-

quence given by (1.24). It is clear from the above arguments that problem

(3.1),(3.3) has the unique solution

u(x; y) = 
(y)z(x; y)

and conditions (3.23) take place. �

Remark 3.1. From the proof of Lemma 3.5 it is clear that the following

assertions are valid:

a) if  2 L

1

([0; b];R

n

) and Q 2 L

1

([0; b]�D

ab

;R

n�n

), then the general-

ized solution u of problem (3.1),(3.3) belongs to L

1

(D

ab

;R

n

), and condition

(3.23) takes the form

u

k

(x; y)� u(x; y);

@u

k

(x; y)

@x

�P

2

(x; y)u

k

(x; y)�

�

@u(x; y)

@x

�P

2

(x; y)u(x; y) for k ! +1;

(3.26)

b) if  2 C ([0; b];R

n

), Q 2 L

1

([0; b]�D

ab

;R

n�n

) and Q(�; s; t) : [0; b] !

! R

n�n

is continuous almost for every (s; t) 2 D

ab

, then the generalized

solution u of problem (3.1),(3.3) is continuous, and condition (3.23) takes

the form of (3.26).
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0

Let the matrix function P

2

satisfy condition (3.10),

 2

e

C ([0; b];R

n

); Q 2 L

1

([0; b]�D

ab

;R

n�n

);

Q(�; s; t) : [0; b] ! R

n�n

be absolutely continuous almost for every (s; t) 2

2 D

ab

and the inequality










@Q(y; s; t)

@y










� �(y)�

0

(s; t)

hold in [0; b]�D

ab

, where � : [0; b] ! R

+

and �

0

: D

ab

! R

+

are summable

functions. Then problem (3.1),(3.3) has the unique generalized solution u

which is absolutely continuous, and

u

k

(x; y)� u(x; y);

@u

k

(x; y)

@x

�

@u(x; y)

@x

;




�1

(y)

@u

k

(x; y)

@y

� 


�1

(y)

@u(x; y)

@y

for k ! +1;

(3.27)

where 
(y) = 1 + k 

0

(y)k+ �(y), u

0

(x; y) = 0 and the vector function u

k

is

given by equality (3:24) for an arbitrary natural k.

From Lemmas 2.2

2

and 3.5

0

there immediately follows

00

Let P

i

: D

ab

! R

n�n

(i = 0; 1; 2), q : D

ab

! R

n

and

' : [0; a] ! R

n

be continuous and P

2

have a continuous partial derivative

in the second argument. Moreover, let

 2 C

1

([0; b];R

n

); Q 2 L

1

([0; b]�D

ab

;R

n�n

);

Q(�; s; t) : [0; b] ! R

n�n

be absolutely continuous almost for all (s; t) 2 D

ab

,

Q(�; s; �) : [0; b] ! R

n�n

be continuous almost for all s 2 [0; a],

x

R

0

Q(�; s; t)ds :

[0; b] ! R

n�n

be continuously di�erentiable for x 2 [0; a] and almost for all

t 2 [0; b], and the inequality










@Q(y; s; t)

@y










� �

0

(s; t)

hold in [0; b]�D

ab

, where �

0

: D

ab

! [0;1) is a summable function. Then

problem (3.1),(3.3) is uniquely solvable, its solution u is classical and con-

dition (3.22) takes place, where u

0

(x; y) = 0 and the vector function u

k

is

given by equality (3.24) for an arbitrary natural k.

For any � > 0 there exists � > 0 such that if

kP

0

k

L

� �; kP

i

k

L

1

� � (i = 1; 2);

kQ

0

k

L

� �; k


�1

1

Q

1

k

L

1

� �;

(3.28)
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then the solution u of problem (3:1),(3:2) admits the estimate

kuk

e

C

� �(k'

0

k

e

C

+ k k

L

+ kqk

L

): (3.29)

Proof. In view of (3.1) and (3.2)

@u(x; y)

@x

= '

0

0

(x) +

Z

y

0

�

P

0

(x; t)u(x; t) +

+P

1

(x; t)

@u(x; t)

@x

+ P

2

(x; t)

@u(x; t)

@t

+ q(x; t)

�

dt; (3.30)

@u(x; y)

@y

= Z

2

(x; y)

h

 (y) +

Z

a

0

�

Q

0

(s; y)u(s; y) +

+


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

�

ds

i

+ Z

2

(x; y)

Z

x

0

Z

�1

2

(s; y)�

�

�

P

0

(s; y)u(s; y) + P

1

(s; y)

@u(s; y)

@s

+ q(s; y)

�

ds (3.31)

and

u(x; y) = '

0

(x) +

Z

y

0

@u(x; t)

@t

dt: (3.32)

Moreover, as follows from (3.28),

kZ

2

(x; y)k � �

1

; kZ

�1

2

(x; y)k � �

1

; (3.33)

where �

1

= n exp(a�):

If we assume

�

0

(y) = max

0�x�a

ku(x; y)k; �(y) =

Z

a

0







@u(s; y)

@s







ds;

then taking into account (3.28) and (3.33), from (3.31) and (3.32) we obtain







@u(x; y)

@y







� �

1

k (y)k+

�

Z

a

0

(�

1

kQ

0

(s; y)k+

+�

2

1

kP

0

(s; y)k)ds

�

�

0

(y) + �(�

1

+ �

2

1

)�(y) + �

2

1

Z

a

0

kq(s; y)kds (3.34)

and

�

0

(y) � k'

0

k

e

C

+ �

1

k k

L

+

Z

y

0

h

Z

a

0

�

�

1

kQ

0

(s; t)k+

+�

2

1

kP

0

(s; t)k

�

ds

i

�

0

(t)dt+ �(�

1

+ �

2

1

)

Z

y

0

�(t)dt+ �

2

1

kqk

L

;

whence according to Gronwall's lemma and inequalities (3.28)

�

0

(y) �

h

k'

0

k

e

C

+ �

1

k k

L

+ �

2

1

kqk

L

+ �(�

1

+ �

2

1

)

Z

y

0

�(t)dt

i

�
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�exp

�

�

1

kQ

0

k

L

+�

2

1

kP

0

k

L

�

��

2

h

k'

0

k

e

C

+k k

L

+kqk

L

+

Z

y

0

�(t)dt

i

; (3.35)

where

�

2

= (1 + �)(�

1

+ �

2

1

) exp(�(�

1

+ �

2

1

)):

In view of (3.28),(3.34) and (3.35) from (3.30) we get

�(y) � k'

0

k

e

C

+

Z

y

0

�

Z

a

0

kP

0

(s; t)kds

�

�

0

(t)dt+

+�

Z

y

0

�(t)dt+ �

Z

y

0

Z

a

0







@u(s; t)

@t







dsdt+ kqk

L

�

� k'

0

k

e

C

+ ��

2

�

k'

0

k

e

C

+ k k

L

+ kqk

L

+

Z

y

0

�(t)dt

�

+ �

Z

y

0

�(t)dt +

+a��

1

k k

L

+ a�

2

(�

1

+ �

2

1

)

h

k'

0

k

e

C

+ k k

L

+ kqk

L

+

Z

y

0

�(t)dt

i

+

+a�

2

(�

1

+ �

2

1

)

Z

y

0

�(t)dt+ a��

2

1

kqk

L

+ kqk

L

�

� �

3

h

k'

0

k

e

C

+ k k

L

+ kqk

L

+

Z

y

0

�(t)dt

i

; (3.36)

where

�

3

= ��

2

+ ��

1

�

2

(�

1

+ �

2

1

) + �

1

(1 + �)(�

1

+ �

2

1

):

Applying again Gronwall's lemma, from (3.36) we obtain

�(y) � �

4

(k'

0

k

e

C

+ k k

L

+ kqk

L

); (3.37)

where �

4

= �

3

exp(b�

3

).

By (3.34),(3.35) and (3.37) we have

Z

a

0







@u(s; y)

@s







ds � �

4

(k'

0

k

e

C

+ k k

L

+ kqk

L

);

ku(x; y)k � �

5

(k'

0

k

e

C

+ k k

L

+ kqk

L

);

Z

b

0







@u(x; t)

@t







dt � �

6

(k'

0

k

e

C

+ k k

L

+ kqk

L

);

where �

5

= �

2

(1 + b�

4

),

�

6

= �

2

1

+ �

4

(�

1

+ �

2

1

)(�

4

+ �

5

):

With regard to the latter estimates and conditions (3.28) we get

kuk

e

C

= k'

0

k

e

C

+

Z

b

0







@u(0; t)

@t







dt+

Z

a

0

Z

b

0







@

2

u(s; t)

@s@t







dsdt �

� k'

0

k

e

C

+ �

6

(k'

0

k

e

C

+ k k

L

+ kqk

L

) +

Z

a

0

Z

b

0

�

kP

0

(s; t)kku(s; t)k+
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+kP

1

(s; t)k







@u(s; t)

@s







+ kP

2

(s; t)k







@u(s; t)

@t







�

dsdt+ kqk

L

�

� (1 + �

6

+ ��

5

+ b��

4

+ a��

6

)(k'

0

k

e

C

+ k k

L

+ kqk

L

):

Consequently, estimate (3.29) is valid, where � = 1+�

6

+��

5

+b��

4

+a��

6

depends on a, b and � only. �

For any � > 0 there exists � > 0 such that if

kP

0

k

(2)

L

� �; kP

i

k

L

1

� � (i = 1; 2);

kQ

0

k

(2)

L

� �; k


�1

1

Q

1

k

L

1

� �;

(3.38)

then the solution u of problem (3:1),(3:2) admits the estimate

kuk

(1)

e

C

� �(k'

0

k

e

C

+ k k

L

+ kqk

(1)

L

); (3.39)

but for '

0

2

e

C

1

([0; a];R

n

) and  2 L

1

([0; b];R

n

), it admits the estimate

kuk

(2)

e

C

� �(k'

0

k

e

C

1

+ k k

L

1

+ kqk

(2)

L

): (3.40)

Proof. Put

�

1

(x; y) = k'

0

(0)k+ max

(s;t)2D

xy

�

Z

s

0







@u(�; t)

@�







d� +

Z

t

0







@u(s; �)

@�







d�

�

:

It is clear that �

1

: D

ab

! R

+

is continuous and

�

1

(a; b) = kuk

(1)

e

C

:

From (3.1) and (3.2) we obtain

k'

0

(0)k+

Z

x

0







@u(s; y)

@s







ds+

Z

y

0







@u(x; t)

@t







dt � k'

0

k

e

C

+ k k

L

+

+

Z

y

0













Z

a

0

h

Q

0

(s; t)u(s; t) + 


�1

1

(s)Q

1

(s; t)

@u(s; t)

@s

i

ds













dt+

+

Z

x

0













Z

y

0

P

0

(s; t)u(s; t)dt













ds+

Z

y

0













Z

x

0

P

0

(s; t)u(s; t)ds













dt+

+

Z

x

0













Z

y

0

P

1

(s; t)

@u(s; t)

@s

dt













ds+

Z

y

0













Z

x

0

P

1

(s; t)

@u(s; t)

@s

ds













dt+

+

Z

x

0













Z

y

0

P

2

(s; t)

@u(s; t)

@t

dt













ds+

+

Z

y

0













Z

x

0

P

2

(s; t)

@u(s; t)

@t

ds













dt+ kqk

(1)

L

: (3.41)

But

Z

a

0

Q

0

(s; t)u(s; t)ds =

�

Z

a

0

Q

0

(s; t)ds

�

h

'

0

(a) +

Z

t

0

@u(a; �)

@�

d�

i

�
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�

Z

a

0

�

Z

s

0

Q

0

(�; t)d�

�

@u(s; t)

@s

ds; (3.42)

Z

x

0

P

0

(s; t)u(s; t)ds =

�

Z

x

0

P

0

(s; t)ds

�

h

'

0

(x) +

Z

t

0

@u(x; �)

@�

d�

i

�

�

Z

x

0

�

Z

s

0

P

0

(�; t)d�

�

@u(s; t)

@s

ds; (3.43)

Z

y

0

P

0

(s; t)u(s; t)dt =

�

Z

y

0

P

0

(s; t)dt

�

h

'

0

(s) +

Z

y

0

@u(s; t)

@t

dt

i

�

�

Z

y

0

�

Z

t

0

P

0

(s; �)d�

�

@u(s; t)

@t

dt: (3.44)

If along with these inequalities we take into account conditions (3.38), then

from (3.41) we shall get

k'

0

(0)k+

Z

x

0







@u(s; y)

@s







ds+

Z

y

0







@u(x; t)

@t







dt � k'

0

k

e

C

+ k k

L

+

+kqk

(1)

L

+ �

Z

y

0

�

k'

0

(a)k+

Z

t

0







@u(a; �)

@�







d� + 2

Z

a

0







@u(s; t)

@s







ds

�

dt+

+�

Z

x

0

�

k'

0

(s)k+ 2

Z

y

0







@u(s; t)

@s







dt

�

ds+

+�

Z

y

0

�

k'

0

(x)k+

Z

t

0







@u(x; �)

@�







d� +

Z

x

0







@u(s; t)

@s







ds

�

dt+

+2�

Z

y

0

Z

x

0







@u(s; t)

@s







dsdt+ 2�

Z

x

0

Z

y

0







@u(s; t)

@t







dtds �

� (1 + 2b�+ a�)k'

0

k

e

C

+ k k

L

+ kqk

(1)

L

+ 2�

Z

y

0

�

1

(a; t)dt+

+3�

Z

y

0

�

1

(x; t)dt + 4�

Z

x

0

�

1

(s; y)ds

and, consequently,

�

1

(x; y) � (1 + 2b�+ a�)(k'

0

k

e

C

+ k k

L

+ kqk

(1)

L

) +

+5�

Z

y

0

�

1

(a; t)dt+ 4�

Z

x

0

�

1

(s; y)ds:

Applying twice Gronwall's lemma, we �nd from the latter inequality that

�

1

(x; y) � (1 + 2b�+ a�) exp(4a�)(k'

0

k

e

C

+ k k

L

+ kqk

(1)

L

) +

+5� exp(4a�)

Z

y

0

�

1

(a; t)dt;

�

1

(a; y) � �

0

(k'

0

k

e

C

+ k k

L

+ kqk

(1)

L

)
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and, consequently,

kuk

(1)

e

C

� �

0

(k'

0

k

e

C

+ k k

L

+ kqk

(1)

L

); (3.45)

where

�

0

= (1 + 2b�+ a�) exp[4a�+ 5b� exp(4a�)]:

Now consider the case when

'

0

2

e

C

1

([0; a];R

n

);  2 L

1

([0; b];R

n

):

In this case according to Lemma 3.1 and conditions (3.2),(3.38) and (3.42),

the vector functions

@u(x;y)

@x

and

@u(x;y)

@y

are essentially bounded. Assume

�

2

(y) = max

0�x�a







@u(x; y)

@y







:

Taking into account conditions (3.38) and (3.42)-(3.44) we obtain from (3.1)

and (3.2)










@u(x; y)

@x










� k'

0

0

(x)k+













Z

y

0

P

0

(x; t)u(x; t)dt













+

+













Z

y

0

P

1

(x; t)

@u(x; t)

@x

dt













+













Z

y

0

P

2

(x; t)

@u(x; t)

@t

dt













+ kqk

(2)

L

�

� k'

0

k

e

C

1

+ kqk

(2)

L

+ �

h

k'

0

(x)k+ 2

Z

y

0










@u(x; t)

@t










dt

i

+

+�

Z

y

0










@u(x; t)

@x










dt+ �

Z

y

0










@u(x; t)

@t










dt � (1 + �+ a�)k'

0

k

e

C

1

+

+kqk

(2)

L

+ 3�

Z

y

0

�

2

(t)dt+ �

Z

y

0










@u(x; t)

@x










dt �

� (1 + 3�+ a�)

h

k'

0

k

e

C

1

+ kqk

(2)

L

+

Z

y

0

�

2

(t)dt

i

+ �

Z

y

0










@u(x; t)

@x










dt

and










@u(x; y)

@y










� k k

L

1

+













Z

a

0

�

Q

0

(s; y)u(s; y) +

+


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

�

ds













+













Z

x

0

P

0

(s; y)u(s; y)ds













+

+













Z

x

0

P

1

(s; y)

@u(s; y)

@s

ds













+













Z

x

0

P

2

(s; y)

@u(s; y)

@y

ds













+

+kqk

(2)

L

� k k

L

1

+ kqk

(2)

L

+ �

h

k'

0

(a)k+

Z

y

0







@u(a; t)

@t







dt+

+2

Z

a

0







@u(s; y)

@s







ds

i

+�

h

k'

0

(x)k+

Z

y

0







@u(x; t)

@t







dt+

+

Z

x

0







@u(s; y)

@s







ds

i

+ �

Z

x

0







@u(s; y)

@s







ds+ �

Z

x

0







@u(s; y)

@y







ds �
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� (2�+ 2a�)k'

0

k

e

C

1

+ k k

L

1

+ kqk

L

(2)

+ 4�

Z

a

0







@u(s; y)

@s







ds+

+2�

Z

y

0

�

2

(t)dt+ �

Z

x

0







@u(s; y)

@y







ds � (1 + 4�+ 2a�)

�

k'

0

k

e

C

1

+

+k k

L

1

+ kqk

(2)

L

+

Z

y

0

�

2

(t)dt+

Z

a

0







@u(s; y)

@s







ds

�

+ �

Z

x

0







@u(s; y)

@y







ds;

whence by Gronwall's lemma







@u(x; y)

@x







� �

1

�

k'

0

k

e

C

1

+ k k

L

1

+ kqk

(2)

L

+

Z

y

0

�

2

(t)dt

�

(3.46)

and







@u(x; y)

@y







� �

2

�

k'

0

k

e

C

1

+ k k

L

1

+ kqk

(2)

L

+

+

Z

y

0

�

2

(t)dt+

Z

a

0







@u(s; y)

@s







ds

�

; (3.47)

where

�

1

= (1 + 3�+ a�) exp(b�); �

2

= (1 + 4�+ 2a�) exp(a�):

By virtue of (3.46) and (3.47) we get

�

2

(y) � (1 + �

1

a)�

2

�

k'

0

k

e

C

1

+ k k

L

1

+ kqk

(2)

L

+

Z

y

0

�

2

(t)dt

�

:

If we apply again Gronwall's lemma, then from the latter inequality we

obtain

�

2

(y) � �

3

�

k'

0

k

e

C

1

+ k k

L

1

+ kqk

(2)

L

�

; (3.48)

where �

3

= (1 + �

1

a)�

2

exp(�

2

b+ �

1

�

2

ab).

The estimate

kuk

(2)

e

C

� �

4

�

k'

0

k

e

C

1

+ k k

L

1

+ kqk

(2)

L

�

(3.49)

follows from (3.46) and (3.48), where

�

4

= �

1

(1 + �

3

b) + �

3

+ 1:

According to (3.45) and (3.49) it is clear that estimates (3.39) and (3.40)

are valid, where � = �

0

+ �

4

depends on a, b and � only. �

For any � > 0, P

1

2

e

C

(0;�1)

1

(D

ab

;R

n�n

) and P

2

2

e

C

(�1;0)

1

(D

ab

;R

n�n

) there exists �>0 such that if  2L

1

([0; b];R

n

), Q 2 L

1

([0; b]�

�D

ab

;R

n

),

kP

0

k

L

� �; kQk

L

1

� �; (3.50)
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then the generalized solution u of problem (3:1),(3:3) admits the estimate

kuk

L

1

� �(k'k

L

+ k k

L

1

+ kqk

(0)

L

): (3.51)

Proof. By Lemma 3.3 the generalized solution u of problem (3.1),(3.3) ad-

mits the representation

u(x; y) =

Z

x

0

Z(x; y; s; y; )Z

1

(s; y)'(s)ds +

+Z

2

(x; y)

�

 (y) +

Z

y

0

Z

a

0

Q(y; s; t)u(s; t)dsdt

�

+

+

Z

y

0

Z

x

0

Z(x; y; s; t)

�

P(s; t)u(s; t) + q(s; t)

�

dsdt; (3.52)

where

Z(x; y; s; t) = Z

2

(x; y)Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t);

and P is a matrix function given by (3.9).

However,

Z

y

0

Z

x

0

Z(x; y; s; t)q(s; t)dsdt =

Z

y

0

Z

x

0

q(s; t)dsdt�

�

Z

y

0

@Z(x; y; x; t)

@t

�

Z

t

0

Z

x

0

q(s; �)dsd�

�

dt�

�

Z

x

0

@Z(x; y; s; y)

@s

�

Z

y

0

Z

s

0

q(�; t)d�dt

�

ds+

+

Z

y

0

Z

x

0

�

@

2

Z(x; y; s; t)

@s@t

Z

t

0

Z

s

0

q(�; �)d�d�

�

dsdt:

On the other hand, by virtue of Lemma 2.2

2

and the restrictions imposed

on the matrix functions P

1

and P

2

, there exists a positive number �

0

such

that the inequalities

kP

1

(x; y)P

2

(x; y)k+ k

@P

2

(x; y)

@y

k � �

0

; kZ

i

(x; y)k � �

0

(i = 1; 2) (3.53)

and

kZ(x; y; s; t)k+










@Z(x; y; s; t)

@s










+










@Z(x; y; s; t; )

@t










+

+










@

2

Z(x; y; s; t)

@s@t










� �

0

(3.54)

hold almost everywhere in D

ab

and D

ab

�D

ab

. Therefore













Z

x

0

Z

y

0

Z(x; y; s; t)q(s; t)dsdt













�

�

1 + (a+ b+ ab)�

0

�

kqk

(0)

L

(3.55)
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and

kP(x; y)k � kP

0

(x; y)k+ �

0

: (3.56)

Put

�(y) = max

0�x�a

ku(x; y)k:

Then with regard to inequalities (3.50) and (3.53)-(3.56) we obtain from

(3.52)

�(y) � �

2

0

k'k

L

+ �

0

h

k k

L

1

+ a�

Z

y

0

�(t)dt

i

+

+�

0

Z

y

0

h

Z

a

0

kP

0

(s; t)kds+ �

0

a

i

�(t)dt+ [1 + (a+ b+ ab)�

0

]kqk

(0)

L

�

� (1 + �

0

+ �

2

0

)(1 + a+ b+ ab)(k'k

L

+ k k

L

1

+ kqk

L

(0)

) +

+�

0

Z

y

0

h

a�+ �

0

a+

Z

a

0

kP

0

(s; t)kds

i

�(t)dt;

which by Gronwall's lemma and (3.50) implies estimate (3.51), where

� = (1 + �

0

+ �

2

0

)(1 + a + b + ab) exp

�

�

0

� + ab�

0

(� + �

0

)

�

is a constant

depending on P

1

, P

2

, a, b and � only. �

Alongside with

problems (3.1),(3.2) and (3.1),(3.3), for any natural k let us consider the

problems

@

2

u(x; y)

@x@y

= P

0k

(x; y)u(x; y) + P

1k

(x; y)

@u(x; y)

@x

+

+P

2k

(x; y)

@u(x; y)

@y

+ q

k

(x; y); (3.57)

u(x; 0) = '

0k

(x);

@u(0; y)

@y

=  

k

(y) +

+

Z

a

0

h

Q

0k

(s; y)u(s; y) + 


�1

1k

(s)Q

1k

(s; y)

@u(s; y)

@s

i

ds (3.58)

and

@

2

u(x; y)

@x@y

= P

0k

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q

k

(x; y); (3.59)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

= '

k

(x);

u(0; y) =  

k

(y) +

Z

y

0

Z

a

0

Q

k

(y; s; t)u(s; t)dsdt;

(3.60)
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where

P

ik

2 L

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q

k

2 L

1

(D

ab

;R

n

);

'

0k

2

e

C ([0; a];R

n

); 


1k

(x) = 1 + k'

0

0k

(x)k;

'

k

2 L([0; a];R

n

);  

k

2 L([0; b];R

n

);

Q

ik

2 L(D

ab

;R

n�n

) (i = 0; 1)

and

Q

k

2 L

1

([0; b]�D

ab

;R

n�n

):

As above, by 


1

and 


2

we imply the functions




1

(x) = 1+k'

0

0

(x)k; 


2

(y) = 1+k (y)k+

Z

a

0

�

kQ

0

(s; y)k+kQ

1

(s; y)k

�

ds:

Let

sup

k�1

kP

ik

k

L

1

< +1 (i = 1; 2); sup

k�1

k


�1

1k

Q

1k

k

L

1

< +1; (3.61)

lim

k!+1

kP

ik

�P

i

k

L

= 0 (i = 0; 1; 2); lim

k!+1

kq

k

� qk

L

= 0 (3.62)

and

lim

k!+1

k'

0k

� '

0

k

e

C

= 0; lim

k!+1

k 

k

�  k

L

= 0;

lim

k!+1

kQ

0k

�Q

0

k

L

= 0 lim

k!+1

k


1




�1

1k

Q

1k

�Q

1

k

L

= 0:

(3.63)

Then

lim

k!+1

ku

k

� uk

e

C

= 0; (3.64)

where u and u

k

are, respectively, solutions of problems (3:1),(3:2) and

(3:57),(3:58).

Proof. For an arbitrary natural k the vector function

v(x; y) = u

k

(x; y)� u(x; y)

is a solution of the problem

@

2

v(x; y)

@x@y

= P

0k

(x; y)v(x; y) + P

1k

(x; y)

@v(x; y)

@x

+

+P

2k

(x; y)

@v(x; y)

@y

+ eq

k

(x; y); (3.65)

v(x; 0) = e'

0k

(x);

@v(0; y)

@y

=

e

 

k

(y) +

+

Z

a

0

�

Q

0k

(s; y)v(s; y) + 


�1

1k

(s)Q

1k

(s; y)

@v(s; y)

@s

�

ds; (3.66)
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where

eq

k

(x; y) =

�

P

0k

(x; y)� P

0

(x; y)

�

u(x; y) +

�

P

1k

(x; y)�P

1

(x; y)

�

�

�

@u(x; y)

@x

+

�

P

2k

(x; y)�P

2

(x; y)

�

@u(x; y)

@y

+ q

k

(x; y)� q(x; y) (3.67)

and

e'

0k

(x) = '

0k

(x) � '

0

(x);

e

 

k

(y) =  

k

(y)�  (y) +

+

Z

a

0

��

Q

0k

(s; y)�Q

0

(s; y)

�

u(s; y) +

+

�




�1

1k

(s)Q

1k

(s; y)� 


�1

1

(s)Q

1

(s; y)

�

@u(s; y)

@s

�

ds: (3.68)

In view of conditions (3.61)-(3.63) there exists � > 0 such that

kP

0k

k

L

� �; kP

ik

k

L

1

� � (i = 1; 2);

kQ

0k

k

L

� �; k


1k

Q

1k

k

L

1

� � (k = 1; 2; : : : ):

(3.69)

By virtue of Lemma 3.1 we may consider without loss of generality that

ku(x; y)k � �;







@u(x; y)

@x







� �


1

(x);







@u(x; y)

@y







� �


2

(y): (3.70)

By Lemma 3.6 conditions (3.69) guarantee the existence of a positive

constant � such that

ku

k

� uk

e

C

� �(ke'

0k

k

e

C

+ k

e

 

k

k

L

+ keq

k

k

L

) (k = 1; 2; : : : ): (3.71)

However, in view of (3.67),(3.68) and (3.70),

keq

k

k

L

� �

�

kP

0k

�P

0

k

L

+

2

X

i=1

k


i

(P

ik

�P

i

)k

L

+ kq

k

� qk

L

�

(k = 1; 2; : : : )

(3.72)

and

k

e

 

k

k

L

� k 

k

�  k

L

+ a

�

kQ

0k

�Q

0

k

L

+ k


1




�1

1k

Q

1k

�Q

1

k

L

�

(k = 1; 2; : : : ):

(3.73)

According to conditions (3.61)-(3.63), from estimates (3.71)-(3.73) we get

equality (3.64). �

Lemmas 3.10 and 3.11 below alsi deal with the correctness of problem

(3.1),(3.2).
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Let conditions (3:61) hold,

sup

k�1

kP

0k

k

(2)

L

< +1; sup

k�1

kQ

0k

k

(2)

L

< +1; (3.74)

lim

k!+1

kP

ik

�P

i

k

(1)

L

= 0 (i = 0; 1; 2); lim

k!+1

kq

k

� qk

(1)

L

= 0; (3.75)

lim

k!+1

k'

0k

� '

0

k

e

C

= 0; lim

k!+1

k 

k

�  k

L

= 0;

lim

k!+1

kQ

0k

�Q

0

k

(1)

L

= 0; lim

k!+1

k


1




�1

1k

Q

1k

�Q

1

k

(1)

L

= 0:

(3.76)

Then

lim

k!+1

ku

k

� uk

(1)

e

C

= 0; (3.77)

where u and u

k

are, respectively, the solutions of problems (3:1),(3:2) and

(3:57),(3:58).

Let conditions (3:61) take place, '

0

and '

0k

2

e

C

1

([0; a];

R

n

),  and  

k

2 L

1

([0; b];R

n

),

lim

k!+1

kP

ik

�P

i

k

(2)

L

= 0 (i = 0; 1; 2);

lim

k!+1

kq

k

� qk

(2)

L

= 0;

(3.78)

lim

k!+1

k'

0k

� '

0

k

e

C

1

= 0; lim

k!+1

k 

k

�  k

L

1

= 0;

lim

k!+1

kQ

0k

�Q

0

k

(2)

L

= 0; lim

k!+1

kQ

1k

�Q

1

k

(2)

L

= 0:

(3.79)

Then

lim

k!+1

ku

k

� uk

(2)

e

C

= 0: (3.80)

To prove the above stated lemmas we need three auxiliary assertions.

Let p

k

: D

ab

! R (k = 1; 2; : : : ) be a sequence of summab-

le functions satisfying the condition

lim

k!+1

kp

k

k

(i)

L

= 0 (3.81)

for some i 2 f1; 2g and let the function z : D

ab

! R be such that z(�; y)

and z(x; �) are absolutely continuous almost for any y 2 [0; b] and x 2 [0; a],

respectively, and the inequalities

�

�

@z(x; y)

@x

�

�

� z

1

(x);

�

�

@z(x; y)

@y

�

�

� z

2

(y) (3.82)

take place almost everywhere in D

ab

, where z

1

: [0; a] ! R

+

and z

2

: [0; b] !

! R

+

are summable functions. Then

lim

k!+1

kp

k

zk

(i)

L

= 0: (3.83)



56

Proof. In view of (3.82), from the equalities

Z

x

0

p

k

(s; y)z(s; y)ds = z(x; y)

Z

x

0

p

k

(s; y)ds�

�

Z

x

0

�

Z

s

0

p

k

(�; y)d�

�

@z(s; y)

@s

ds

and

Z

y

0

p

k

(x; t)z(x; t)dt = z(x; y)

Z

y

0

p

k

(x; t)dt�

�

Z

y

0

�

Z

t

0

p

k

(x; �)d�

�

@z(x; t)

@t

dt (3.84)

we have

kp

k

zk

(i)

L

�

�

max

(x;y)2D

ab

kz(x; y)k+

Z

a

0

z

1

(s)ds+

Z

b

0

z

2

(t)dt

�

kp

k

k

(i)

L

;

whence according to (3.81) we have equality (3.83). �

Let p

k

: D

ab

! R (k = 1; 2; : : : ) be a sequence of measu-

rable and essentially bounded functions satisfying conditions (3:81) for some

i 2 f0; 1g and

� = sup

k�1

kp

k

k

L

1

< +1: (3.85)

Then equality (3:83) is valid for any summable function z : D

ab

! R.

Proof. Since z is summable, there exists a sequence of functions z

m

: D

ab

!

! R (m = 1; 2; : : : ) such that for any m � 1, j and l 2 f1; : : : ;mg the

function z

m

is constant in the rectangle (

j�1

m

a;

j

m

a)� (

l�1

m

b;

l

m

b) and

lim

m!+1

kz � z

m

k

L

= 0: (3.86)

By (3.81) and (3.85)

kp

k

zk

(i)

L

� kp

k

(z � z

m

)k

(i)

L

+ kp

k

z

m

k

(i)

L

� �kz � z

m

k

(i)

L

+ kp

k

z

m

k

(i)

L

and

lim

k!+1

kp

k

z

m

k

(i)

L

= 0 (m = 1; 2; : : : ):

Therefore

lim sup

k!+1

kp

k

zk

(i)

L

� �kz � z

m

k

(i)

L

(m = 1; 2; : : : );

from which with regard to (3.86) we get equality (3.83). �
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Let p

k

: D

ab

! R (k = 1; 2; : : : ) be a sequence of measu-

rable essentially bounded functions satisfying condition (3:85) and

lim

k!+1

kp

k

k

(2)

L

= 0: (3.87)

Then for any function z belonging to

e

C

(�1;0)

1

(D

ab

;R) or

e

C

(0;�1)

1

(D

ab

;R) we

have

lim

k!+1

kp

k

zk

(2)

L

= 0: (3.88)

Proof. To be more precise, we assume that z 2

e

C

(�1;0)

1

(D

ab

;R) since the

case when z 2

e

C

(0;�1)

1

(D

ab

;R) is considered similarly.

Choose � > 0 such that the inequalities

jz(x; y)j � �;

�

�

@z(x; y)

@y

�

�

� � (3.89)

hold almost everywhere in D

ab

. Then from (3.84) we �nd that

�

�

�

�

Z

y

0

p

k

(x; t)z(x; t)dt

�

�

�

�

� (1 + b)�kp

k

k

(2)

L

: (3.90)

Let " be an arbitrarily small positive number. Choose a natural m such

that

a��

m

<

"

2

:

For every j 2 f1; : : : ;mg we put

z

0j

(x) = z(x;

jb

m

)

and choose a step-function z

j

: [0; a] ! R such that

�

Z

a

0

jz

0j

(s)� z

j

(s)jds <

"

2

:

Then, taking into account (3.85) and (3.89),

�

�

�

�

Z

x

0

p

k

(s; y)z(s; y)ds

�

�

�

�

�

Z

x

0

jp

k

(s; y)jjz(s; y)� z(s;

jb

m

)jds+

+

Z

x

0

jp

k

(s; y)jjz

0j

(s)� z

j

(s)jds+ j

Z

x

0

p

k

(s; y)z

j

(s)dsj �

�

a��

m

+ �

Z

a

0

jz

0j

(s)� z

j

(s)jds + kp

k

z

j

k

(2)

L

�

� "+ kp

k

z

j

k

(2)

L

for

j � 1

m

b � y �

jb

m

: (3.91)
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It follows from (3.90) and (3.91) that

kp

k

zk

(2)

L

� "+ (1 + b)�kp

k

k

(2)

L

+ max

1�j�m

kp

k

z

j

k

(2)

L

:

On the other hand, in view of (3.87) we have

lim

k!+1

kp

k

z

j

k

(2)

L

= 0 (j = 1; : : : ;m):

Therefore

lim sup

k!+1

kp

k

zk

(2)

L

� ":

From this and in view of the arbitrariness of ", we get equality (3.88). �

Proof of Lemma 3:10. For every natural k the vector function v(x; y) =

= u

k

(x; y) � u(x; y) is a solution of problem (3.65),(3.66), where eq

k

, e'

0k

and

e

 

k

are the vector functions given by equalities (3.67) and (3.68).

According to conditions (3.61),(3.74) and Lemma 3.7 there exists a pos-

itive number � such that

ku

k

� uk

(1)

e

C

� �"

k

(k = 1; 2; : : : ); (3.92)

where "

k

= keq

k

k

(1)

L

+ k'

0k

k

e

C

+ k

e

 

k

k

L

. On the other hand, by virtue of

Lemma 3.1 inequalities (3.70) take place for some � > 0.

In view of (3.67) and (3.68)

"

k

� k(P

0k

�P

0

)uk

(1)

L

+ k(P

1k

�P

1

)w

1

k

(1)

L

+ k(P

2k

�P

2

)w

2

k

(1)

L

+

+kq

k

� qk

(1)

L

+ k'

0k

� '

0

k

e

C

+ k 

k

�  k

L

+

+k(Q

0k

�Q

0

)uk

(1)

L

+ k(


1




�1

1k

Q

1k

�Q

0

)


�1

1

w

1

k

(1)

L

;

where

w

1

(x; y) =

@u(x; y)

@x

; w

2

(x; y) =

@u(x; y)

@y

;

from which by virtue of conditions (3.61) and (3.74)-(3.76) and Lemmas

3.12 and 3.13 we have

lim

k!+1

"

k

= 0:

Then taking into account estimate (3.92), we obtain equality (3.77). �

Proof of Lemma 3.11 proceeds analogously to that of Lemma 3.10. The

only di�erence is that instead of Lemma 3.13 we use Lemma 3.14.

Let P

1

2

e

C

(0;�1)

1

(D

ab

;R

n�n

)

sup

k�1

kP

0k

k

L

1

< +1; sup

k�1

kQ

k

k

L

1

< +1; (3.93)

lim

k!+1

kP

0k

�P

0

k

(0)

L

= 0; lim

k!+1

kq

k

� qk

(0)

L

= 0; (3.94)

lim

k!+1

k'

k

� 'k

L

= 0; lim

k!+1

k 

k

�  k

L

1

= 0 (3.95)
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and

lim

k!+1

ess sup

0�y

1

<y

2

�b;

(x;y)2D

ab













Z

y

2

y

1

Z

x

0

h

Q

k

(y; s; t)�Q(y; s; t)

i

dsdt













= 0 (3.96)

Then

lim

k!+1

ku

k

� uk

L

1

= 0; (3.97)

where u and u

k

are, respectively, the generalized solutions of problems (3:1),

(3:3) and (3:59),(3:60).

Proof. For every natural k the vector function v(x; y) = u

k

(x; y) � u(x; y)

is a generalized solution of the problem

@

2

v(x; y)

@x@y

= P

0k

(x; y)v(x; y) + P

1

(x; y)

@v(x; y)

@x

+

+P

2

(x; y)

@v(x; y)

@y

+ eq

k

(x; y);

lim

y!0

�

@v(x; y)

@x

�P

2

(x; y)v(x; y)

�

= e'

k

(x);

v(0; y) =

e

 

k

(y) +

Z

y

0

Z

a

0

Q

k

(y; s; t)v(s; t)dsdt;

where

eq

k

(x; y) = [P

0k

(x; y)�P

0

(x; y)]u(x; y) + q

k

(x; y)� q(x; y);

e'

k

(x) = '

k

(x)� '(x);

e

 

k

(y) =  

k

(y)�  (y) +

+

Z

y

0

Z

a

0

[Q

k

(y; s; t)�Q(y; s; t)]u(s; t)dsdt:

By conditions (3.93) and Lemma 3.8 there exists � > 0 such that

ku

k

� uk

L

1

� �(ke'

k

k

L

+ k 

k

k

L

1

+ keq

k

k

(0)

L

) (k = 1; 2; : : : ): (3.98)

By virtue of conditions (3.93),(3.94) and Lemma 3.13

lim

k!+1

keq

k

k

(0)

L

= 0: (3.99)

On the other hand, in view of (3.93) and (3.96) we have

lim

k!+1

sup

0�y�b













Z

y

0

Z

a

0

�

Q

k

(y; s; t)�Q(y; s; t)

�

u(s; t)dsdt













= 0 (3.100)

Taking into account conditions (3.95),(3.99) and (3.100), we obatin eq-

uality (3.97) from (3.98). �
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CHAPTER II

x

4.

In this chapter for the linear hyperbolic system

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y) (4.1)

we study boundary value problems of four types

u(x; 0) = '

0

(x); h

�

@u(�; y)

@y

�

(y) = '

1

(y); (4.2)

@u(x; 0)

@x

�P

2

(x; 0)u(x; 0) =  

0

(x); h

�

@u(�; y)

@y

�

(y) =  

1

(y); (4.3)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x); h(u(�; y))(y) =  

1

(y) (4.4)

and

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x);

h

�

@

@y

�

u(�; y))(y)� Z

2

(�; y)u(0; y)

�

�

(y) =  

1

(y);

(4.5)

whose special cases are periodic boundary value problems

u(x; 0) = '

0

(x);

@u(a; y)

@y

=

@u(0; y)

@y

+ '

1

(y); (4:2

1

)

@u(x; 0)

@x

�P

2

(x; 0)u(x; 0) =  

0

(x);

@u(a; y)

@y

=

@u(0; y)

@y

+  

1

(y); (4:3

1

)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x);

u(a; y) = u(0; y) +  

1

(y)

(4:4

1

)

and

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x);

@

@y

�

u(a; y)� u(0; y)

�

=  

1

(y):

(4:5

1

)
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Here and everywhere below, unless stated otherwise, we assume

P

i

2 L

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2 L

1

(D

ab

;R

n

);

'

0

2

e

C ([0; a];R

n

); ; '

1

2 L([0; b];R

n

);

 

0

2 L([0; a];R

n

);  

1

2 L([0; b];R

n

)

(4.6)

and h :

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) is a linear continuous operator. Ad-

ditional restrictions on the coe�cients of system (4.1) and on the boundary

conditions will be given in the theorems formulated below.

By Z

1

: D

ab

! R

n�n

and Z

2

: D

ab

! R

n�n

will be meant solutions of

the matrix di�erential equations

@Z

1

(x; y)

@y

= P

1

(x; y)Z

1

(x; y)

and

@Z

2

(x; y)

@x

= P

2

(x; y)Z

2

(x; y);

satisfying the initial conditions

Z

1

(x; 0) = E for 0 � x � a

and

Z

2

(0; y) = E for 0 � y � b:

According to Lemmas 2.1

1

and 2.3

1

,

h(v)(y) = H

0

(y)v(0) +

Z

a

0

H(s; y)v

0

(s)ds

for v 2

e

C ([0; a];R

n

); y 2 [0; b]

(4.7)

and

h

�

Z

2

(�; y)v(�)

�

(y) = M

0

(y)v(0) +

Z

a

0

M(s; y)v

0

(s)ds

for v 2

e

C ([0; a];R

n

); y 2 [0; b];

(4.8)

where

H

0

2 L

1

([0; b];R

n�n

); H 2 L

1

(D

ab

;R

n�n

); (4.9)

M

0

(y) = H

0

(y) +

Z

a

0

H(s; y)

@Z

2

(s; y)

@s

ds;

M(x; y) = H(x; y)Z

2

(x; y) +

Z

a

x

H(s; y)

@Z

2

(s; y)

@s

ds

(4.10)

and

M

0

2 L

1

([0; b];R

n�n

); M 2 L

1

(D

ab

;R

n�n

): (4.11)
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Assume

I

M

0

= fy 2 [0; b] : detM

0

(y) 6= 0g:

M

0

(y) 6�� Alongside with (4.1),(4.2) we

have to consider the homogeneous problem

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+ P

2

(x; y)

@u(x; y)

@y

; (4:1

0

)

u(x; 0) = 0; h

�

@u(�; y)

@y

�

(y) = 0: (4:2

0

)

Let the vector and the matrix functions

'

1

; MZ

�1

2

q; MZ

�1

2

P

0

; (1 + k'

0

0

k)MZ

�1

2

P

1

(4.12)

be M

0

-summable. Then problem (4.1),(4.2) is solvable and its solution is

unique if and only if

mes I

M

0

= b: (4.13)

Moreover, if condition (4.13) is violated, then the space of solutions of ho-

mogeneous problem (4.1

0

),(4.2

0

) is in�nite dimensional.

Proof. According to the M

0

-summability of vector and matrix functions

(4.12), there exist

'

10

2 L([0; b];R

n

); q

0

2 L(D

ab

;R

n

); Q

i

2 L(D

ab

;R

n�n

) (i = 0; 1)

such that

'

1

(y) = M

0

(y)'

10

(y); M(x; y)Z

�1

2

(x; y)q(x; y) = �M

0

(y)q

0

(x; y);

M(x; y)Z

�1

2

(x; y)P

0

(x; y) = �M

0

(y)Q

0

(x; y);

M(x; y)Z

�1

2

(x; y)P

1

(x; y) = �


�1

1

(x)M

0

(y)Q

1

(x; y);

(4.14)

where 


1

(x) = 1 + k'

0

0

(x)k.

Let u be an arbitrary solution of system (4.1). Then

@u(x; y)

@y

= Z

2

(x; y)

�

@u(0; y)

@y

+

Z

x

0

Z

�1

2

(s; y)

�

P

0

(s; y)u(s; y) +

+P

1

(s; y)

@u(s; y)

@s

+ q(s; y)

�

ds

�

; (4.15)

whence, in view of representation (4.8), it is clear that the boundary con-

dition

h

�

@u(�; y)

@y

�

(y) = '

1

(y) (4.16)

holds if and only if

'

1

(y) = M

0

(y)

@u(0; y)

@y

+

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P

0

(s; y)u(s; y) +
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+P

1

(s; y)

@u(x; y)

@s

+ q(s; y)

�

ds for 0 � y � b:

By (4.14) from the above equality we have

M

0

(y)

@u(0; y)

@y

= M

0

(y)

�

 (y) +

+

Z

a

0

�

Q

0

(s; y)u(s; y) + 


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

�

ds

�

;

where

 (y) = '

10

(y) +

Z

a

0

q

0

(s; y)ds:

Consequently, for conditions (4.2) to be ful�lled, it is su�cient, and when

(4.13) holds, it is necessary that

u(x; 0) = '

0

(x);

@u(0; y)

@y

=  (y) +

+

Z

a

0

�

Q

0

(s; y)u(s; y) + 


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

�

ds:

(4.17)

However, according to Lemma 3.4, problem (4.1),(4.17) has the unique so-

lution. Thus we have proved that problem (4.1),(4.2) is solvable and its

solution is unique in the case if condition (4.13) is ful�lled.

For completion of the proof it remains to show that if

mes I

M

0

< b; (4.18)

then homogeneous problem (4.1

0

),(4.2

0

) has an in�nite dimensional space

of solutions.

In view of (4.18) there exists a measurable function c

0

: [0; b] ! R

n

such

that

kc

0

(y)k = 1 for y 62 I

M

0

; c

0

(y) = 0 for y 2 I

M

0

(4.19)

and

M

0

(y)c

0

(y) = 0 for y 2 [0; b]:

As shown above, the solution u of system (4.1

0

) satis�es the condition

h

�

@u(�; y)

@y

�

(y) = 0

if and only if

M

0

(y)

@u(0; y)

@y

= M

0

(y)

Z

a

0

�

Q

0

(s; y)u(s; y) + 


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

�

ds:
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Therefore it is clear that for all natural k the solution of system (4.1

0

)

satisfying boundary conditions

u(x; 0) = 0;

@u(0; y)

@y

= y

k�1

c

0

(y) +

Z

a

0

�

Q

0

(s; y)u(s; y) +

+


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

�

ds

(4.20)

is the solution of problem (4.1

0

), (4.2

0

).

According to Lemma 3.4, problem (4.1

0

),(4.20) has the unique solution

which we denote by u

k

. It follows immediately from (4.18) and (4.19) that

functions u

k

(k = 1; 2; : : : ) are linearly independent. �

If condition (4.13) holds and

Z

a

0

Z

b

0

kM

�1

0

(y)k

�

kP

0

(x; y)k+ (1 + k'

0

0

(x)k)kP

1

(x; y)k+

+kq(x; y)k+ k'

1

(y)k

�

dxdy < +1; (4.21)

then problem (4.1),(4.2) has one and only one solution.

Proof. According to conditions (4.6),(4.11) and Lemma 2.2

1

,

MZ

�1

2

2 L

1

(D

ab

;R

n

):

If we take this and conditions (4.21) into consideration, then it becomes

evident that

M

�1

0

'

1

2 L([0; b];R

n

); M

�1

0

MZ

�1

2

q 2 L(D

ab

;R

n

);

M

�1

0

MZ

�1

2

P

0

2 L(D

ab

;R

n�n

);

(1 + k'

0

0

k)M

�1

0

MZ

�1

2

P

1

2 L(D

ab

;R

n�n

):

Thus, the vector and the matrix functions (4.12) are M

0

-summable. �

Remark 4.1. In the above proven corollary condition (4.21) is essential

and we cannot neglect it. To convince ourselves that is so consider the

problem

@

2

u(x; y)

@x@y

= y

@u(x; y)

@y

+ 1;

u(x; 0) = 0;

@u(a; y)

@y

=

@u(0; y)

@y

for which all conditions of Theorem 4.1, except of (4.21), are ful�lled because

M

0

(y) = exp(ay)� 1:
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Let us show that this problem has no solution. In fact, otherwise we should

have

@u(x; y)

@y

= exp(xy)

@u(0; y)

@y

+

exp(xy)� 1

y

for 0 < y � b;

from which according to the condition

@u(a; y)

@y

=

@u(0; y)

@y

it follows that

@u(0; y)

@y

= �

1

y

for 0 < y � b

and

@u(x; y)

@y

= �

1

y

for 0 < y � b:

But this contradicts the absolute continuity of u.

0

Let h :

e

C ([0; a];R

n

) ! C ([0; b];R

n

) be a linear conti-

nuous operator,

P

i

2 C (D

ab

;R

n�n

) (i = 0; 1; 2); q 2 C (D

ab

;R

n

);

'

0

2 C

1

([0; a];R

n

); '

1

2 C ([0; b];R

n

):

(4:6

0

)

Moreover, let the vector and the matrix functionsMZ

�1

2

q andMZ

�1

2

P

i

(i =

= 0; 1), respectively, satisfy the Carath�eodory condition with M

0

-weight,

and let '

1

be M

0

-continuous. Then problem (4.1),(4.2) has at least one

classical solution but for its uniqueness it is necessary and su�cient that

�

I

M

0

= [0; b]: (4:13

0

)

When condition (4.13

0

) is violated the space of classical solutions of problem

(4.1

0

),(4.2

0

) is in�nite dimensional.

Proof. According to Lemma 2.3

2

and the restrictions imposed on '

1

, MZ

�1

2

q

and MZ

�1

2

P

i

(i = 0; 1),

M

0

2 C ([0; b];R

n�n

) (4.22)

and the representations

'

1

(y) = M

0

(y)'

10

(y); M(x; y)Z

�1

2

(x; y)q(x; y) = �M

0

(y)q

0

(x; y);

M(x; y)Z

�1

2

(x; y)P

i

(x; y) = �M

0

(y)Q

i

(x; y) (i = 0; 1)

are valid, where '

10

2 C ([0; b];R

n

), while q

0

2 L(D

ab

;R

n

) and Q

i

2

2 L(D

ab

;R

n�n

) (i = 0; 1) satisfy the Carath�eodory condition.

Let u be an arbitrary classical solution of system (4.1). It satis�es con-

dition (4.16) if and only if

M

0

(y)

@u(0; y)

@y

= M

0

(y)

�

 (y) +
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+

Z

a

0

�

Q

0

(s; y)u(s; y) +Q

1

(s; y)

@u(s; y)

@s

�

ds

�

;

where

 (y) = '

10

(y) +

Z

a

0

q

0

(s; y)ds;

whence, in view of the continuity of

@u(0;y)

@y

, it becomes clear that for bound-

ary conditions (4.2) to be ful�lled, it is su�cient, and when condition (4.13

0

)

holds, it is necessary that

u(x; 0) = '

0

(x);

@u(0; y)

@y

=  (y) +

Z

a

0

�

Q

0

(s; y)u(s; y) +Q

1

(s; y)

@u(s; y)

@s

�

ds:

(4.23)

But according to Lemma 3.4

0

, problem (4.1),(4.23) has the unique solution

u and this solution is classical. Thus, problem (4.1),(4.2) has at least one

classical solution and when (4.13

0

) holds the solution is unique.

Suppose that condition (4.13

0

) is not ful�lled. Then, according to (4.22),

there exist an interval [b

1

; b

2

] � (0; b) and a continuous vector function

c

0

: [0; b] ! R

n

such that

kc

0

(y)k > 0 for b

1

< y < b

2

; c

0

(y) = 0 for y 62 (b

1

; b

2

)

and

M

0

(y)c

0

(y) = 0 for y 2 [0; b]:

Now, repeating the same arguments as in the proof of the second part of

Theorem 4.1 and applying Lemma 3.4

0

instead of Lemma 3.4, we convince

ourselves that homogeneous problem (4.1

0

),(4.2

0

) has a countable system

of classical solutions. �

Remark 4.2. In Theorem 4.1

0

the requirements for '

1

to be M

0

-continuo-

us and for the vector and the matrix functions MZ

�1

2

q and MZ

�1

2

P

i

(i=0;1)

to satisfy the Carath�eodory conditions withM

0

weight are the most essential

ones. The examples below show that if at least one of these requirements is

not ful�lled, then problem (4.1),(4.2) has no classical solution despite the

fact that the coe�cients of system (4.1) and the functions given in boundary

conditions (4.2) are smooth.

Consider the boundary value problems

@

2

u(x; y)

@x@y

= jy � b

0

j

2k�1

@u(x; y)

@y

� x(y � b

0

)

2k�1

jy � b

0

j

2k�1

; (4:24

1

)

u(x; 0) = b

0

+

x

2k

b

2k

0

;

@u(a; y)

@y

=

@u(0; y)

@y

+ a(y � b

0

)

2k�1

; (4:25

1

)

@

2

u(x; y)

@x@y

= jy � b

0

j

2k�1

@u(x; y)

@y

+ (y � b

0

)

2k�1

; (4:24

2

)

u(x; 0) = 0;

@u(a; y)

@y

=

@u(0; y)

@y

(4:25

2

)
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@

2

u(x; y)

@x@y

= jy � b

0

j

2k�1

@u(x; y)

@y

+

1

b

0

(y � b

0

)

2k�1

u(x; y) +

+

1

b

0

jy � b

0

j(y � b

0

)

2k�1

;

(4:24

3

)

u(x; 0) = 0;

@u(a; y)

@y

=

@u(0; y)

@y

(4:25

3

)

and

@

2

u(x; y)

@x@y

= jy � b

0

j

2k�1

@u

@y

� exp(�x)(y � b

0

)

2k�1

@u

@x

; (4:24

4

)

u(x; 0) = exp(x) + b

0

;

@u(a; y)

@y

=

@u(0; y)

@y

; (4:25

4

)

where b

0

2 (0; b) and k is a natural number. For each of these problems

(4.24i), (4.25

i

) (i = 1; 2; 3; 4) we have

h(v)(y) � v(a)� v(0); Z

2

(x; y) = exp(xjy � b

0

j

2k�1

);

M

0

(y) = exp(ajy � b

0

j

2k�1

)� 1;

M(x; y) = exp(ajy � b

0

j

2k�1

); I

M

0

= [0; b]nfb

0

g:

Proceeding from this, it is easy to convince ourselves that for these

problems all conditions of Theorem 4.1 are ful�lled and therefore they are

uniquely solvable. The following functions

u

1

(x; y) = jy � b

0

j+

x

2k

(y � b

0

)

2k

; u

2

(x; y) = b

0

� jy � b

0

j;

u

3

(x; y) = b

0

� jy � b

0

j; u

4

(x; y) = exp(x) + jy � b

0

j

are respectively the solutions of problems (4.24

i

), (4.25

i

) (i = 1; 2; 3; 4). But

none of these solutions is classical, because they have no partial derivative

in the second argument when y = b

0

. This case is due to the fact that for

each of these problems one (and only one) of the conditions of Theorem 4.1

0

is violated.

More precisely, for problem (4.24

1

),(4.25

1

) the function

'

1

(y) = a(y � b

0

)

2k�1

is not M

0

-continuous, for problem (4.24

2

),(4.25

2

) the function

M(x; y)Z

�1

2

(x; y)q(x; y) = exp

�

(a� x)jy � b

0

j

2k�1

�

(y � b

0

)

2k�1

does not satisfy the Carath�eodory condition with M

0

weight, for problem

(4.24

3

), (4.25

3

) the function

M(x; y)Z

�1

2

(x; y)P

0

(x; y) =

1

b

0

exp

�

(a� x)jy � b

0

j

2k�1

�

(y � b

0

)

2k�1

and for problem (4.24

4

),(4.25

4

) the function

M(x; y)Z

�1

2

(x; y)P

1

(x; y) = exp

�

(a� x)jy � b

0

j

2k�1

� x

�

(y � b

0

)

2k�1
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behaves similarly.

Remark 4.3. Let all conditions of Theorem 4.1

0

hold. If, in addition,

condition (4.13) takes place, then problem (4.1),(4.2) has the unique solution

and it is classical. If condition (4.13) is violated, then this problem has

the unique classical solution and an in�nite set of absolutely continuous

solutions.

As an example let us consider the problem

@

2

u(x; y)

@x@y

= p(y)

@u(x; y)

@y

(4.26)

u(x; 0) = 0;

@u(a; y)

@y

=

@u(0; y)

@y

; (4.27)

where p : [0; b] ! [0;+1) is a continuous function with the set of zeros J

p

which is nowhere dense in [0; b] and has a positive measure. In this case

M

0

(y) = exp(xp(y)) � 1

and

I

M

0

= [0; b]nJ

p

:

Consequently, for problem (4.26),(4.27) all conditions of Theorem 4.1

0

are

ful�lled, but condition (4.13) is violated. Therefore u

0

(x; y) � 0 is the

unique classical solution of the problem under consideration. On the other

hand, for every summable function c : [0; b] ! R the function

u

c

(x; y) =

Z

y

0

�(t)c(t) exp(xp(t))dt;

where

�(t) =

(

1 for t 2 J

p

0 for t 62 J

p

is an absolutely continuous solution of problem (4.26),(4.27).

0

Let h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear contin-

uous operator, P

j

(i = 0; 1; 2), q and '

i

(i = 0; 1) satisfy conditions (4.6

0

)

and

I

M

0

= [0; b]: (4:13

00

)

Then problem (4.1),(4.2) has one and only one solution u and it is classical.

Proof. By virtue of Lemmas 2.1

3

and 2.2

1

,

H

0

2

e

C

1

([0; b];R

n�n

); H 2

e

C

(�1;0)

1

(D

ab

;R

n�n

);

Z

2

and

@Z

2

@x

2 C (D

ab

;R

n�n

);

whence by equalities (4.10) and conditions (4.6

0

) and (4.13

00

) it follows

that '

1

is M

0

-continuous and MZ

�1

2

q and MZ

�1

2

P

i

(i = 0; 1) satisfy the
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Carath�eodory condition with M

0

weight. Consequently, all conditions of

Theorem 4.1

0

take place. Moreover, instead of (4.13

0

) we have stronger re-

striction (4.13

00

). Therefore, by virtue of Theorems 4.1 and 4.1

0

, problem

(4.1),(4.2) has the unique solution and it is classical. �

Remark 4.4. When the matrix function P

2

satis�es the Lappo-Danilevsky

condition in the �rst argument, i.e. when

P

2

(x; y)

�

Z

x

0

P

2

(s; y)ds

�

=

�

Z

x

0

P

2

(s; y)ds

�

P

2

(x; y)

for (x; y) 2 D

ab

;

(4.28)

we have

Z

2

(x; y) = exp

�

Z

x

0

P

2

(s; y)ds

�

:

Therefore the matrix function M

0

is calculated explicitly and conditions

(4.13) and (4.21) may be veri�ed more or less e�ectively. But if condition

(4.28) is violated, then to verify these conditions e�ectively, we shall have

to apply Lemmas 2.7-2.10.

Let us introduce the notation

A

0

(s; x; y) = �; A

1

(s; x; y) = P

2

(s; y);

A

j+1

(s; x; y) =

Z

x

s

P

2

(�; y)A

j

(s; �; y)d� (j = 1; 2; : : : );

M

00

(y) = H

0

(y); M

0j

(y) = H

0

(y) +

+

Z

a

0

H(s; y)P

2

(s; y)

h

E +

j�1

X

i=0

Z

s

0

A

i

(�; s; y)d�

i

ds (j = 1; 2; : : : ):

If the inequality

detM

0k�1

(y) 6= 0

holds for some y 2 [0; b] and natural k, then for every natural m we assume

B

1m

(s; x; y) =

h

E +

m�1

X

i=0

Z

x

0

A

i

(�; x; y)d�

i

�

�H

�1

0

(y)H(s; y)P

2

(s; y);

B

km

(s; x; y) =

h

E +

m�1

X

i=0

Z

x

0

A

i

(�; x; y)d�

i

M

�1

0k�1

(y)�

�

Z

a

s

H(�; y)P

2

(�; y)A

k�1

(s; �; y)d� for k > 1

and

B

0

km

(y) = max

0�x�a

h

Z

x

0

jA

m

(s; x; y)�B

km

(s; x; y)jds+
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+

Z

a

x

jB

km

(s; x; y)jds

i

:

From Lemma 2.7 and Corollaries 4.1 and 4.1

0

there follow the following

assertions.

Let there exist natural k and m such that the inequalities

detM

0k�1

(y) 6= 1; r(B

0

km

(y)) < 1 (4.29)

hold almost everywhere in [0; b] and

Z

a

0

Z

b

0







�

E �B

0

km

(y)

�

�1







kM

�1

0k�1

(y)k

�

kP

0

(x; y)k+

+(1 + k'

0

0

(x)k)kP

1

(x; y)k+ kq(x; y)k+ k'

1

(y)k

�

dxdy < +1:

Then Problem (4.1),(4.2) has one and only one solution.

0

Let h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear conti-

nuous operator and '

i

;P

i

(i = 0; 1) and q satisfy conditions (4.6

0

). More-

over, let inequality (4.29) hold everywhere in [0; b]. Then problem (4.1),(4.2)

has one and only one solution and this solution is classical.

From Corollaries 4.1 and 4.1

0

according to Lemmas 2.8, 2.9 and 2.10 we

obtain respectively Corollaries 4.3 and 4.3

0

, 4.4 and 4.4

0

and 4.5 and 4.5

0

.

Let

h(v)(y) =

�

v

i

(a

i

(y))

�

n

i=1

; (4.30)

where a

i

: [0; b] ! [0; a] (i = 1; : : : ; n) are measurable functions. Moreover,

let the matrix function

A(y) = ess sup

0�x�a

jP

2

(x; y)j

satisfy the inequality

r(A(y)) <

�

2a

(4.31)

almost everywhere in [0; b], and

Z

a

0

Z

b

0







�

E �

2a

�

A(y)

�

�1







�

kP

0

(x; y)k+

+(1 + k'

0

0

(x)k)kP

1

(x; y)k+ kq(x; y)k+ k'

1

(y)k

�

dxdy < +1: (4.32)

Then problem (4.1),(4.2) has one and only one solution.
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0

Let conditions (4.6

0

) and (4.30) hold, where a

i

: [0; b] !

! [0; a] (i = 1; : : : ; n) are continuous functions. Let, moreover, the matrix

function

A(y) = max

0�x�a

jP

(

x; y)j

be such that

r

�

A(y)

�

<

�

2a

for 0 � y � b: (4.33)

Then problem (4.1),(4.2) has one and only one solution and this solution is

classical.

Remark 4.5. Condition (4.33) is optimal in the sense that it is impossible

to replace it by the requirement that inequality (4.31) be ful�lled evrywhere

in [0; b] except at some �nite number of points and that integral (4.32) be

convergent. To convince ourselves that this is so consider the problem

@

2

u

1

(x; y)

@x@y

=

@u

2

(x; y)

@y

;

@

2

u

2

(x; y)

@x@y

= �!

2

�

(y)

@u

1

(x; y)

@y

+ x!

2

�

(y);

(4.34)

u

i

(x; 0) = 0 (i = 1; 2);

@u

1

(0; y)

@y

=

@u

2

(a; y)

@y

= 0; (4.35)

where

!

�

(y) =

�

2a

�

1�

�

y

b

�

�

�

; � 2 (0; 1]:

In that case

P

2

(x; y) =

�

0 1

�!

2

�

(y) 0

�

; A(y) =

�

0 1

!

2

�

(y) 0

�

and

r

�

A(y)

�

= !

�

(y):

Consequently, all conditions in Corollary 4.3

0

except (4.33) hold. Instead

of condition (4.33) we have

r

�

A(y)

�

<

�

2a

for 0 < y � b; r

�

A(0)

�

=

�

2a

:

In addition,

�

E �

2a

�

A(y)

�

�1

=

�

y

b

�

��

h

2�

�

y

b

�

�

i

�1

�

1

2a

�

2a

�

!

2

�

(y) 1

�

for 0 < y � b:

From the above it becomes evident that condition (4.32) holds for � 2

(0; 1) and is not ful�lled for � = 1. According to Corollary 4.3, problem
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(4.1),(4.2) has the unique solution (u

i

)

2

i=1

for every � 2 (0; 1). By immediate

veri�cation we convince ourselves that

u

1

(x; y) =�

Z

y

0

sin(!

�

(t)x)

!

�

(t) cos(a!

�

(t))

dt+ xy;

u

2

(x; y) =�

Z

y

0

cos(x!

�

(t))

cos(a!

�

(t))

dt+ y;

and this solution is not classical because

lim

y!0

@u

i

(x; y)

@y

= �1 for 0 < x < a (i = 1; 2):

Remark 4.6. As been admitted above, for problem (4.34),(4.35) all con-

ditions of Corollary 4.3 except (4.32) take place for � = 1. Let us show that

in this case problem (4.34),(4.35) has no solution. Suppose the converse

holds, i.e. the problem does have a solution (u

i

)

2

i=1

. Assume

z(x; y) =

@u

1

(x; y)

@y

:

Then for every y 2 (0; b) we shall have

@

2

z(x; y)

@x

2

= �!

2

1

(y)z(x; y) + x!

2

1

(y);

z(0; y) = 0;

@z(x; y)

@x

�

�

�

x=a

= 0:

Therefore

z(x; y) = �

1

!

1

(y) cos(a!

1

(y))

sin(!

1

(y)x) + x

and

@u

1

(x; y)

@y

= �

1

!

1

(y) sin

�

�y

2b

�

sin(!

1

(y)x) + x:

But this is impossible because for every x 2 (0; a] the function in the right-

hand side is not summable in the second argument on the interval [0; b]. The

obtained contradiction proves that problem (4.34),(4.35) has no solution.

Thus it is impossible to omit condition (4.32) from Corollary 4.3.

Remark 4.7. When � = 1 problem (4.34),(4.35) is an example of a prob-

lem of type (4.1),(4.2) which is unsolvable although the corresponding ho-

mogeneous problem has only the trivial solution.

Let there exist a diagonal matrix function A

0

2 L

1

(D

ab

;

R

n�n

) such that

det

�

A

0

(x; y)

�

6= 0 (4.36)

almost for every (x; y) 2 D

ab

and the inequality

r

�

A(y)

�

< 1 (4.37)
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holds almost everywhere in [0; b], where

A(y) = ess sup

0�x�a

jA

�1

0

(x; y)P

2

(x; y)�Ej:

Let, moreover, every diagonal element of the matrix A

0

(�; y) be a function

of constant sign almost for every y 2 [0; b] and

Z

a

0

Z

b

0










�

E �A(y)

�

�1

�

Z

a

0

A

0

(s; y)ds

�

�1










�

kP

0

(x; y)k+

+(1 + k'

0

0

(x)k)kP

1

(x; y)k+ kq(x; y)k+ k'

1

(y)k

�

dxdy < +1: (4.38)

Then problem, (4:1); (4:2

1

) has one and only one solution.

0

Let conditions (4.6

0

) hold and there exist a diagonal matrix

function A

0

2 C (D

ab

;R

n�n

) such that

det

�

A

0

(x; y)

�

6= 0 for (x; y) 2 D

ab

(4.39)

and

r

�

A(y)

�

< 1 for 0 � y � b; (4.40)

where

A(y) = max

0�x�a

jA

�1

0

(x; y)P

2

(x; y)�Ej:

Then problem (4.1),(4.2

1

) has one and only one solution and this solution

is classical.

Remark 4.8. The example considered in Remark 4.1 shows that it is im-

possible to omit condition (4.38) from Corollary 4.4 and to replace condition

(4.39) by the requirement for inequality (4.36) be ful�lled everywhere in D

ab

except for one segment f(x; y

0

) : 0 � x � ag for some y

0

2 [0; b].

Remark 4.9. Condition (4.40) is optimal in the sense that if it is violated

even at one point while all other conditions of Corollary 4.4

0

and condition

(4.38) hold, problem (4.1),(4.2

1

) may have no classical solution. As an

example verifying this fact, consider the problem

@

2

u

1

(x; y)

@x@y

=

@u

1

(x; y)

@y

+ (1� "

�

(y))

2

@u

2

(x; y)

@y

� "

�

(y);

@

2

u

2

(x; y)

@x@y

=

@u

1

(x; y)

@y

+

@u

2

(x; y)

@y

+ 1;

(4.41)

u

i

(x; 0) = 0;

@u

i

(0; y)

@y

=

@u

i

(a; y)

@y

(i = 1; 2); (4.42)

where

"

�

(y) =

�

1�

y

b

�

�

; � 2 (0;+1):
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In that case

P

2

(x; y) =

�

1 (1� "

�

(y))

2

1 1

�

; A

0

(x; y) =

�

1 0

0 1

�

;

A(y) =

�

0 (1� "

�

(y))

2

1 0

�

and

r

�

A(y)

�

= 1� "

�

(y);

whence it is clear that all conditions of Corollary 4.4

0

except (4.40) take

place. Instead of (4.40) we have

r

�

A(y)

�

< 1 for 0 � y < b; r

�

A(b)

�

= 1:

Besides,

(E �A(y))

�1

=

1

"

�

(y)(2 + "

�

(y))

�

1 (1� "

�

(y))

2

1 1

�

:

Consequently, condition (4.38) holds for � 2 (0; 1) while this condition is

violated for � � 1. Let us show that for � 2 (0; 1) the solution of problem

(4.41),(4.42), whose existence and uniqueness follow from Corollary 4.4, is

not classical and for � � 1 this problem has no solution whatsoever. Indeed,

let (u

i

)

2

i=1

be the solution of problem (4.41),(4.42). Assume

z(x; y) =

@u

1

(x; y)

@y

+ ("

�

(y)� 1)

@u

2

(x; y)

@y

:

Then

@z(x; y)

@x

= "

�

(y)z(x; y)� 1;

z(0; y) = z(a; y):

Therefore

z(x; y) =

1

"

�

(y)

for 0 � x � a; 0 � y < b

and

lim

y!b

z(x; y) = +1 for 0 � x � a:

Besides, for � � 1 the function z is not summable in D

ab

, which is impossible

due to the absolute continuity of the functions u

i

(i = 1; 2).

Let P

2

(x; y) = (p

2ij

(x; y))

n

i;j=1

and there exist functions

�

i

: [0; b] ! f�1; 1g (i = 1; : : : ; n) such that the real parts of eigenvalues of

the matrix

A(y) = (a

ij

(y))

n

i;j=1

;

where

a

ii

(y) = ess sup

0�x�a

(�

i

(y)p

2ii

(x; y)); a

ij

(y) = ess sup

0�x�a

jp

2ij

(x; y)j
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for (i 6= j; i; j = 1; : : : ; n)

are negative almost for all y 2 [0; b] and

Z

b

0

kA

�1

(y)k(1 + k'

1

(y)k)dy < +1: (4.43)

Then problem (4.1),(4.2

1

) has one and only one solution.

0

Let conditions (4:6

0

) hold, P

2

(x; y) = (p

2ij

(x; y))

n

i;j=1

and

there exist numbers �

i

2 f�1; 1g (i = 1; : : : ; n) such that the real parts of

eigenvalues of the matrix

A(y) = (a

ij

(y))

n

i;j

; (4.44)

where

a

ii

(y) = max

0�x�a

(�

i

p

2ii

(x; y)); a

ij

(y) = max

0�x�a

jp

2ij

(x; y)j

for (i 6= j; i; j = 1; : : : ; n)

are negative for all y 2 [0; b]. Then problem (4.1),(4.2

1

) has one and only

one solution and this solution is classical.

Remark 4.10. The restriction in Corollary 4.5

0

imposed on the eigenval-

ues of matrix (4.44) is optimal and cannot be weakened. As an example let

us consider problem (4.41),(4.42). If �

1

= �

2

= �1, then matrix (4.44) for

system (4.41) has the form

A(y) =

�

�1 (1� "

�

(y))

2

1 �1

�

and its eigenvalues

�

1

(y) = "

�

(y)� 2; �

2

(y) = �"

�

(y)

satisfy the conditions

�

1

(y) < 0 for 0 � y � b; �

2

(y) = �"

�

(y) 0 � y < b; �

2

(b) = 0

and condition (4.43) also holds for � 2 (0; 1). Nevertheless, problem (4.41),

(4.42) has no classical solution for any � > 0.
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M

0

(y) � �

Let

P

i

2

e

C

(�1;0)

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2

e

C

(�1;0)

1

(D

ab

;R

n

); (4.45)

'

0

2

e

C ([0; a];R

n

); '

1

2

e

C ([0; b];R

n

); (4.46)

and h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear continuous operator such

that

M

0

(y) = � for 0 � y � b (4.47)

and

det

�

Z

a

0

M(s; y)Z

�1

2

(s; y)[P

0

(s; y) + P

1

(s; y)P

2

(s; y)]Z

2

(s; y)ds

�

6=0

for 0 � y � b:

(4.48)

Then for the unique solvability of problem (4.1),(4.2) it is necessary and

su�cient that

Z

a

0

M(s; 0)Z

�1

2

(s; 0)[P

0

(s; 0)'

0

(s) + P

1

(s; 0)'

0

0

(s) +

+q(s; 0)]ds = '

1

(0): (4.49)

Proof. Let u be an arbitrary solution of system (4.1). Then by Lemma 3.3,

u(x; y) = Z

2

(x; y)

h

u(0; y) +

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)'(s)ds

i

+ Z

2

(x; y)�

�

Z

x

0

Z

y

0

Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

ds dt (4.50)

and

@

@x

�

Z

�1

2

(x; y)u(x; y)

�

= Z

�1

2

(x; y)Z

1

(x; y)�

�

h

'(x) +

Z

y

0

Z

�1

1

(x; t)

�

P(x; t)u(x; t) + q(x; t)

�

dt

i

; (4.51)

where

'(x) =

@u(x; 0)

@x

�P

2

(x; 0)u(x; 0) (4.52)

and

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y)�

@P

2

(x; y)

@y

:

In view of (4.50), from the obvious equality

Z

�1

2

(x; y)

@u(x; y)

@y

=

@

@y

�

Z

�1

2

(x; y)u(x; y)

�

�

@Z

�1

2

(x; y)

@y

u(x; y)
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we obtain

Z

�1

2

(x; y)

@u(x; y)

@y

=

@u(0; y)

@y

+

Z

x

0

Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)'(s)ds+

+

Z

x

0

Z

�1

2

(s; y)

�

�

P(s; y)u(s; y) + q(s; y)

�

ds+

Z

x

0

Z

y

0

Z

�1

2

(s; y)P

1

(s; y)�

�Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

ds dt+ v(x; y); (4.53)

where

�

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y) (4.54)

and

v(x; y) = �

Z

x

0

Z

�1

2

(s; y)

@P

2

(s; y)

@y

u(s; y)ds+

Z

x

0

@Z

�1

2

(s; y)

@y

Z

1

(s; y)�

�

h

'(s) +

Z

y

0

Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

dt

i

ds�

@Z

�1

2

(x; y)

@y

u(x; y):

But

Z

�1

2

(x; y)

@P

2

(x; y)

@y

=

= Z

�1

2

(x; y)

h

@

@y

�

P

2

(x; y)Z

2

(x; y)

�

�P

2

(x; y)

@Z

2

(x; y)

@y

i

Z

�1

2

(x; y) =

= Z

�1

2

(x; y)

h

@

2

Z

2

(x; y)

@x@y

�

@Z

2

(x; y)

@x

Z

�1

2

(x; y)

@Z

2

(x; y)

@y

i

Z

�1

2

(x; y) =

=

h

Z

�1

2

(x; y)

@

@x

�

@Z

2

(x; y)

@y

�

+

@Z

�1

2

(x; y)

@x

�

@Z

2

(x; y)

@y

i

Z

�1

2

(x; y) =

=

@

@x

�

Z

�1

2

(x; y)

@Z

2

(x; y)

@y

�

Z

�1

2

(x; y) =

= �

@

@x

�

@Z

�1

2

(x; y)

@y

Z

2

(x; y)

�

Z

�1

2

(x; y):

If we take into account the above equality and identity (4.51), we shall

have

v(x; y) =

Z

x

0

@

@s

�

@Z

�1

2

(s; y)

@y

Z

2

(s; y)

�

Z

�1

2

(s; y)u(s; y)ds+

+

Z

x

0

@Z

�1

2

(s; y)

@y

Z

2

(s; y)

@

@s

�

Z

�1

2

(s; y)u(s; y)

�

ds�

@Z

�1

2

(x; y)

@y

u(x; y) =

=

Z

x

0

@

@s

�

@Z

�1

2

(s; y)

@y

u(s; y)

�

ds�

@Z

�1

2

(x; y)

@y

u(x; y) =

=

@Z

�1

2

(0; y)

@y

u(0; y) = 0: (4.55)
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Therefore from (4.53) we get

Z

�1

2

(x; y)

@u(x; y)

@y

=

@u(0; y)

@y

+

Z

x

0

Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)'(s)ds+

+

Z

x

0

Z

�1

2

(s; y)

�

�

P(s; y)u(s; y) + q(s; y)

�

ds+

Z

x

0

Z

y

0

Z

�1

2

(s; y)�

�P

1

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

ds dt: (4.56)

According to representations (4.8) and (4.56) and condition (4.47), u

satis�es boundary condition (4.2) if and only if

'(x) = '

0

0

(x) �P

2

(x; 0)'

0

(x); (4.57)

u(0; 0) = '

0

(0) (4.58)

and

'

1

(y) =

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P

1

(s; y)Z

1

(s; y)'(s) + q(s; y)

�

ds+

+

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P(s; y)u(s; y)ds+

+

Z

y

0

Z

a

0

M(s; y)Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)�

�Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

ds dt for 0 � y � b: (4.59)

On the other hand, if conditions (4.57) and (4.59) hold, then by (4.52)

we have

u(x; 0) = '

0

(x) + Z

2

(x; 0)(u(0; 0)� '

0

(0))

and

'

1

(0) =

Z

a

0

M(s; 0)Z

�1

2

(s; 0)[P

0

(s; 0)'

0

(s) + P

1

(s; 0)'

0

0

(s) + q(s; 0)]ds+

+

�

Z

a

0

M(s; 0)Z

�1

2

(s; 0)

�

P(s; 0)Z

2

(s; 0)ds

�

(u(0; 0)� '

0

(0));

whence it is clear that condition (4.49) is necessary and su�cient for equality

(4.58) to be ful�lled.

Thus we have proved that condition (4.49) is necessary for problem

(4.1),(4.2) to be solvable. Moreover, if this condition is ful�lled, then the

solution u of system (4.1) satis�es boundary conditions (4.2) if and only if

@u(x; 0)

@x

�P

2

(x; 0)u(x; 0) = '(x) for 0 � x � a (4.60

1

)

and equality (4.59) holds, where ' is the vector function given by (4.57).

Thus to complete the proof we have to show that system (4.1) has one

and only one solution satisfying (4.59) and (4.60

1

).
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According to (4.50),

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P(s; y)u(s; y)ds = Q

0

(y)u(0; y) +

+

Z

y

0

�

Z

a

0

Z

x

0

Q

1

(x; y; s)Z

�1

1

(s; t)P(s; t)u(s; t)ds dx

�

dt+ '

2

(y);

where

Q

0

(y) =

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P(s; y)Z

2

(s; y)ds;

Q

1

(x; y; s) = M(x; y)Z

�1

2

(x; y)

�

P(x; y)Z

2

(x; y)Z

�1

2

(s; y)Z

1

(s; y)

and

'

2

(y) =

Z

a

0

Z

x

0

Q

1

(x; y; s)

h

'(s) +

Z

y

0

Z

�1

1

(s; t)q(s; t)dt

i

ds dx:

But

Z

a

0

Z

x

0

Q

1

(x; y; s)Z

�1

1

(s; t)P(s; t)u(s; t)ds dx =

Z

a

0

Q

2

(y; s; t)u(s; t)ds;

where

Q

2

(y; s; t) =

�

Z

a

s

Q

1

(x; y; s)dx

�

Z

�1

1

(s; t)P(s; t):

Therefore

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P(s; y)u(s; y)ds =

= Q

0

(y)u(0; y) +

Z

y

0

Z

a

0

Q

2

(y; s; t)u(s; t)ds dt+ '

2

(y):

If we take onto account the formulas above and condition (4.48), then eq-

uality (4.59) will take the form

u(0; y) =  (y) +

Z

y

0

Z

a

0

Q(y; s; t)u(s; t)ds dt for 0 � y � b; (4.60

2

)

where

 (y) = Q

�1

0

(y)

h

'

1

(y)� '

2

(y)�

�

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P

1

(s; y)Z

1

(s; y)'(s) + q(s; y)

�

ds

i

�

�Q

�1

0

(y)

Z

y

0

Z

a

0

M(s; y)Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)Z

�1

1

(s; t)q(s; t)ds dt

and

Q(y; s; t) = �Q

�1

0

(y)

�

Q

2

(y; s; t) +

+M(s; y)Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)Z

�1

1

(s; t)P(s; t)

�

:
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By conditions (4.45),(4.46) and (4.48) and Lemmas 2.2

2

and 2.3

2

, the

vector and matrix functions ',  andQ satisfy the conditions of Lemma 3.5

0

.

Therefore problem (4.1),(4.60

1

),(4.60

2

) has one and only one solution. �

0

Let P

i

(i = 0; 1; 2) and q be continuous and have a contin-

uous partial derivative in the second argument, '

0

and '

1

be continuously

di�erentiable and h :

e

C ([0; a];R

n

) ! C

1

([0; b];R

n

) be a linear continuous op-

erator satisfying conditions (4.47) and (4.48). Then the ful�lment of (4.49) is

the necessary and su�cient condition for problem (4.1),(4.2) to be uniquely

solvable and to have a classical solution.

This theorem is proved using the same arguments as in proving Theorem

4.2, but instead of Lemmas 2.3

3

and 3.5

0

we apply Lemmas 2.3

4

and 3.5

00

.

Consider the case when boundary conditions (4.2) have the form

u(x; 0) = '

0

(x);

m

X

k=1

�

k

(y)

@u(a

k

; y)

@y

= '

1

(y): (4.61)

In that case

M

0

(y) =

m

X

k=1

�

k

(y)Z

2

(a

k

; y)

and

M(x; y) =

m

X

k=1

�

k

(y)Z

2

(a

k

; y)�

k

(x);

where

�

k

(x) =

(

1 for 0 � x � a

k

0 for a

k

< x � a

:

Therefore Theorems 4.2 and 4.2

0

imply several assertions.

Let conditions (4.45) and (4.46) be ful�lled and �

k

2

2

e

C

1

([0; b];R

n�n

) and a

k

2 [0; a] (k = 1; : : : ;m) be such that

m

X

k=1

�

k

(y)Z

2

(a

k

; y) = � for 0 � y � b (4.62)

and

det

�

m

X

k=1

�

k

(y)Z

2

(a

k

; y)

Z

a

k

0

Z

�1

2

(s; y)[P

0

(s; y) +

+P

1

(s; y)P

2

(s; y)]Z

2

(s; y)ds

�

6= 0 for 0 � y � b: (4.63)

Then problem (4.1), (4.61) is uniquely soluvable if and only if

m

X

k=1

�

k

(0)Z

2

(a

k

; 0)

Z

a

k

0

Z

�1

2

(s; 0)�
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�[P

0

(s; 0)'

0

(s) + P

1

(s; 0)'

0

0

(s) + q(s; 0)]ds = '

1

(0): (4.64)

0

Let P

i

(i = 0; 1; 2) and q be continuous and have a

continuous partial derivative in the second argument, '

0

, '

1

and �

k

(k =

= 1; : : : ;m) be continuously di�erentiable, a

k

2 [0; a] (k = 1; : : : ;m), and

conditions (4.62) and (4.63) hold. Then then ful�lment of equality (4.64) is

necessary and su�cient for problem (4.1),(4.61) to be uniquely solvable and

to have the classical solution.

Corollaries 4.6 and 4.6

0

for problem (4.1),(4.2

1

) take the form of

Let conditions (4.45),(4.46) hold,

Z

2

(a; y) = E for 0 � y � b (4.65)

and

det

�

Z

a

0

Z

�1

2

(s; y)[P

0

(s; y) + P

1

(s; y)P

2

(s; y)]Z

2

(s; y)ds

�

6= 0

for 0 � y � b:

(4.66)

Then problem (4.1),(4.2

1

) is uniquely solvable if and only if

Z

a

0

Z

�1

2

(s; 0)[P

0

(s; 0)'

0

(s) + P

1

(s; 0)'

0

0

(s) + q(s; 0)]ds = '

1

(0): (4.67)

0

Let P

i

(i = 0; 1; 2) and q be continuous and have a con-

tinuous partial derivative in the second argument, '

0

and '

1

be continu-

ously di�erentiable and conditions (4.65) and (4.66) hold. Then problem

(4.1),(4.2

1

) is uniquely solvable and its solution is classical if and only if

equality (4.64) takes place.

Problem (4.1),(4.2) is ill-posed under conditions (4.47) and (4.48) due to

the fact that its solvability may be violated at arbitrarily small perturba-

tions either of coe�cients of the system under consideration or of boundary

conditions. But problem (4.1),(4.3) is free from such a de�ciency. Namely,

the following theorem is valid.

Let

P

i

2

e

C

(�1;0)

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2

e

C

(�1;0)

1

(D

ab

;R

n

);

 

0

be summable,  

1

absolutely continuous and h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];

R

n

) be a linear continuous operator satisfying conditions (4.47) and (4.48).

Then problem (4.1),(4.3) has one and only one solution.

Proof. First we assume that problem (4.1),(4.3) has a solution u. Then u

is a solution of problem (4.1),(4.2), where

'

0

(x) = Z

2

(x; y)u(0; 0) + z

0

(x); '

1

(y) =  

1

(y)
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and z

0

is the solution of the system of ordinary di�erential equations

dz(x)

dx

= P

2

(x; 0)z(x) +  

0

(x)

with the initial condition

z(0) = 0:

According to Theorem 4.2,

Q

0

(0)u(0; 0) = c

0

;

where

Q

0

(0) =

Z

a

0

M(s; 0)Z

�1

2

(s; 0)[P

0

(s; 0) + P

1

(s; 0)P

2

(s; 0)]Z

2

(s; 0)ds;

c

0

=  

1

(0)�

Z

a

0

M(s; 0)Z

�1

2

(s; 0)[P

0

(s; 0)z

0

(s) + P

1

(s; 0)z

0

0

(s) + q(s; 0)]ds:

However, by condition (4.48),

detQ

0

(0) 6= 0:

Therefore

u(0; 0) = Q

�1

0

(0)c

0

:

Thus we have proved that every solution of problem (4.1),(4.3) is a solu-

tion of problem (4.1),(4.2), where

'

0

(x) = Z

2

(x; 0)Q

�1

0

(0)c

0

+ z

0

(x); '

1

(y) =  

1

(y): (4.68)

The converse statement can be easily veri�ed. If equalities (4.68) take place,

then every solution of problem (4.1),(4.2) is a solution of problem (4.1),(4.3).

Consequently, problem (4.1),(4.3) is equivalent to problem (4.1),(4.2), where

'

0

and '

1

are given by equalities (4.68). But from (4.68) there follows

equality (4.49). Therefore by Theorem 4.2 we conclude that in that case

problem (4.1),(4.2) has one and only one solution. �

In the same way we can prove

0

Let P

i

(i = 0; 1; 2) and q be continuous and have a con-

tinuous partial derivative in the second argument,  

0

be continuous,  

1

be

continuously di�erentiable and h :

e

C ([0; a];R

n

) ! C

1

([0; b];R

n

) be a linear

continuous operator satisfying conditions (4.47) and (4.48). Then problem

(4.1),(4.3) has one and only one solution and this solution is classical.

When boundary conditions (4.3) have the form

@u(x; 0)

@x

�P

0

(x; 0)u(x; 0) =  

0

(x);

m

X

k=1

�

k

(y)

@u(a

k

; y)

@y

= '

1

(y); (4.69)

Theorems 4.3 and 4.3

0

result in the following statements.
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Let

P

i

2

e

C

(�1;0)

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2

e

C

(�1;0)

1

(D

ab

;R

n

);

 

0

be summable,  

1

absolutely continuous and �

k

2

e

C

1

([0; b];R

n�n

) and

a

k

2 [0; a] (k = 1; : : : ;m) be such that conditions (4.62) and (4.63) hold.

Then problem (4.1),(4.69) has one and only one solution.

0

Let P

i

(i = 0; 1; 2) and q be continuous and have a con-

tinuous partial derivative in the second argument. Let  

0

be continuous,  

1

continuously di�erentiable and �

k

2 C

1

([0; b];R

n�n

) and a

k

2 [0; a] (k =

= 1; : : : ;m) be such that conditions (4:62) and (4:63) take place. Then prob-

lem (4.1),(4.69) has one and only one solution and this solution is classical.

Let

P

i

2

e

C

(�1;0)

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2

e

C

(�1;0)

1

(D

ab

;R

n

);

 

0

be summable,  

1

be absolutely continuous and conditions (4.65) and

(4.66) hold. Then problem (4.1),(4.3

1

) has one and only one solution.

0

Let P

i

(i = 0; 1; 2) and q be continuous and have a contin-

uous partial derivative in the second argument,  

0

be continuous,  

1

contin-

uously di�erentiable and conditions (4.65),(4.66) take place. Then problem

(4.1),(4.3

1

) has one and only one solution and this solution is calssical.

Condition (4.48), appearing in Theorem 4.3 and its corollaries, is optimal

in the sense that it cannot be weakened. As an example, let us consider

problem (4.1),(4.3

1

) for P

2

(x; y) � 0, i.e. when it has the form

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+ q(x; y); (4.70)

@u(x; 0)

@x

=  

0

(x);

@u(a; y)

@y

=

@u(0; y)

@y

+  

1

(y) (4.71)

For this problem we have

If

P

0

2

e

C

(�1;0)

1

(D

ab

;R

n�n

);

then ful�lment of the inequality

det

�

Z

a

0

P

0

(s; y)ds

�

6= 0 for 0 � y � b

is necessary and su�cient for problem (4.70),(4.71) to be uniquely solvable

for every P

1

; q;  

0

and  

1

satisfying the conditions

P

1

2

e

C

(�1;0)

(D

ab

;R

n�n

); q 2

e

C

(�1;0)

(D

ab

;R

n

);

 

0

2 L([0; a];R

n

);  

1

2

e

C ([0; b];R

n

):

(4.72)
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Proof. The su�ciency follows from Corollary 4.9. Thus we have to show

that if for any y

0

2 [0; b]

det

�

Z

a

0

P

0

(s; y

0

)ds

�

= 0;

then there exist matrix and vector functions which satisfy conditions (4.72)

and for which problem (4.70),(4.71) has no solution. Indeed, choose c 2 R

n

such that the system of algebraic equations

�

Z

a

0

P

0

(s; y

0

)ds

�

z = c (4.73)

is unsolvable and assume

P

1

(x; y) =

Z

x

0

P

0

(s; y)ds; q(x; y) = �

c

a

;  

0

(x) = 0;  

1

(y) = 0: (4.74)

Suppose that for such P

1

; q;  

0

, and  

1

problem (4.70),(4.71) has the solu-

tion u. Then

@

@x

�

@u(x; y)

@y

�

=

@

@x

�

Z

x

0

P

0

(s; y)ds

�

u(x; y)

�

�

c

a

:

Integrating this identity with respect to x from 0 to a and taking into

account conditions (4.71) and (4.74), we obtain

�

Z

a

0

P

0

(s; y

0

)ds

�

u(a; y

0

) = c:

But this is impossible because of the fact that system (4.73) is unsolvable.

The obtained contradiction shows that if P

1

; q;  

0

and  

1

are given by eq-

ualities (4.74), then problem (4.70),(4.71) has no solution despite the fact

that conditions (4.72) hold. �

Let

P

2

2

e

C

(�1;0)

1

(D

ab

;R

n�n

);

mes I

M

0

= b;

Z

b

0

(1 + k 

1

(y)k)kM

�1

0

(y)kdy < +1: (4.75)

Then problem (4.1),(4.4) has one and only one generalized solution.

Proof. Let u be an arbitrary generalized solution of system (4.1). Then,

according to Lemma 3.3,

u(x; y) = Z

2

(x; y)

h

u(0; y) +

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)v

1

(s)ds

i

+ Z

2

(x; y)�

�

Z

x

0

Z

y

0

Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

dsdt; (4.76)



85

where

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y)�

@P

2

(x; y)

@y

;

v

1

(x) = lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

:

From this and representation (4.8) it becomes clear that boundary condi-

tions (4.4) are ful�lled if and only if

v

1

(x) =  

0

(x)

and

 

1

(y) = M

0

(y)u(0; y) +  

2

(y) +

Z

y

0

Z

a

0

Q

1

(y; s; t)u(s; t)ds dt;

 

2

(y) =

Z

a

0

M(s; y)Z

�1

2

(s; y)Z

1

(s; y)

h

 

0

(s) +

Z

y

0

Z

�1

1

(s; t)q(s; t)dt

i

ds;

Q

1

(y; s; t) = M(s; y)Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)P(s; t):

Moreover, as follows from Lemmas 2.2

2

and 2.3

1

,

 

2

2 L

1

([0; b];R

n�n

); Q

1

2 L

1

([0; b]�D

ab

;R

n�n

): (4.77)

Obviously, problem (4.1),(4.4) is equivalent to the problem of �nding the

generalized solution of system (4.1), satisfying the boundary conditions

lim

y!0

�

@u(x; y)

@y

�P

2

(x; y)u(x; y)

�

=  

0

(x);

u(0; y) =  (y) +

Z

y

0

Z

a

0

Q(y; s; t)u(s; t)ds dt;

(4.78)

where

 (y) = M

�1

0

(y)( 

1

(y)�  

2

(y));

Q(y; s; t) = �M

�1

0

(y)Q

1

(y; s; t):

However, by conditions (4.75) and (4.77),

 2 L([0; b];R

n

); Q 2 L([0; b]�D

ab

;R

n�n

);

kQ(y; s; t)k � �(y) for y 2 [0; b]; (s; t) 2 D

ab

and

� 2 L([0; b];R):

Therefore, by Lemma 3.5 problem (4.1),(4.78) has one and only one gener-

alized solution. �
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0

Let

P

2

2

e

C

(�1;0)

1

(D

ab

;R

n�n

);  

1

2

e

C ([0; b];R

n

);

and h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear continuous operator such

that

I

M

0

= [0; b]: (4.79)

Then problem (4.1),(4.4) has the unique generalized solution and this solu-

tion is absolutely continuous.

00

Let P

i

(i = 0; 1; 2) and q be continuous, P

2

have a con-

tinuous partial derivative in the second argument,  

0

be continuous,  

1

be

continuously differentiable and h :

e

C ([0; a];R

n

) ! C

1

([0; b];R

n

) be a linear

continuous operator, satisfying condition (4.79). Then problem (4.1),(4.4)

has a unique generalized solution which is classical.

Theorem 4.4

0

(Theorem 4.4

00

) can be proved similarly to Theorem 4.4

but in that case instead of Lemmas 2.3

1

and 3.5 we apply Lemmas 2.3

3

and

3.5

0

(Lemmas 2.3

4

and 3.5

00

).

Remark 4.11. The e�ective conditions guaranteeing the ful�lment of con-

dition (4.75) (Condition (4.79)) are given in the above proven Corollaries

4.2-4.5 (Corollaries 4.2

0

-4.5

0

).

Remark 4.12. The restrictions imposed on the operator h in Theorem

4.4

0

are optimal in the sense that they cannot be weakened. As an example,

consider the problem

@

2

u(x; y)

@x@y

= 0; (4.80)

lim

y!0

@u(x; y)

@x

=

1

a

; u(a; y)=(1+y

�

)u(0; y); (4.81)

where � 2 (0; 1). In that case h(v)(y) = v(a)� (1 + y

�

)v(0) and

M

0

(y) = �y

�

:

Consequently, the operator h :

e

C ([0; a];R

n

) !

e

C ([0; b];R

n

) is continuous

and satis�es condition (4.75). On the other hand, problem (4.80),(4.81) has

the unique generalized solution

u(x; y) = y

��

+

x

a

;

which is not absolutely continuous.

Finally, letus pass tothe investigation of problem (4.1),(4.4) when M

0

(y)�

� � and h acts from

e

C ([0; a];R

n

) to

e

C

1

([0; b];R

n

). Let us introduce the

matrix functions

�

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y)
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and

�

M(y) = H

0

0

(y) +

Z

a

0

h

@H(s; y)

@y

�

@Z

2

(s; y)

@s

+

+M(s; y)Z

�1

2

(s; y)

�

P(s; y)Z

2

(s; y)

i

ds: (4.82)

Let

P

2

2

e

C

(�1;0)

1

(D

ab

;R

n�n

);  

1

2

e

C ([0; b];R

n

)

and h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear continuous operator such

that

M

0

(y) = � for 0 � y � b;

mes I

�

M

= b;

Z

b

0

(1 + k 

0

1

(y)k)k

�

M

�1

(y)kdy < +1:

(4.83)

Then for the existence and uniqueness of a generalized solution of problem

(4:1), (4:4) it is necessary and su�cient that

 

1

(0) =

Z

a

0

M(s; 0)Z

�1

2

(s; 0) 

0

(s)ds: (4.84)

Proof. In view of representation (4.10) and condition M

0

(y) � �, we have

H

0

(y) +

Z

a

0

H(s; y)

@Z

2

(s; y)

@s

ds = � for 0 � y � b: (4.85)

If we di�erentiate this identity, then by virtue of Lemmas 2.1

3

and 2.2

2

we

obtain

H

0

0

(y) +

Z

a

0

@H(s; y)

@y

�

@Z

2

(s; y)

@s

da = �

Z

a

0

H(s; y)

@

2

Z

2

(s; y)

@s@y

ds: (4.86)

Let u be an arbitrary generalized solution of system (4.1) and

�u(x; y) = u(x; y)� Z

2

(x; y)u(0; y):

Then, according to Lemma 3.3, representation (4.76) is valid and, conse-

quently,

Z

�1

2

(x; y)�u(x; y) =

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)v

1

(s)ds+

+

Z

x

0

Z

y

0

Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) + q(s; t)

�

ds dt; (4.87)

where

v

1

(x) = lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

;

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y)�

@P

2

(x; y)

@y

:
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Proceeding from this representation in a way which is similar to that of

proving equality (4.56), we can show that

Z

�1

2

(x; y)

@�u(x; y)

@y

=

Z

x

0

Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)v

1

(s)ds+

+

Z

x

0

Z

�1

2

(s; y)

�

�

P(s; y)u(s; y) + q(s; y)

�

ds+

+

Z

x

0

Z

y

0

Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) +

+q(s; t)

�

ds dt� Z

�1

2

(x; y)

@Z

2

(x; y)

@y

u(0; y): (4.88)

According to representations (4.7),(4.10) and condition (4.85), we obtain

h(u(�; y))(y) = h(�u(�; y))(y) =

Z

a

0

H(s; y)

@�u(s; y)

@s

ds =

=

Z

a

0

M(s; y)

@

@s

�

Z

�1

2

(s; y)u(s; y)

�

ds:

Therefore

h(u(�; 0))(0) =

Z

a

0

M(s; 0)

@

@s

�

Z

�1

2

(s; 0)u(s; 0)

�

ds =

=

Z

a

0

M(s; 0)Z

�1

2

(s; 0)v

1

(s)ds

and

d

dy

h(u(�; y))(y) =

Z

a

0

@H(s; y)

@y

�

@�u(s; y)

@s

ds+ h

�

@�u(�; y)

@y

�

(y);

whence it is clear that boundary conditions (4.4) are ful�lled if and only if

v

1

(x) =  

0

(x); (4.89)

Z

a

0

@H(s; y)

@y

�

@�u(s; y)

@s

ds+ h

�

@�u(�; y)

@y

�

(y) =  

0

1

(y) (4.90)

and equality (4.84) holds.

In view of (4.8),(4.86) and (4.89) from (4.88) we obtain

h

�

@�u(�; y)

@y

�

(y) =

Z

a

0

M(s; y)Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y) 

0

(s)ds+

+

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

�

P(s; y)u(s; y) + q(s; y)

�

ds+

+

Z

y

0

Z

a

0

M(s; y)Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)Z

�1

1

(s; t)

�

P(s; t)u(s; t) +

+q(s; t)

�

ds dt�

�

Z

a

0

H(s; y)

@

2

Z

2

(s; y)

@s@y

ds

�

u(0; y) =  

2

(y) +
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+

Z

y

0

Z

a

0

Q

1

(y; s; t)u(s; t)ds dt+

Z

a

0

M(s; y)Z

�1

2

(s; y)�

�

P(s; y)�

�u(s; y)ds+

h

H

0

0

(y) +

Z

a

0

@H(s; y)

@y

�

@Z

2

(s; y)

@s

ds

i

u(0; y); (4.91)

where

 

2

(y) =

Z

a

0

M(s; y)Z

�1

2

(s; y)[P

1

(s; y)Z

1

(s; y) 

0

(s) + q(s; y)]ds+

+

Z

y

0

Z

a

0

M(s; y)Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)Z

�1

1

(s; t)q(s; t)ds dt;

Q

1

(y; s; t) = M(s; y)Z

�1

2

(s; y)P

1

(s; y)Z

1

(s; y)Z

�1

1

(s; t)P(s; t):

But according to (4.76),

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P(s; y)u(s; y)ds =

=

h

Z

a

0

M(s; y)Z

�1

2

(s; y)

�

P(s; y)Z

2

(s; y)ds

i

u(0; y) +  

3

(y) +

+

Z

y

0

Z

a

0

�

Z

a

s

Q

2

(x; y; s)dx

�

Z

�1

1

(s; t)P(s; t)u(s; t)ds dt; (4.92)

where

Q

2

(x; y; s) = M(x; y)Z

�1

2

(x; y)

�

P(x; y)Z

2

(x; y)Z

�1

2

(s; y)Z

1

(s; y);

 

3

(y) =

Z

a

0

Z

x

0

Q

2

(x; y; s)

h

 

0

(s) +

Z

y

0

Z

�1

1

(s; t)q(s; t)dt

i

ds dx:

On the other hand, in view of (4.87),

Z

a

0

@H(s; y)

@y

�

@�u(s; y)

@s

ds =  

4

(y) +

Z

y

0

Z

a

0

Q

3

(y; s; t)u(s; t)ds dt; (4.93)

where

 

4

(y) =

Z

a

0

@H(x; y)

@y

h

Z

1

(x; y) 

0

(x) +

+

@Z

2

(x; y)

@x

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y) 

0

(s)ds

i

dx+

+

Z

y

0

Z

a

0

@H(x; y)

@y

h

Z

1

(x; y)Z

�1

1

(x; t)q(x; t) +

+

@Z

2

(x; y)

@x

Z

x

0

Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)q(s; t)ds

i

dx dt;

Q

3

(y; s; t) =

h

Z

a

s

@H(x; y)

@y

�

@Z

2

(x; y)

@x

Z

�1

2

(s; t)dx +

@H(s; y)

@y

i

�

�Z

1

(s; y)Z

�1

1

(s; t)P(s; t):
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From (4.89)-(4.93) we obtain equalities (4.78), where

 (y) =

�

M

�1

(y)[ 

0

1

(y)�  

2

(y)�  

3

(y)�  

4

(y)];

Q(y; s; t) = �

�

M

�1

(y)

h

Q

1

(y; s; t) +

+

�

Z

a

s

Q

2

(x; y; s)dx

�

Z

�1

1

(s; t)P(s; t) +Q

3

(y; s; t)

i

:

Thus we have proved that condition (4.84) is necessary for the solvability

of problem (4.1),(4.4). Moreover, if it is ful�lled, then problem (4.1),(4.4) is

equivalent to problem (4.1),(4.78). On the other hand, by virtue of Lemmas

2.1

3

, 2.2

2

and 2.3

3

and condition (4.83), the vector and matrix functins,  

and Q respectively, satisfy conditions of Lemma 3.5. Therefore problem

(4.1),(4.78) has one and only one generalized solution. �

If instead of Lemma 3.5 we apply Lemma 3.5

0

(Lemma 3.5

00

), we shall

be able to convince ourselves that under speci�c additional restrictions on

P

i

(i = 0; 1; 2), q; h;  

0

and  

1

the generalized solution of problem (4.1),(4.4)

is absolutely continuous (classical). Namely, the following assertions are

valid.

0

Let

P

i

2

e

C

(�1;0)

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2

e

C

(�1;0)

1

(D

ab

;R

n

);

 

1

2

e

C

1

([0; b];R

n

)

and h :

e

C ([0; a];R

n

) !

e

C

1

1

([0; b];R

n

) be a linear continuous operator such

that

M

0

(y) = � for 0 � y � b; I

�

M

= [0; b]: (4.94)

Then the ful�lment of equality (4.84) is necessary and su�cient for problem

(4.1),(4.4) to have the unique generalized solution and for this solution to

be absolutely continuous.

00

Let P

i

(i = 0; 1; 2) and q be continuous and have a contin-

uous partial derivative in the second argument,  

0

be continuous,  

1

twice

continuously di�erentiable and h :

e

C ([0; a];R

n

) ! C

2

([0; b];R

n

) be a lin-

ear continuous operator satsfying conditions (4.94). Then the ful�lment of

equality (4.84) is necessary and su�cient for problem (4.1),(4.4) to have the

unique generalized solution and for this solution to be classical.

Remark 4.13. The restrictions imposed on P

i

(i = 0; 1; 2) and q in The-

orems 4.5

0

and 4.5

00

are optimal and they cannot be weakened. As an

example, consider the problems

@

2

u(x; y)

@x@y

= p

0

(y)u(x; y)� 1;
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lim

y!0

@u(x; y)

@x

= 0; u(a; y) = u(0; y);

@

2

u(x; y)

@x@y

= u(x; y)� p

1

(y)

@u

@x

� x;

lim

y!0

@u(x; y)

@x

= 1; u(a; y) = u(0; y) + a

and

@

2

u(x; y)

@x@y

= u(x; y)� q(y);

lim

y!0

@u(x; y)

@x

= 0; u(a; y) = u(0; y);

where p

0

: [0; b] ! (0;+1); p

1

: [0; b] ! R and q : [0; b] ! R are continuous

functions. All conditions of Theorem 4.5 for these problems are ful�lled.

Therefore each of these problems has the unique generalized solution

u(x; y) =

1

p

0

(y)

; u(x; y) = x+ p

1

(y) and u(x; y) = q(y):

Moreover these solutions are absolutely continuous (classical) if and only if

p

0

; p

1

and q are absolutely continuous (classical).

Similarly to Theorem 4.5 we can prove

Let

P

2

2

e

C

(�1;0)

1

(D

ab

;R

n�n

);

M

0

(y) = � for 0 � y � b

and

mes I

�

M

= b;

Z

b

0

(1 + k 

1

(y)k)k

�

M

�1

(y)kdy < +1:

Then problem (4.1),(4.5) has one and only one generalized solution.

0

Let

P

i

2

e

C

(�1;0)

1

(D

ab

;R

n�n

) (i = 0; 1; 2);

q 2

e

C

(�1;0)

1

(D

ab

;R

n

);  

1

2

e

bc([0; b];R

n

)

and h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) be a linear continuous operator sat-

isfying conditions (4.94). Then problem (4.1),(4.5) has one and only one

generalized solution and this solution is absolutely continuous.

00

Let P

i

(i = 0; 1; 2) and q be continuous and have a con-

tinuous partial derivative in the second argument,  

0

be continuous,  

1

continuously di�erentiable and h :

e

C ([0; a];R

n

) ! C

1

([0; b];R

n

) be a linear

continuous operator satisfying conditions (4.94). Then problem (4.1),(4.5)

has one and only one generalized solution and this solution is classical.
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In conclusion, let us admit that the conditions of unique solvability of

problems (4.1), (4.4

1

) and (4.1),(4.5

1

) are su�ciently transparent because

for these problems

M

0

(y) = Z

2

(a; y)�E

and

�

M(y) =

Z

a

0

Z

�1

2

(s; y)

�

P(s; y)Z

2

(s; y)ds:

x

5.

Consider the boundary value problem

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y); (5.1)

u(x; 0) = '

0

(x); h

�

@u(�; y)

@y

�

(y) = '

1

(y); (5.2)

where

P

i

2 L

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2 L

1

(D

ab

;R

n

);

'

0

2

e

C

1

([0; a];R

n

); '

1

2 L

1

(D

ab

;R

n

)

and h :

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) is a linear continuous operator.

As in Section 4, by Z

2

we shall mean the solution of the matrix di�erential

equation

@Z

2

(x; y)

@x

= P

2

(x; y)Z

2

(x; y)

with the initial condition

Z

2

(0; y) = E:

According to Lemma 2.3

1

, the operator h admits the representation

h(Z

2

(�; y)v(�))(y) = M

0

(y)v(0) +

+

Z

a

0

M(s; y)v

0

(s)ds for v 2

e

C ([0; a];R

n

);

where

M

0

2 L

1

([0; b];R

n

� n); M 2 L

1

(D

ab

;R

n�n

):

Analyzing the proof of Theorem 4.1, we can see that the following state-

ment is valid.
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Let

ess inf

0�y�b

j detM

0

(y)j > 0: (5.3)

Then problem (5.1),(5.2) has the unique solution u and

u

m

(x; y)� u(x; y);

@u

m

(x; y)

@x

�

@u(x; y)

@x

;

@u

m

(x; y)

@y

�

@u(x; y)

@y

for m! +1;

(5.4)

where u

0

(x; y) � 0 and for an arbitrary m the vector function u

m

is the

solution of the problem

@

2

u

m

(x; y)

@x@y

= P

2

(x; y)

@u

m

(x; y)

@y

+ P

0

(x; y)u

m�1

(x; y) +

+P

1

(x; y)

@u

m�1

(x; y)

@x

+ q(x; y); (5.5)

u

m

(x; 0) = '

0

(x); h

�

@u

m

(�; y)

@y

�

(y) = '

1

(y): (5.6)

To construct u

m

almost for all y 2 [0; b] we have to solve the system of

ordinary di�erential equations

@z(x; y)

@x

= P

2

(x; y)z(x; y) + P

0

(x; y)u

m�1

(x; y) +

+P

1

(x; y)

@u

m�1

(x; y)

@x

+ q(x; y) (5.7)

with the boundary condition

h(z)(y) = '

1

(y): (5.8)

In view of (5.3) problem (5.7),(5.8) has the unique solution z

m

(�; y) and

u

m

(x; y) = '

0

(x) +

Z

y

0

z

m

(x; t)dt:

However, if n > 1, then the solution z

m

(�; y) can be e�ectively constructed

only in exceptional cases. Consequently, the method of constructing the

solution of problem (5.1),(5.2) described above fails in the general case.

We shall consider the case when P

2

and h admit the representation

P

2

(x; y) = P

20

(x; y) + P

21

(x; y)

and

h(v)(y) = h

0

(v)(y)�

�

X

j=1

H

j

v(s

j

);

where

P

20

and P

21

2 L

1

(D

ab

;R

n�n

);
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s

j

2 [0; a]; H

j

2 R

n�n

(j = 1; : : : ; �);

and the problem

@z(x; y)

@x

= P

20

(x; y)z(x; y); h

0

(z)(y) = 0 (5.9)

has only the trivial solution almost for all y 2 [0; b].

In that case problem (5.1),(5.2) takes the form

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+[P

20

(x; y) + P

21

(x; y)]

@u(x; y)

@y

+ q(x; y); (5.10)

u(x; 0) = '

0

(x); h

0

�

@u(�; y)

@y

�

(y) =

�

X

j=1

H

j

@u(s

j

; y)

@y

+ '

1

(y): (5.11)

Let u

0

(x; y) � 0. For every natural m by u

m

we denote the solution of the

problem

@

2

u

m

(x; y)

@x@y

= P

20

(x; y)

@u

m

(x; y)

@y

+ P

0

(x; y)u

m�1

(x; y) +

+P

1

(x; y)

@u

m�1

(x; y)

@x

+ P

21

(x; y)

@u

m�1

(x; y)

@y

+ q(x; y); (5.12)

u

m

(x; 0) = '

0

(x);

h

0

�

@u

m

(�; y)

@y

�

(y) =

�

X

j=1

H

j

@u

m�1

(s

j

; y)

@y

+ '

1

(y):

(5.13)

Below we determine the conditions whose ful�lment guarantees the ful-

�lment of conditions (5.4).

By Z

0

will be meant the solution of the matrix di�erential equation

@Z

0

(x; y)

@x

= P

20

(x; y)Z

0

(x; y)

with the initial condition

Z

0

(0; y) = E;

and by G(�; �; y) the Green's matrix of problem (5.9).

By Lemma 2.3

1

operator h

0

admits the representation

h

0

�

Z

0

(�; y)v(�)

�

(y) = M

10

(y)v(0) +

+

Z

a

0

M

1

(s; y)v

0

(s)ds for v 2

e

C ([0; a];R

n

); (5.14)

where

M

10

2 L

1

([0; b];R

n�n

); M

1

2 L

1

(D

ab

;R

n

� n):
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Therefore

G(x; s; y) =

(

Z

0

(x; y)[E �M

�1

10

(y)M

1

(s; y)]Z

�1

0

(s; y) for s � x

�Z

0

(x; y)M

�1

10

(y)M

1

(s; y)Z

�1

0

(s; y) for s > x:

(5.15)

We have

Let

ess inf

0�y�b

j detM

10

(y)j > 0 (5.16)

and there exist a matrix function A 2 L

1

([0; b];R

n�n

) such that

ess sup

0�y�b

r

�

A(y)

�

< 1 (5.17)

and the inequality

�

X

j=1

jZ

0

(x; y)M

�1

10

(y)H

j

j+

Z

a

0

jG(x; s; y)P

21

(s; y)jds � A(y) (5.18)

holds almost everywhere in D

ab

. Then problem (5.10),(5.11) has the unique

solution u and condition (5.4) takes place, where u

0

(x; y) � 0 and for every

natural m the vector function u

m

is a solution of problem (5.12),(5.13).

Proof. Let n

1

= 2n; n

2

= n. For arbitrary z

1

= (z

i

1

)

1

i=0

2 L

1

(D

ab

;R

n

1

),

where z

i

1

2 L

1

(D

ab

;R

n

) (i = 0; 1) and z

2

2 L

1

(D

ab

;R

n

2

), assume

g

0

1

(z

1

; z

2

)(x; y) = '

0

(x) +

+

Z

y

0

Z

0

(x; t)M

�1

10

(t)

h

�

X

j=1

H

j

z

2

(s

j

; t) + '

1

(t)

i

dt+

+

Z

y

0

Z

a

0

G(x; s; t)

h

P

0

(s; t)z

0

1

(s; t) + P

1

(s; t)z

1

1

(s; t) +

+P

21

(s; t)z

2

(s; t) + q(s; t)

i

ds dt; (5.19)

g

1

1

(z

1

; z

2

)(x; y) =

@g

0

1

(z

1

; z

2

)(x; y)

@x

; g

1

(z

1

; z

2

)(x; y) =

=

�

g

i

1

(z

1

; z

2

)(x; y)

�

1

i=0

; g

2

(z

1

; z

2

)(x; y) =

@g

0

1

(z

1

; z

2

)(x; y)

@y

(5.20)

and show that problem (5.10),(5.11) is equivalent to the system of operator

equations

z

i

(x; y) = g

i

(z

1

; z

2

)(x; y) (i = 1; 2): (5.21)

Indeed, let problem (5.10),(5.11) have a solution u. Put

z

0

1

(x; y) = u(x; y); z

1

1

(x; y) =

@u(x; y)

@x

; z

2

(x; y) =

@u(x; y)

@y

:
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By Lemma 3.1 and equalities (5.19) and (5.20)

(z

i

)

2

i=1

2 L

1

(D

ab

;R

n

1

)� L

1

(D

ab

;R

n

2

)

is the solution of system (5.21). Taking into account (5.15) and (5.16), we

can easily show that if z

i

1

2 L

1

(D

ab

;R

n

) (i = 0; 1), z

1

= (z

i

1

)

1

i=0

, z

2

2

2 L

1

(D

ab

;R

n

) and (z

i

)

2

i=1

is a solution of system (5.21), then u(�; �) =

= z

0

1

(�; �) is a solution of problem (5.10),(5.11) and the equalities

z

1

1

(x; y) =

@u(x; y)

@x

; z

2

(x; y) =

@u(x; y)

@y

are valid.

In view of (5.15)-(5.20), for any �

i

and

�

� 2 L

1

(D

ab

;R

n

i

) (i = 1; 2) the

operators g

i

: L

1

(D

ab

;R

n

1

) � L

1

(D

ab

;R

n

2

) ! L

1

(D

ab

;R

n

i

) (i = 1; 2)

satisfy inequalities (1.3) and (1.21) almost everywhere in D

ab

, where I =

= [0; a], g

0

(t) � const, A

01

is a non-negative constant n

2

� n

1

matrix and

A

02

is the zero matrix. The validity of the theorem becomes evident by

applying Lemma 1.3. �

Let inequality (5.16) hold,

ess sup

0�y�b

r

�

�

X

j=1

jH

j

j jZ

0

(s

j

; y)M

�1

10

(y)j

�

< 1 (5.22)

and there exist a matrix function A 2 L

1

([0; b];R

n�n

) satisfying condition

(5.17) such that the inequality

jZ

0

(x; y)M

�1

10

(y)j

h

E �

�

X

j=1

jH

j

j jZ

0

(s

j

; y)M

�1

10

(y)j

i

�1

�

�

�

X

j=1

Z

a

0

jH

j

j jG(s

j

; s; y)P

21

(s; y)jds+

+

Z

a

0

jG(x; s; y)P

21

(s; y)jds � A(y) (5.23)

holds almost everywhere in D

ab

. Then problem (5.10),(5.11) has the unique

solution u and condition (5.4) takes place, where u

0

(x; y) � 0 and for any

natural m the vector function u

m

is a solution of problem (5.12),(5.13).

Proof. Let n

1

= 2n, n

2

= n, �

1

= L

1

(D

ab

;R

n

1

), �

2

be a set of all � 2

2 L

1

(D

ab

;R

n

2

) such that �(�; y) 2 C ([0; a];R

n

) almost for all y 2 [0; b] and

�

0

= C ([0; a];R

n

), while g

i

: �

1

��

2

! �

i

(i = 1; 2) be the operators given

by equalities (5.19),(5.20).

As shown above, problem (5.1),(5.2) is equivalent to the system of oper-

ator equations (5.21) due to condition (5.16).

In view of (5.15),(5.16),(5.19) and (5.20) for any �

i

and

�

�

i

2 �

i

(i = 1; 2)

the operators g

i

(i = 1; 2) satisfy inequalities (1.3),(1.4) almost everywhere



97

in D

ab

, where I = [0; a], g

0

(t) � const, A

01

is a non-negative constant

n

2

� n

1

matrix, A

02

is the zero matrix,

A

1

(x; y) =

Z

a

0

jG(x; s; y)P

21

(s; y)jds; A

2

(x; y) = jZ

0

(x; y)M

�1

10

(y)j

and l : �

0

! R

n

2

is a non-negative linear operator given by the equality

l(v) =

�

X

j=1

jH

j

jv(s

j

):

In view of (5.22), condition (1.5) takes place and in view of (5.23) we

may assume without loss of generality that equality (1.7) holds. Besides,

since condition (1.6) is also ful�lled, by virtue of Lemma 1.1 system (5.21)

has the unique solution (z

i

)

2

i=1

and conditions (1.8) take place. The validity

of Theorem 5.3 immediately follows from the above arguments. �

Let us give two corollaries of the above proven theorems for the periodic

boundary value problem. For the convenience we rewrite system (5.1) and

the boundary condition in the scalar form

@

2

u

i

(x; y)

@x@y

=

n

X

k=1

�

p

0ik

(x; y)u

k

(x; y) + p

1ik

(x; y)

@u

k

(x; y)

@x

+

+p

2ik

(x; y)

@u

k

(x; y)

@y

�

+ q

i

(x; y) (i = 1; : : : ; n); (5.24)

u

i

(x; 0) = '

0i

(x);

@u

i

(a; y)

@y

=

@u

i

(0; y)

@y

+ '

1i

(y) (i = 1; : : : ; n): (5.25)

Moreover, as above we assume that

p

0ik

; p

1ik

; p

2ik

and q

i

2 L

1

(D

ab

;R) (i; k = 1; : : : ; n);

'

0i

2

e

C

1

([0; a];R); '

1i

2 L

1

([0; b];R) (i = 1; : : : ; n):

Let there exist �

i

2 f�1; 1g (i = 1; : : : ; n) and � > 0 such

that the real parts of eigenvalues of matrix S(y) =

�

s

ij

(y)

�

n

i;j=1

, where

s

ii

(y) = ess sup

0�x�a

f�

i

p

2ii

(x; y)g;

s

ij

(y) = ess sup

0�x�a

jp

2ij

(x; y)j for (i 6= j; i; j = 1; � � � ; n)

(5.26)

are less than �� almost for all y 2 [0; b]. Then problem (5.24),(5.25) has

the unique solution (u

i

)

n

i=1

and

u

im

(x; y)� u

i

(x; y);

@u

im

(x; y)

@x

�

@u

i

(x; y)

@x

;

@u

im

(x; y)

@y

�

@u

i

(x; y)

@y

for m! +1 (i = 1; : : : ; n);

(5.27)
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where u

i0

(x; y) � 0 (i = 1; : : : ; n) and for any natural m and i 2 f1; : : : ; ng

the function u

im

is a solution of the equation

@

2

u

im

(x; y)

@x@y

= p

2ii

(x; y)

@u

im

(x; y)

@y

+

+

n

X

i=1

(1� �

ij

)p

2ij

(x; y)

@u

jm�1

(x; y)

@y

+

+

n

X

j=1

�

p

0ij

(x; y)u

jm�1

(x; y) + p

1ij

(x; y)

@u

jm�1

(x; y)

@x

�

+ q

i

(x; y) (5.28)

with the boundary conditions

u

im

(x; 0) = '

0

(x);

@u

im

(a; y)

@y

=

@u

im

(0; y)

@y

+ '

1i

(y): (5.29)

Proof. From the restrictions imposed on the matrix function S it follows

that

s

ii

(y) � �� almost for all y 2 [0; b] (5.30)

and

A(y) =

�

(1� �

ij

)

s

ij

(y)

js

ii

(y)j

�

n

i;j=1

(5.31)

satis�es condition (5.17).

Assume

P

20

(x; y) =

�

�

ij

p

2ij

(x; y)

�

n

i;j=1

;

P

21

(x; y) =

�

(1� �

ij

)p

2ij

(x; y)

�

n

i;j=1

;

h

0

(v)(y) =

�

v

i

(a)� v

i

(0)

�

n

i=1

; H

j

= � (j = 1; : : : ; �):

(5.32)

Then

M

10

(y) = diag

�




1

(y); : : : ; 


n

(y)

�

;

where




i

(y) = exp

�

Z

a

0

p

2ii

(s; y)ds

�

� 1 (i = 1; : : : ; n):

In view of (5.26) and (5.30)

j


i

(y)j � j1� exp(s

ii

(y)a)j � j1� exp(�a�)j > 0 (i = 1; : : : ; n); (5.33)

whence it is clear that M

10

satis�es condition (5.16). According to Theorem

5.2, to complete the proof it su�ces to show that inequality (5.18) holds

almost everywhere in D

ab

.

In view of (5.32) and (5.33) Green's matrix of problem (5.9) has the form

G(x; s; y) = diag(g

1

(x; s; y); : : : ; g

n

(x; s; y));
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where

g

i

(x; s; y) =

8

>

>

<

>

>

:




�1

i

(y) exp

�

Z

x

s

p

2ii

(�; y)d�

�

for s � x




�1

i

(y) exp

�

Z

a

0

p

2ii

(�; y)d� +

Z

x

s

p

2ii

(�; y)d�

�

for s > x

:

Therefore

�

X

j=1

jZ

0

(x; y)M

�1

10

(y)H

j

j+

Z

a

0

jG(x; s; y)P

21

(s; y)jds =

=

�

(1� �

ij

)

Z

a

0

jg

i

(x; s; y)p

2ij

(s; y)jds

�

n

i;j=1

: (5.34)

According to (5.26) and (5.30s), for �

i

= 1 we have

Z

a

0

jg

i

(x; s; y)p

2ij

(s; y)jds � j


�1

i

(y)j

s

ij

(y)

js

ii

(y)j

�

�

Z

x

0

exp

�

�

Z

x

s

jp

2ii

(�; y)jd�

�

jp

2ii

(s; y)jds+

+j


�1

i

(y)j

s

ij

(y)

js

ii

(y)j

exp

�

�

Z

x

0

jp

2ii

(�; y)jd�

�

�

�

Z

a

x

exp

�

�

Z

a

s

jp

2ii

(�; y)jd�

�

jp

2ii

(s; y)jds =

s

ij

(y)

js

ii

(y)j

:

Similarly, we can show that for �

i

= �1, the estimate

Z

a

0

jg

i

(x; s; y)p

2ij

(s; y)jds �

s

ij

(y)

js

ii

(y)j

is also valid.

By virtue of this estimate, inequality (5.18) follows from equalities (5.31)

and (5.34). �

Let the conditions of Corollary 5.1 take place. Then prob-

lem (5.24), (5.25) has the unique solution (u

i

)

n

i=1

and condition (5.27)

holds, where u

i0

(x; y) � 0 (i = 1; : : : ; n) and for any natural m and i 2

2 f1; : : : ; ng the function u

im

is a solution of equation (5.28) with the

boundary conditions

u

im

(x; 0) = '

0i

(x);

@u

im

(x

i

; y)

@y

=

@u

im�1

(s

i

; y)

@y

+ '

1i

(y); (5.35)

where s

i

=

1+�

i

2

a and x

i

=

1��

i

2

a.

Proof. To prove the corollary it su�ces to �nd that if � = n,

P

20

(x; y) =

�

�

ik

p

2ik

(x; y)

�

n

i;k=1

; P

21

(x; y) =

�

(1� �

ik

)p

2ik

(x; y)

�

n

i;k=1

;

h

0

(v)(y) = (v

i

(x

i

))

n

i=1

; H

j

= (�

ij

�

ik

)

n

i;k=1

;
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then all conditions of Theorem 5.3 are ful�lled.

In our case

Z

0

(x; y) = diag

�

exp

�

Z

x

0

p

211

(s; y)ds

�

; : : : ; exp

�

Z

x

0

p

2nn

(s; y)ds

��

;

M

10

= diag

�

exp

�

Z

x

1

0

p

211

(s; y)ds

�

; : : : ; exp

�

Z

x

n

0

p

2nn

(s; y)ds

��

and Green's matrix of problem (5.9) has the form

G(x; s; y) = diag(g

1

(x; s; y); : : : ; g

n

(x; s; y));

where

g

i

(x; s; y) =

8

>

>

>

>

>

<

>

>

>

>

>

:

exp

�

Z

x

s

p

2ii

(�; y)d�

�

sign(x� x

i

) for (x�x

i

)(s�x

i

)�0;

js� x

i

j � jx� x

i

j

0 for (x� x

i

)(s� x

i

) � 0; js� x

i

j > jx� x

i

j

0 for (x� x

i

)(s� x

i

) < 0

;

whence in view of (5.26) and (5.30) we obtain

M

10

(y) � E;

�

X

j=1

jH

j

j jZ

0

(s

j

; y)M

�1

10

(y)j =

= diag

�

exp

�

Z

s

1

x

1

p

211

(s; y)ds

�

; : : : ; exp

�

Z

s

n

x

n

p

2nn

(s; y)ds

��

=

= diag

�

exp

�

�

Z

a

0

jp

211

(s; y)jds

�

; : : : ; exp

�

�

Z

a

0

jp

2nn

(s; y)jds

��

�

� diag(exp(��a); : : : ; exp(��a))

and

jZ

0

(x; y)M

�1

10

(y)j

h

E �

�

X

j=1

jH

j

j jZ

0

(s

j

; y)M

�1

10

(y)j

i

�1

�

�

�

X

j=1

Z

a

0

jH

j

j jG(s

j

; s; y)P

21

(s; y)jds+

Z

a

0

jG(x; s; y)P

21

(s; y)jds =

=

�

(1� �

ij

)

h




�1

i

(y) exp

�

Z

x

x

i

p

2ii

(s; y)ds

�

Z

a

0

jg

i

(s

i

; s; y)j �

�jp

2ij

(s; y)jds+

Z

a

0

jg

i

(x; s; y)jjp

2ij

(s; y)jds

i�

n

i;j=1

; (5.36)

where




i

(y) = 1� exp

�

�

Z

a

0

jp

2ii

(s; y)jds

�

(i = 1; : : : ; n):
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Consequently, inequalities (5.16) and (5.22) are ful�lled. On the other

hand,

Z

a

0

g

i

(s

i

; s; y)jp

2ij

(s; y)jds =

=

�

�

�

Z

s

i

x

i

exp

�

Z

s

i

s

p

2ii

(�; y)d�

�

jp

2ij

(s; y)jds

�

�

�

�

�

s

ij

(y)

js

ii

(y)j

�

�

�

Z

a

0

exp

�

Z

s

i

s

p

2ii

(�; y)d�

�

p

2ii

(s; y)ds

�

�

�

=

= 


i

(y)

s

ij

(y)

js

ii

(y)j

(i = 1; : : : ; n)

and

Z

a

0

g

i

(x; s; y)jp

2ij

(s; y)jds �

�

s

ij

(y)

js

ii

(y)j

�

�

�

Z

x

x

i

exp

�

Z

x

s

p

2ii

(�; y)d�

�

p

2ii

(s; y)ds

�

�

�

=

=

s

ij

(y)

js

ii

(y)j

�

�

�

1� exp

�

Z

x

x

i

p

2ii

(�; y)d�

�

�

�

�

:

Therefore from equalities (5.31) and (5.36) there follows estimate (5.23) and,

as admitted above, A satis�es condition (5.17). �

Remark 5.1. If in boundary condition (5.35) we put s

i

=

1��

i

2

a and

x

i

=

1+�

i

2

a for any i 2 f1; : : : ; ng, then the conclusion of Corollary 5.2

becomes invalid. Indeed, consider the problem

@

2

u(x; y)

@x@y

=

@u(x; y)

@y

+ 1; (5.37)

u(x; 0) = 0;

@u(a; y)

@y

=

@u(0; y)

@y

for which all conditions of Corollary 5.2 are ful�lled. In that case n = 1 and

�

1

= �1. If we assume that x

1

=

1+�

1

2

= 0 and s

1

= a, then (5.35) takes

the form

u

m

(x; 0) = 0;

@u

m

(0; y)

@y

=

@u

m�1

(a; y)

@y

: (5.38)

For any natural m problem (5.37),(5.38) has the unique solution u

m

and

@u

m

(x; y)

@y

=

�

@u

m�1

(a; y)

@y

+ 1

�

exp(x) � 1:

Since u

1

(a; y) = 0, from the last equality we obtain by induction

@u

m

(x; y)

@y

=

�

exp((m� 1)a) + 1

�

exp(x) � 1 ! +1 for m! +1:
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x

6.

In this section for the hyperbolic system

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y) (6.1)

we consider the boundary value problems

u(x; 0) = '

0

(x); h

�

@u(�; y)

@y

�

(y) = '

1

(y); (6.2)

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x); h(u(�; y))(y) =  

1

(y) (6.3)

and establish the conditions for the stability of their solutions with respect

both to small perturbations of coe�cients of the system and boundary data.

As above, unless otherwise stated, it is assumed that

P

i

2 L

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q 2 L

1

(D

ab

;R

n

);

'

0

2

e

C ([0; a];R

n

); '

1

2 L([0; b];R

n

);

 

0

2 L([0; a];R

n

);  

1

2 L([0; b];R

n

);

h :

e

C ([0; a];R

n

) !

e

C

1

([0; b];R

n

) is a linear continuous operator and Z

2

is

the solution of the matrix di�erential equation

@Z(x; y)

@x

= P

2

(x; y)Z(x; y)

satisfying the initial condition Z(0; y) = E.

Alongside with (6.1),(6.2), for any natural k,

consider the problem

@

2

u(x; y)

@x@y

= P

0k

(x; y)u(x; y) + P

1k

(x; y)

@u(x; y)

@x

+

+P

2k

(x; y)

@u(x; y)

@y

+ q

k

(x; y); (6.4)

u(x; 0) = '

0k

(x); h

k

�

@u(�; y)

@y

�

(y) = '

1k

(x); (6.5)

where

P

ik

2 L

1

(D

ab

;R

n�n

) (i = 0; 1; 2); q

k

2 L

1

(D

ab

;R

n

);

'

0k

2

e

C ([0; a];R

n

); '

1k

2 L([0; b];R

n

);

and h

k

:

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) is a linear continuous operator.



103

By Lemmas 2:1

1

and 2:3

1

for an arbitrary v 2

e

C ([0; a];R

n

) we have

h(v)(y) = H

0

(y)v(0) +

Z

a

0

H(s; y)v

0

(s)ds; (6.6)

h

k

(v)(y) = H

0k

(y)v(0) +

Z

a

0

H

k

(s; y)v

0

(s)ds; (6.7)

where

H

0

2

e

C

1

([0; b];R

n

� n) and H

0k

2 L

1

([0; b];R

n�n

);

H 2

e

C

(�1;0)

1

(D

ab

;R

n�n

) and H

k

2 L

1

(D

ab

;R

n�n

):

Put

M

0

(y) = H

0

(y) +

Z

a

0

H(s; y)

@Z

2

(s; y)

@s

ds;

M(x; y) = H(x; y)Z

2

(x; y) +

Z

a

x

H(s; y)

@Z

2

(s; y)

@s

ds

(6.8)

and

M

0k

(y) = H

0k

(y) +

Z

a

0

H

k

(s; y)

@Z

2k

(s; y)

@s

ds;

M

k

(x; y) = H

k

(x; y)Z

2k

(x; y) +

Z

a

x

H

k

(s; y)

@Z

2k

(s; y)

@s

ds;

(6.9)

where Z

2k

is the solution of the matrix di�erential equation

@Z(x; y)

@x

= P

2k

(x; y)Z(x; y)

satisfying the initial condition Z(0; y) = E.

Let

ess inf

0�y�b

j det(M

0

(y))j > 0; (6.10)

sup kP

ik

k

L

1

< +1 (i = 1; 2);

ess sup

(x;y)2D

ab










Z

x

0

�

P

2k

(s; y)�P

2

(s; y)

�

ds










! 0 for k ! +1;

(6.11)

lim

k!+1

kP

ik

�P

i

k

L

= 0 (i = 0; 1; 2); lim

k!+1

kq

k

� qk

L

= 0 (6.12)

and

lim

k!+1

k'

0k

� '

0

k

e

C

= 0; lim

k!+1

k'

1k

� '

1

k

L

= 0;

lim

k!+1

jjjh� h

k

jjj

10

= 0

(6.13)
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Then, starting from some k

0

, problem (6:4), (6:5) has the unique solution

u

k

and

lim

k!+1

ku

k

� u

0

k

e

C

= 0: (6.14)

where u

0

is the solution of problem (6:1), (6:2).

Proof. By Lemmas 2:2

1

and 2:3

3

Z

2

and Z

�1

2

2

e

C

(0;�1)

1

(D

ab

;R

n�n

); (6.15)

M

0

2

e

C

1

([0; b];R

n�n

); M 2

e

C

(�1;0)

1

(D

ab

;R

n�n

): (6.16)

Let us show that

lim

k!+1

kZ

2k

� Z

2

k

L

1

= 0; lim

k!+1

kZ

�1

2k

� Z

�1

2

k

L

1

= 0: (6.17)

Put

Z

0k

(x; y) = Z

2k

(x; y)� Z

2

(x; y):

Then

Z

0k

(x; y) =

Z

x

0

�

P

2k

(s; y)Z

2k

(s; y)�P

2

(s; y)Z

2

(s; y)

�

ds =

=

Z

x

0

P

2k

(s; y)Z

0k

(s; y)ds+

Z

x

0

�

P

2k

(s; y)�P

2

(s; y)

�

Z

2

(s; y)ds:

Therefore

kZ

0k

(x; y)k � �

Z

x

0

kZ

0k

(s; y)kds+ "

k

;

where

"

k

= ess sup

(x;y)2D

ab










Z

x

0

�

P

2k

(s; y)�P

2

(s; y)

�

Z

2

(s; y)ds










;

� = sup

k�1

kP

2k

k

L

1

;

whence by Gronwall's lemma we have

kZ

0k

k

L

1

� "

k

exp(a�):

However, according to conditions (6.11) and (6.15)

lim

k!+1

"

k

= 0:

11

Therefore

lim

k!+1

kZ

2k

� Z

2

k

L

1

= 0:

10

Here and everywhere below by jjjhjjj is understood the norm of operator h.

11

See the proof of Lemma 3.14.
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According to representations (6.6) and (6.7), it follows from the con-

vergence by the norm of a sequence of operators h

k

(k = 1; 2; : : : ) to the

operator h that

lim

k!+1

kH

0k

�H

0

k

L

1

= 0; lim

k!+1

kH

k

�Hk

L

1

= 0: (6.18)

In view of (6.8) and (6.9),

M

0k

(y)�M

0

(y) = H

0k

(y)�H

0

(y) +

Z

a

0

�

H

k

(s; y)�

�H(s; y)

�

P

2k

(s; y)Z

2k

(s; y)ds+

Z

a

0

H(s; y)P

2k

(s; y)

�

Z

2k

(s; y)�

�Z

2

(s; y)

�

ds+

Z

a

0

H(s; y)

�

P

2k

(s; y)�P

2

(s; y)

�

Z

2

(s; y)ds;

M

k

(x; y)�M(x; y) = H

k

(x; y)Z

2k

(x; y)�H(x; y)Z

2

(x; y) +

+

Z

a

x

�

H

k

(s; y)�H(s; y)

�

P

2k

(s; y)Z

2k

(s; y)ds+

Z

a

x

H(s; y)P

2k

(s; y)�

�

�

Z

2k

(s; y)� Z

2

(s; y)

�

ds+

Z

a

x

H(s; y)

�

P

2k

(s; y)�P

2

(s; y)

�

Z

2

(s; y)ds:

Therefore

kM

0k

�M

0

k

L

1

� kH

0k

�H

0

k

L

1

+

+�

0

(kH

k

�Hk

L

1

+ kZ

2k

� Z

2

k

L

1

) + "

0k

; (6.19)

kM

k

�Mk

L

1

� kH

k

Z

2k

�HZ

2

k

L

1

+

+�

0

(kH

k

�Hk

L

1

+ kZ

2k

� Z

2

k

L

1

) + "

0k

; (6.20)

where

�

0

= sup

k�1

(akP

2k

Z

2k

k

L

1

+ akHP

2k

k

L

1

);

"

0k

= ess sup

(x;y)2D

ab










Z

a

x

H(s; y)

�

P

2k

(s; y)�P

2

(s; y)

�

Z

2

(s; y)ds










:

Because of the fact that H2

e

C

(�1;0)

1

(D

ab

;R

n�n

) and Z

2

2

e

C

(0;�1)

1

(D

ab

;R

n�n

)

and taking into account condition (6.11),

lim

k!+1

"

0k

= 0:

If together with this we take into consideration conditions (6.17) and (6.18),

then from (6.19) and (6.20) we get

lim

k!+1

kM

0k

�M

0

k

L

1

= 0; lim

k!+1

kM

k

�Mk

L

1

= 0: (6.21)
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According to conditions (6.10) and (6.21), there exist a natural k

0

and a

positive number � such that

ess inf

0�y�b

j det(M

0k

(y))j > � for k � k

0

(6.22)

and

lim

k!+1

kM

�1

0k

�M

�1

0

k

L

1

= 0: (6.23)

By Theorem 4.1 condition (6.10) guarantees the unique solvability of

problem (6.1),(6.2), while condition (6.22) ensures the unique solvability of

problem (6.4),(6.5) for an arbitrary k � k

0

. Let us denote the solutions

of these problems by u

0

and u

k

. In proving Theorem 4.1 we showed that

u = u

0

and u = u

k

satisfy, respectively, the boundary conditions

u(x; 0) = '

0

(x);

@u(0; y)

@y

=  (y) +

+

Z

a

0

h

Q

0

(s; y)u(s; y) + 


�1

1

(s)Q

1

(s; y)

@u(s; y)

@s

i

ds (6.24)

and

u(x; 0) = '

0k

(x);

@u(0; y)

@y

=  

k

(y) +

+

Z

a

0

h

Q

0k

(s; y)u(s; y) + 


�1

1k

(s)Q

1k

(s; y)

@u(s; y)

@s

i

ds; (6.25)

where




1

(x) = 1 + k'

0

0

(x)k;

 (y) = M

�1

0

(y)

h

'

1

(y)�

Z

a

0

M(s; y)Z

�1

2

(s; y)q(s; y)ds

i

;

Q

0

(x; y) = �M

�1

0

(y)M(x; y)Z

�1

2

(x; y)P

0

(x; y);

Q

1

(x; y) = �


1

(x)M

�1

0

(y)M(x; y)Z

�1

2

(x; y)P

1

(x; y)

(6.26)

and




1k

(x) = 1 + k'

0

0k

(x)k;

 

k

(y)=M

�1

0k�1

(y)

h

'

1k

(y)�

Z

a

0

M

k

(s; y)Z

�1

2k

(s; y)q

k

(s; y)ds

i

;

Q

0k

(x; y) = �M

�1

0k

(y)M

k

(x; y)Z

�1

2k

(x; y)P

0k

(x; y);

Q

1k

(x; y) = �


1k

(x)M

�1

0k

(y)M

k

(x; y)Z

�1

2k

(x; y)P

1k

(x; y):

(6.27)

More exactly, problem (6.1),(6.2) is equivalent to problem (6.4),(6.24) and

for any k � k

0

problem (6.4),(6.5) is equivalent to problem (6.4),(6.25).

By conditions (6.15)-(6.17) and (6.21)-(6.23) we have

"

1k

= kM

�1

0k

�M

�1

0

k

L

1

+
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+ kM

�1

0k

M

k

Z

�1

2k

�M

�1

0

MZ

�1

2

k

L

1

! 0 for k ! +1

and

� = kM

�1

0

k

L

1

+ kM

�1

0

MZ

�1

2

k

L

1

< +1:

If along with this we take into account conditions (6.11)-(6.13), then from

equalities (6.26) and (6.27) we �nd

sup

k�1

k


�1

1k

Q

1k

k

L

1

� � sup

k�1

kP

1k

k

L

1

< +1;

kQ

0k

�Q

0

k

L

� kM

�1

0k

M

k

Z

�1

2k

�M

�1

0

MZ

�1

2

k

L

1

kP

0k

k

L

+

+kM

�1

0

MZ

�1

2

k

L

1

kP

0k

�P

0

k

L

�

� "

1k

kP

0k

k

L

+ �kP

0k

�P

0

k

L

! 0 for k ! +1;

k


1




�1

1k

Q

1k

�Q

1

k

L

� "

1k

k


1

P

1k

k

L

+ �k


1

(P

1k

�P

1

)k

L

! 0

for k ! +1;

k 

k

�  k � "

1k

k'

1k

k

L

+ �(k'

1k

� '

1

k

L

+ kq

k

� qk

L

) ! for k ! +1:

Consequently, all conditions of Lemma 3.9 are ful�lled and by virtue of this

lemma equality (6.14) is valid. �

Based on Lemmas 3.10 and 3.11, similarly to the above reasoning, we

prove the following theorems.

Let conditions (6:10) and (6:13) hold,

sup kP

ik

k

L

1

< +1 (i = 0; 1; 2); sup

k�1

kq

k

k

L

1

< +1; (6.28)

ess sup

(x;y)2D

ab










Z

x

0

�

P

2k

(s; y)�P

2

(s; y)

�

ds










! 0 for k ! +1

and

lim

k!+1

kP

ik

�P

i

k

(1)

L

= 0 (i = 0; 1; 2); lim

k!+1

kq

k

� qk

(1)

L

= 0:

Then, starting from some k

0

, problem (6:4),(6:5) has the unique solution u

k

and

lim

k!+1

ku

k

� u

0

k

(1)

e

C

= 0; (6.29)

where u

0

is the solution of problem (6:1),(6:2).

Let conditions (6:10) and (6:28) hold and, besides, '

0

and

'

0k

2

e

C

1

([0; a];R

n

), '

1

and '

1k

2 L

1

([0; b];R

n

),

lim

k!+1

kP

ik

�P

i

k

(2)

L

= 0 (i = 0; 1; 2); lim

k!+1

kq

k

� qk

(2)

L

= 0

and

lim

k!+1

k'

0k

�'

0

k

e

C

1

= 0; lim

k!+1

k'

1k

�'

1

k

L

1

= 0; lim

k!+1

jjjh�h

k

jjj = 0:
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Then, starting from some k

0

, problem (6:4),(6:5) has the unique solution u

k

and

lim

k!+1

ku

k

� u

0

k

(2)

e

C

= 0; (6.30)

where u

0

is the solution of problem (6:1),(6:2).

Remark 6.1. In Theorems 6.2 and 6.3 the condition

sup

k�1

kP

1k

k

L

1

< +1; sup

k�1

kq

k

k < +1 (6.31)

are essential and cannot be neglected. As an example, consider the problems

@

2

u(x; y)

@x@y

=

@u(x; y)

@y

; (6.32)

u(x; 0) = 0; u(0; y)� u(a; y) = 0 (6.33)

and

@

2

u(x; y)

@x@y

= �[k cos k

2

(x+ y)]

@u(x; y)

@x

+

@u(x; y)

@y

+ k sin k

2

(x+ y); (6.34)

u(x; 0) = 0; u(0; y)� u(a; y) = 0; (6.35)

for which all conditions of Theorems 6.2 and 6.3, except (6.31), are ful�lled.

Since M

0k

(y) � M

0

(y) = exp(ay) � 1, by Corollary 4.1 problem (6.32),

(6.33) has only the trivial solution u

0

(x; y) � 0 and problem (6.34), (6.35)

has the unique solution u

k

for any natural k. Moreover,

@u

k

(x; y)

@x

= exp

�

�

sin k

2

(x+ y)

k

�

�

�

Z

y

0

exp

�

sin k

2

(x+ t)

k

��

@u

k

(x; t)

@t

+ k sin k

2

(x+ t)

�

dt:

The assumption for conditions (6.29) or (6.30) to be valid leads us to the

false equality

lim

k!+1

k

Z

x

0

�

�

�

Z

y

0

exp

�

sin k

2

(s+ t)

k

�

sin k

2

(s+ t)dt

�

�

�

ds = 0;

because

k

Z

y

0

exp

�

sin k

2

t

k

�

sin k

2

tdt =

1

k

�

cos k

2

y

k

exp

�

sin k

2

y

k

�

+

+

1

2

Z

y

0

exp

�

sin k

2

t

k

�

(1 + cos 2k

2

t)dt�

y

2

for k ! +1:
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For any natural k consider the hyperbolic system

@

2

u(x; y)

@x@y

= P

0k

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q

k

(x; y) (6.36)

with the boundary conditions

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0k

(x); h

k

(u(�; y))(y) =  

1k

(y); (6.37)

where

P

0k

2 L

1

(D

ab

;R

n�n

); q

k

2 L

1

(D

ab

;R

n

);

 

0k

2 L([0; a];R

n

);  

1k

2 L

1

([0; b];R

n

)

and h

k

:

e

C ([0; a];R

n

) ! L

1

([0; b];R

n

) is a linear continuous operator.

As above, we use representations (6.6)-(6.8) and by M

0k

and M

k

are

meant the matrix functions given by the equalities

M

0k

(y) = H

0k

(y) +

Z

a

0

H

k

(s; y)

@Z

2

(s; y)

@s

ds;

M

k

(x; y) = H

k

(x; y)Z

2

(x; y) +

Z

a

x

H

k

(s; y)

@Z

2

(s; y)

@s

ds:

Let P

1

2

e

C

(0;�1)

1

(D

ab

;R

n�n

), P

2

2

e

C

(�1;0)

1

(D

ab

;R

n�n

),

ess inf

0�y�b

j det(M

0

(y))j > 0;

sup

k�1

kP

0k

k

L

1

< +1; sup

k�1

kq

k

k

L

1

< +1; (6.38)

lim

k!+1

kP

0k

�P

0

k

(0)

L

= 0; lim

k!+1

kq

k

� qk

(0)

L

= 0 (6.39)

and

lim

k!+1

k 

0k

�  

0

k

L

= 0; lim

k!+1

k 

1k

�  

1

k

L

1

= 0;

lim

k!+1

jjjh

k

� hjjj = 0:

(6.40)

Then, starting from some k

0

, problem (6:36),(6:37) has the unique general-

ized solution u

k

and

lim

k!+1

ku

k

� u

0

k

L

1

= 0; (6.41)

where u

0

is the generalized solution of problem (6:1),(6:3).
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Proof. As shown above, conditions (6.21)-(6.23) follow from the convergence

by the norm of the sequence of operators h

k

(k = 1; 2; � � � ) to h and the

restrictions imposed on det(M

0

(y)), where k

0

is a natural number and � is

a positive constant independent of k.

The unique solvability of problem (6.1),(6.3) as well as of problem (6.36),

(6.37) for any k � k

0

follows from Theorem 4.4. In proving this theorem it

was admitted that u = u

0

and u = u

k

satisfy, respectively, the boundary

conditions

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  

0

(x);

u(0; y) =  (y) +

Z

y

0

Z

a

0

Q(y; s; t)u(s; t)dsdt

(6.42)

and

lim

y!0

�

@u(x; y)

@y

�P

2

(x; y)u(x; y)

�

=  

0k

(x);

u(0; y) =  

k

(y) +

Z

y

0

Z

a

0

Q

k

(y; s; t)u(s; t)dsdt;

(6.43)

where

 (y) = M

�1

0

(y) 

1

(y)�M

�1

0

(y)

Z

a

0

M(x; y)Z

�1

2

(x; y)Z

1

(x; y)�

�

h

 

0

(x) +

Z

y

0

Z

�1

1

(x; t)q(x; t)dt

i

dx;

Q(y; s; t) = �M

�1

0

(y)M(s; y)Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)P(s; t);

P(x; y) = P

0

(x; y) + P

1

(x; y)P

2

(x; y) �

@P

2

(x; y)

@y

and

 

k

(y) = M

�1

0k

(y) 

1k

(y)�M

�1

0k

(y)

Z

a

0

M

k

(x; y)Z

�1

2

(x; y)Z

1

(x; y)�

�

h

 

0k

(x) +

Z

y

0

Z

�1

1

(x; t)q

k

(x; t)dt

i

dx;

Q

k

(y; s; t) = �M

�1

0k

(y)M

k

(s; y)Z

�1

2

(s; y)Z

1

(s; y)Z

�1

1

(s; t)P

k

(s; t);

P

k

(x; y) = P

0k

(x; y) + P

1

(x; y)P

2

(x; y)�

@P

2

(x; y)

@y

:

More exactly, problem (6.1),(6.3) is equivalent to problem (6.1),(6.42) and

problem (6.36),(6.37) to problem (6.36),(6.43).

It follows from conditions (6.21)-(6.23) and (6.38)-(6.40) that

sup

k�1

kQ

k

k

L

1

< +1; lim

k!+1

k 

k

�  k

L

1

= 0
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and

ess sup

0�y

1

<y

2

�b

(x;y)2D

ab










Z

y

2

y

1

Z

x

0

�

Q

k

(y; s; t)�Q(y; s; t)

�

dsdt










! 0 for k ! +1:

Consequently, all conditions of Lemma 3.15 hold and by virtue of this

lemma equality (6.41) is valid. �

Remark 6.2. If h

k

= h (k = 1; 2; � � � ), the operator h being such that

H 2

e

C

(0;�1)

1

(D

ab

;R

n�n

); (6.44)

then the assumption

sup

k�1

kq

k

k

L

1

< +1 (6.45)

in Theorem 6.4 becomes unnecessary. If, however, (6.44) is violated, then

restriction (6.45) is essential and cannot be neglected. As an example,

consider the problems

@

2

u(x; y)

@x@y

= 0 (6.46)

@u(x; 0)

@x

= 0; u(0; y) +

Z

a

0

H(s)

@u(s; y)

@s

ds = 0 (6.47)

and

@

2

u(x; y)

@x@y

= �k

3

sin k

8

x; (6.48)

@u(x; 0)

@x

= 0; u(0; y) +

Z

a

0

H(s)

@u(s; y)

@s

ds = 0; (6.49)

where

H(x) =

+1

X

m=1

2

m

2

sinm

8

x:

For these problems all conditions of Theorem 6.4, except (6.44), are ful�lled.

On the other hand, problem (6.46),(6.47) has the unique solution u

0

(x; y) �

� 0 and problem (6.48),(6.49) has the unique solution

u

k

(x; y) = k

3

y

Z

a

0

H(s) sin k

8

sds+

y

k

5

(cos k

8

x� 1)

for any natural k.

However,

k

3

Z

a

0

H(s) sin k

8

sds = 2k

Z

a

0

sin

2

k

8

sds+

+

+1

X

m6=k;m=1

2k

3

m

2

Z

a

0

sinm

8

s sin k

8

sds = k

Z

a

0

(1� cos 2k

8

s)ds+
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+

+1

X

m6=k;m=1

k

3

m

2

Z

a

0

[cos(k

8

�m

8

)s� cos(k

8

+m

8

)s]ds �

� ak �

1

2k

7

�

+1

X

m6=k;m=1

k

3

m

2

�

1

jk

8

�m

8

j

+

1

k

8

+m

8

�

> ak � �;

where

� =

+1

X

m=1

1

m

2

:

Therefore

ku

k

� u

0

k

L

1

> abk � �b� 2b! +1 for k ! +1;

i.e. (6.41) is violated. �
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CHAPTER III

x

7.

This section deals with the problem on the existence and uniqueness in

a strip D

b

of a solution u of the linear hyperbolic system

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y); (7.1)

satisfying the conditions

u(x; 0) = '(x); ess sup

(x;y)2D

b

�










@u(x; y)

@x










+










@u(x; y)

@y










�

< +1; (7.2)

where

P

j

=

�

p

jik

�

n

j;k=1

2 L

1

(D

b

;R

n�n

) (j = 0; 1; 2);

q = (q

i

)

n

i=1

2 L

1

(D

b

;R

n

); ' = ('

i

)

n

i=1

2

e

C

1

(R;R

n

):

(7.3)

For an arbitrary function z 2 L

1

(D

b

;R) the following notation will be

used:

I

+

(z) = fy 2 [0; b] : sup

x�0

Z

x

0

z(s; y)ds = +1g;

I

�

(z)=fy2 [0; b] : sup

x�0

Z

x

0

z(s; y)ds<+1 and sup

x�0

Z

x

0

z(s; y)ds=+1g;

I

0

(z) = fy 2 [0; b] : sup

x2R

Z

x

0

z(s; y)ds < +1g;

�(z)(y) =

8

>

<

>

:

+1 for y 2 I

+

(z)

0 for y 2 I

0

(z)

�1 for y 2 I

�

(z)

:

For an arbitrary set I � R we denote by mes I its Lebesque measure and

by

�

I its closure.

Let there exist constants � 2 (0; 1), � > 0 and essentially

bounded measurable functions a

ik

: [0; b] ! [0;+1) (i 6= k; i; k = 1; : : : ; n)

such that the spectral radius of the matrix A(y) = (a

ik

(y))

n

i;k=1

, where

a

ii

(y) � 0 (i = 1; : : : ; n), is less than � almost for all y 2 [0; b] and the

inequalities

�

�

�

�(p

2ii

)(y)

Z

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

�
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�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+ jq

i

(s; y)j

�

ds

�

�

�

� � (i; k = 1; : : : ; n) (7.4)

and

�

�

�

�(p

2ii

)(y)

Z

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

� a

ik

(y)

(i 6= k; i; k = 1; : : : ; n)

(7.5)

hold almost everywhere in D

b

. Then problem (7.1),(7.2) is solvable; more-

over, the solution is unique if and only if

mes I

0

(p

2ii

) = 0 (i = 1; : : : ; n): (7.6)

Proof. In view of (7.3), without loss of generality it can be assumed that

the inequality

kP

0

(x; y)k+ bkP

1

(x; y)k+ kP

2

(x; y)k � � (7.7)

is ful�lled in D

b

. First we prove the solvability of the problem under con-

sideration on the basis of Lemma 1.3.

Let

 

i

(y) =

(

1 for y 2 I

0

(p

2ii

)

0 for y 62 I

0

(p

2ii

)

; (7.8)

 (y) =

�

 

i

(y)

�

n

i=1

;

and let c : [0; b] ! R be an arbitrary continuous function. For any z

j

=

= (z

ji

)

n

i=1

2 L

1

(D

b

;R

n

) (j = 1; 2) and i 2 f1; : : : ; ng we put

f

i

(z

1

; z

2

)(x; y) =

n

X

k=1

p

0ik

(x; y)

h

'

i

(x) +

Z

y

0

z

2i

(x; t)dt

i

+

+

n

X

k=1; k 6=i

p

2ik

(x; y)z

2k

(x; y) +

n

X

k=1

p

1ik

(x; y)z

1k

(x; y) + q

i

(x; y); (7.9)

g

1i

(z

1

; z

2

)(x; y) = '

0

i

(x) +

+

Z

y

0

�

p

2ii

(x; t)z

2i

(x; t) + f

i

(z

1

; z

2

)(x; t)

�

dt; (7.10)

g

2i

(z

1

; z

2

)(x; y) = exp

�

Z

x

0

p

2ii

(�; y)d�

�

c(y) 

i

(y) +

+

x

Z

�(p

2ii

)(y)

exp

�

Z

x

s

p

2ii

(�; y)d�

�

f

i

(z

1

; z

2

)(s; y)ds (7.11)
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and

g

1

(z

1

; z

2

)(x; y) =

�

g

1i

(z

1

; z

2

)(x; y)

�

n

i=1

;

g

2

(z

1

; z

2

)(x; y) =

�

g

2i

(z

1

; z

2

)(x; y)

�

n

i=1

:

(7.12)

By virtue of conditions (7.3)-(7.5) and (7.7)-(7.12) the operators g

1

and

g

2

transform the space L

1

(D

b

;R

n

) � L

1

(D

b

;R

n

) into L

1

(D

b

;R

n

) and

satisfy conditions (1.3) and (1.21), where g

0

(t) � n�, while A

01

and A

02

are

constant n� n matrices whose all elements equal to �.

Thus, all conditions of Lemma 1.3 are satis�ed and therefore system (1.1)

has the unique solution (z

1

; z

2

). Assume

u(x; y) = '(x) +

Z

y

0

z

2

(x; t)dt:

On account of conditions (7.3)-(7.5) equalities (7.9)-(7.11) yield that u is

locally absolutely continuous,

@

2

u(x; y)

@x@y

=

@z

2

(x; y)

@x

= P

0

(x; y)u(x; y) + P

1

(x; y)z

1

(x; y) +

+P

2

(x; y)z

2

(x; y) + q(x; y);

@u(x; y)

@x

= '

0

(x) +

Z

y

0

@z

2

(x; t)

@x

dt = '

0

(x) +

+

Z

y

0

[P

0

(x; t)u(x; t) + P

1

(x; t)z

1

(x; t) +

+P

2

(x; t)z

2

(x; t) + q(x; t)]dt = z

1

(x; y)

and

@u(0; y)

@y

= c(y) (y): (7.13)

Consequently, u is the solution of problem (7.1),(7.2). On the other hand,

if mes I

0

(p

2ii

) > 0 for any i 2 f1; : : : ; ng, then in view of equalities (7.8)

and (7.13) and an arbitrary choice of c it is evident that the problem under

consideration has an in�nite dimensional set of solutions.

To complete the proof we have to show that (7.1),(7.2) is uniquely solv-

able when (7.6) is ful�lled.

In view of (7.6) we get from (7.8) and (7.11) that

g

2i

(z

1

; z

2

)(x; y) =

x

Z

�(p

2ii

)(y)

exp

�

Z

x

s

p

2ii

(�; y)d�

�

f

i

(z

1

; z

2

)(s; y)ds

(i = 1; : : : ; n):

(7.14)

As proved above, system (1.1) has the unique solution (z

0

1

; z

0

2

); moreover,

u

0

(x; y) = '(x) +

R

y

0

z

0

2

(x; t)dt is the solution of problem (7.1),(7.2). Let u
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be an arbitrary solution of this problem. Assume

z

1

(x; y) =

@u(x; y)

@x

; z

2

(x; y) =

@u(x; y)

@y

:

Then

ess sup

y2[0;b]

�

sup

x2R

kz

2

(x; y)k

�

< +1; (7.15)

and for any x

0i

2 R (i = 1; : : : ; n) we have

z

1

(x; y) = g

1

(z

1

; z

2

)(x; y);

z

2i

(x; y) = exp

�

Z

x

x

0i

p

2ii

(�; y)d�

�

z

2i

(x

0i

; y) +

+

Z

x

x

0i

exp

�

Z

x

s

p

2ii

(�; y)d�

�

f

i

(z

1

; z

2

)(s; y)ds (i = 1; : : : ; n):

(7.16)

On the other hand, in view of (7.6), we have

lim inf

x

0i

!�(p

2ii

)(y)

Z

x

x

0i

p

2ii

(�; y)d� = �1 for x 2 R (7.17)

almost for every y 2 [0; b]. By virtue of conditions (7.14),(7.15) and (7.17) it

follows from (7.16) that (z

1

; z

2

) is a solution of system (1.1). Thus z

i

(x; y) �

� z

0

i

(x; y) (i = 1; 2) and, consequently,

@u(x; y)

@x

� z

0

1

(x; y);

@u(x; y)

@y

� z

0

2

(x; y):

Then with regard to (7.2) we get

u(x; y) � u

0

(x; y): �

The following theorem can be proved similarly to Theorem 7.1.

0

Let P

j

(j = 0; 1; 2) and q be continuous and boun-

ded, ' be continuously di�erentiable and bounded together with its deriva-

tive and for every i 2 f1; : : : ; ng either

�

I

+

(p

2ii

) = [0; b] or

�

I

�

(p

2ii

) = [0; b].

Moreover,let the integrals

Z

�

i

0

exp

�

Z

0

s

p

2ii

(�; y)d�

�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+

+(1� �

ik

)jp

2ik

(s; y)j+ jq

i

(s; y)j

�

ds (k = 1; : : : ; n) (7.18)

where �

i

= +1 and �

i

= �1 for

�

I

+

(p

2ii

) = [0; b] and

�

I

�

(p

2ii

) = [0; b],

respectively, converge uniformly with respect to y 2 [0; b]. Let, besides, there

exist a constant � > 0 and continuous functions a

ik

: [0; b] ! [0;+1)

(i 6= k; i; k = 1; : : : ; n) such that the spectral radius of the matrix A(y) =
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= (a

ik

(y))

n

i;k=1

, where a

ii

(y) � 0 (i = 1; : : : ; n), is less than unity for every

y 2 [0; b] and the inequalities

�

�

�

Z

�

i

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+

+jq

i

(s; y)j

�

ds

�

�

�

� � (k = 1; : : : ; n)

(7.19)

and

�

�

�

Z

�

i

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

� a

ik

(y)

(i 6= k; i; k = 1; : : : ; n)

(7.20)

hold in D

b

. Then problem (7:1); (7:2) has the unique classical solution.

Remark 7.1. If for any i 2 f1; : : : ; ng integral (7.18) does not converge

uniformly, then problem (7.1),(7.2) may have no classical solutions. Indeed

in

e

C

loc

(D

b

;R) the problem

@

2

u(x; y)

@x@y

=

�

�

�

y �

b

2

�

�

�

3

@u(x; y)

@y

+

�

y �

b

2

�

3

;

u(x; 0) = 0; ess sup

(x;y)2D

b

�

�

�

�

@u(x; y)

@x

�

�

�

+

�

�

�

@u(x; y)

@y

�

�

�

�

< +1 (7.21)

has the unique solution

u(x; y) =

b

2

�

�

�

�

y �

b

2

�

�

�

;

which is not classical despite the fact that all conditions of Theorem 7.1

0

except those of the uniform convergence of integral (7.18) which in this case

takes the form

Z

+1

0

exp

�

�

�

�

�

y �

b

2

�

�

�

3

s

�

�

�

�

y �

b

2

�

�

�

3

ds;

are ful�lled.

Remark 7.2. The conditions of Theorem 7.1

0

ensure the uniqueness only

of a classical but not of an absolutely continuous solution. In fact, let

p

2

: [0; b] ! [0;+1) be a continuous function with a nowhere dense set of

zeros of positive measure. It is clear that

I

0

(p

2

) = fy 2 [0; b] : p

2

(y) = 0g;

I

+

(p

2

) = [0; b]nI

0

(p

2

);

�

I

+

(p

2

) = [0; b]:

For an arbitrary continuous c : [0; b] ! R the function

u

c

(x; y) =

Z

y

0

exp(p

2

(t)x)c(t) (t)dt;



118

where

 (y) =

(

1 for y 2 I

0

(p

2

)

0 for y 2 I

+

(p

2

)

belongs to

e

C

loc

(D

b

;R) and this function is a solution of the equation

@

2

u(x; y)

@x@y

= p

2

(y)

@u(x; y)

@y

; (7.22)

satisfying condition (7.21). On the other hand, problem (7.22),(7.21), for

which all conditions of Theorem 7.1

0

hold, has the unique classical solution

u

0

(x; y) � 0.

Let there exist constants a > 0, � 2 (0; 1), �

0

> 0 and

essentially bounded measurable functions a

ik

: [0; b] ! R

+

(i 6= k, i; k =

= 1; : : : ; n), �

i

: [0; b] ! f�1; 1g and 


i

: [0; b] ! [0;+1) (i = 1; : : : ; n) such

that the spectral radius of the matrix A(y) = (a

ik

(y))

n

i;k=1

, where a

ii

(y) � 0

(i = 1; : : : ; n), is less than � almost for all y 2 [0; b] and the inequalities

�

i

(y)

x+a

Z

x

p

2ii

(�; y)d� � �


i

(y) (i = 1; : : : ; n); (7.23)

x+a

Z

x

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+ jq

i

(s; y)j

�

ds �

� �

0




i

(y) (i; k = 1; : : : ; n) (7.24)

and

�

�

�

x

Z

x��

i

(y)a

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

�

� a

ik

(y)

�

1� exp(�


i

(y))

�

(i 6= k; i; k = 1; : : : ; n) (7.25)

hold almost everywhere in D

b

. Then problem (7.1),(7.2) is solvable, and for

the uniqueness of a solution it is su�cient that

mesfy 2 [0; b] : 


i

(y) = 0g = 0 (i = 1; : : : ; n): (7.26)

Proof. Put

�

1

= kP

2

k

L

1

< +1; � = �

0

exp(a�

1

);

I

0

i

= fy 2 [0; b] : 


i

(y) = 0g; I

+

i

= fy 2 [0; b] : 


i

(y) > 0; �

i

(y) = �1g;

I

�

i

= fy 2 [0; b] : 


i

(y) > 0; �

i

(y) = 1g; (i = 1; : : : ; n):

Then by virtue of (7.23),

[0; b] = I

+

i

[ I

0

i

[ I

�

i

; I

+

(p

2ii

) � I

+

i

; I

�

(p

2ii

) � I

�

i
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and

I

0

i

� I

0

(p

2ii

) (i = 1; : : : ; n): (7.27)

If y 2 I

0

i

, then in view of (7.24) without loss of generality we may assume

that

p

0ik

(x; y) � p

1ik

(x; y) � q

i

(x; y) � 0 for x 2 R; k 2 f1; : : : ; ng:

Therefore it is obvious that inequalities (7.4) and (7.5) are ful�lled in R�I

0

i

for every i 2 f1; : : : ; ng.

If y 2 I

+

i

, then �(p

2ii

)(y) = +1 and in view of inequalities (7.23){(7.25)

we have

Z

+1

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+ jq

i

(s; y)j

�

ds =

=

+1

X

m=1

exp

�

�

m

X

l=1

x+la

Z

x+(l�1)a

p

2ii

(�; y)d�

�

�

�

x+ma

Z

x+(m�1)a

exp

�

x+ma

Z

s

p

2ii

(�; y)d�

�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+

+jq

i

(s; y)j

�

ds � �

0




i

(y) exp(a�

1

)

+1

X

m=1

exp(�m


i

(y)) =

= �


i

(y)

�

exp(


i

(y))� 1

�

�1

� � (k = 1; : : : ; n)

and

Z

+1

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds =

=

+1

X

m=1

exp

�

x+(m�1)a

Z

x

p

2ii

(�; y)d�

�

�

�

x+ma

Z

x+(m�1)a

exp

�

x+(m�1)a

Z

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds �

� a

ik

(y)(1� exp(�


i

(y)))

+1

X

m=1

exp(�(m� 1)


i

(y)) = a

ik

(y)

(k 6= i; i; k = 1; : : : ; n):

Therefore, inequalities (7.4) and (7.5) are ful�lled in R � I

+

i

. Similarly, we

can prove that these inequalities are also ful�lled in R � I

�

i

(i = 1; : : : ; n).

As for (7.6), these equalities are ful�lled by virtue of (7.27) if (7.26) holds.

The validity of Corollary 7.1 becomes evident by applying Theorem 7.1. �
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0

Let P

j

(j = 0; 1; 2) and q be continuous and bounded,

' be continuously di�erentiable and bounded together with its derivative.

Let, besides, there exist constants a > 0, �

0

> 0, " > 0, �

i

2 f�1; 1g

(i = 1; : : : ; n) and continuous functions 


i

: [0; b] ! [0;+1) (i = 1; : : : ; n)

and a

ik

: [0; b] ! [0;+1) such that the set of zeros of 


i

is nowhere dense

in D

b

(i = 1; : : : ; n), the spectral radius of the matrix A(y) = (a

ik

(y))

n

i;k=1

,

where a

ii

(y) � 0 (i = 1; : : : ; n), is less than unity for every y 2 [0; b] and

the inequalities

�

i

x+a

Z

x

p

2ii

(�; y)d� � �


i

(y) (i = 1; : : : ; n); (7.28)

x+a

Z

x

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+ (1� �

ik

)jp

2ik

(s; y)j+ jq

i

(s; y)j

�

ds �

� �

0




1+"

i

(y) (i = 1; : : : ; n) (7.29)

and

�

�

�

x

Z

x��

i

a

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

�

� a

ik

(y)

�

1� exp(�


i

(y))

�

(i 6= k; i; k = 1; : : : ; n) (7.30)

holds in D

b

. Then problem (7:1); (7:2) has one and only one classical solu-

tion.

Proof. In view of (7.28),

�

i

�

Z

x

0

p

2ii

(�; y)d�

�

signx � �

�

jxj

a

+ 1

�




i

(y) + 2a�

1

(i = 1; : : : ; n);

(7.31)

where

�

1

= sup

(x;y)2D

b

kP

2

(x; y)k:

Taking into account the fact that the set of zeros of 


i

is nowhere dense in

[0; b] (i = 1; : : : ; n), we obtain from (7.31) that

�

I

+

(p

2ii

) = [0; b] for �

i

= �1;

�

I

�

(p

2ii

) = [0; b] for �

i

= 1: (7.32)

Let us show that for every i 2 f1; : : : ; ng integrals (7.18) converge uni-

formly with respect to y 2 [0; b]. In view of (7.32) we have �

i

= +1 and

�

i

= �1 for �

i

= �1 and �

i

= 1, respectively. First we consider the case

when �

i

= �1. By (7.29) and (7.31) for any x > 0 and y 2 [0; b] we have

Z

+1

x

exp

�

Z

0

s

p

2ii

(�; y)d�

�

(jp

0ik

(s; y)j+ jp

1ik

(s; y)j+
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+(1� �

ik

)jp

2ik

(s; y)j+ jq

i

(s; y)j

�

ds =

=

+1

X

m=1

x+ma

Z

x+(m�1)a

exp

�

�

Z

0

s

p

2ii

(�; y)d�

�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+

+(1� �

ik

)jp

2ik

(s; y)j+ jq

i

(s; y)j

�

ds �

� �

0

exp(a�

1

)


1+"

i

(y)

+1

X

m=1

exp

�

�

�

x

a

+m

�




i

(y)

�

=

= �

0

exp(a�

1

)


1+"

i

(y)

�

exp(


i

(y))� 1

�

�1

exp

�

�

x

a




i

(y)

�

�

� �

0

exp(a�

1

)


"

i

(y) exp

�

�

x

a




i

(y)

�

� �

2

x

�"

(k = 1; : : : ; n);

where �

2

= �

0

exp(a�

1

�")(a")

"

. Consequently, for �

i

= �1 integrals (7.18)

converge uniformly. Analogously we can prove that integrals (7.18) converge

uniformly for �

i

= 1 as well.

Similarly to the prove of Corollary 7.1, we can show that conditions

(7.28)-(7.30) imply conditions (7.19) and (7.20).

Applying now Theorem 7.1

0

, the validity of Corollary 7.1

0

becomes obvi-

ous. �

Let the inequalities

�

i

(y)p

2ii

(x; y) � l

ii

(i = 1; : : : ; n);

jp

2ik

(x; y)j � l

ik

(i 6= k; i; k = 1; : : : ; n);

(7.33)

where �

i

: [0; b] ! f�1; 1g (i = 1; : : : ; n) are measurable functions and l

ik

(i; k = 1; : : : ; n) are constants such that the real parts of eigenvalues of the

matrix (l

ik

)

n

i;k=1

are negative. Then problem (7.1),(7.2) has one and only

one solution.

Proof. Since l

ik

(i 6= k; i; k = 1; : : : ; n) are non-negative and eigenvalues of

the matrix (l

ik

)

n

i;k=1

are negative, we have

l

ii

< 0 (i = 1; : : : ; n) (7.34)

and the spectral radius of the matrix (a

ik

)

n

i;k=1

, where

a

ii

= 0 (i = 1; : : : ; n); a

ik

=

l

ik

jl

ii

j

(i 6= k; i; k = 1; : : : ; n);

is less than unity.

In view of (7.3),(7.33) and (7.34), inequalities (7.23) and (7.24) hold

almost everywhere in D

b

, where a = 1, 


i

(y) � jl

ii

j,

�

0

=

�

kP

0

k

L

1

+ kP

1

k

L

1

+ kqk

L

1

��

jl

ii

j:
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Besides,

�

�

�

x

Z

x��

i

(y)

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

�

� l

ik

�

�

�

x

Z

x��

i

(y)

exp

�

�

i

(y)(s� x)jl

ii

j

�

ds

�

�

�

=

=

l

ik

jl

ii

j

�

1� exp(�jl

ii

j)

�

(i 6= k; i; k = 1; : : : ; n);

i.e. inequalities (7.25) also hold. Now applying Corollary 7.1, the unique

solvability of problem (7.1),(7.2) becomes obvious. �

Based on Corollary 7.1

0

, similarly to Corollary 7.2, we prove the validity

of

0

Let P

j

(j = 0; 1; 2) and q be continuous and bounded, '

be continuously di�erentiable and bounded together with its derivative and

the inequalities

�

i

p

2ii

(x; y) � l

ii

(i = 1; : : : ; n);

jp

2ik

(x; y)j � l

ik

(i 6= k; i; k = 1; : : : ; n);

hold in D

b

, where �

i

2 f�1; 1g and l

ik

(i; k = 1; : : : ) are constants and

the real parts of eigenvalues of matrix (l

ik

)

n

i;k=1

are negative. Then problem

(7:1); (7:2) has one and only one solution and this solution is classical.

x

8.

In this section for the system

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y) (8.1)

the conditions of the existence and uniqueness of a solution (generalized,

absolutely continuous and classical) de�ned in the strip D

b

and satisfying

one of the following two boundary conditions

u(x; 0) = '(x); u(x+ a; y) = u(x; y) (8.2)

and

lim

y!0

�

@u(x; y)

@x

�P

2

(x; y)u(x; y)

�

=  (x); u(x+ a; y) = u(x; y) (8.3)
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are established. Besides, we investigate the problem of relation between

problem (8.1),(8.2) and the problem of bounded solutions

u(x; 0) = '(x); ess sup

(x;y)2D

b

�










@u(x; y)

@x










+










@u(x; y)

@y










�

: (8.4)

Throughout the remainder of this section it is assumed that a is a positive

number, P

j

=

�

p

jik

�

n

i;k=1

: D

b

! R

n�n

(j = 0; 1; 2) and q = (q

i

)

n

i=1

:

D

b

! R

n

are measurable and essentially bounded, ' : R ! R

n

is absolutely

continuous and  : R ! R

n

is locally summable,

P

i

(x + a; y) � P

i

(x; y) (i = 0; 1; 2); q(x + a; y) � q(x; y);

'(x+ a) � '(x);  (x+ a) �  (x):

(8.5)

Moreover, use is made of the notation

N

0

(y) = Z

2

(a; y)�E;

N(y) =

Z

a

0

Z

�1

2

(s; y)

�

P

0

(s; y) + P

1

(s; y)P

2

(s; y)

�

Z

2

(s; y)ds:

Let u be a solution of problem (8.1),(8.2). Then its restriction on D

ab

satis�es the boundary conditions

u(x; 0) = '(x);

@u(a; y)

@y

=

@u(0; y)

@y

: (8.6)

Assume now that u is a solution of problem (8.1),(8.6). Then in view of the

periodicity of ' we shall have u(a; y) = u(0; y). Let u be the extension of u

in D

b

satisfying the condition

u(x+ a; y) � u(x; y):

In view of (8.5) it is evident that u is a solution of problem (8.1),(8.2).

Consequently, problems (8.1),(8.2) and (8.1),(8.6) are equivalent when (8.5)

holds. But (8.1),(8.6) is the special case of problem (4.1),(4.2) for h(v)(y) =

= v(a) � v(0) and '

1

(y) � 0. Now from representations (4.7) and (4.10) it

is clear that H

0

� �, H(x; y) � E,

M

0

(y) = N

0

(y); M(x; y) = Z

2

(a; y):

Therefore Theorem 4.1 and Corollaries 4.1 and 4.1

0

yield the following as-

sertions.

Let the vector and the matrix functions Z

�1

2

q, Z

�1

2

P

0

, (1+

k'

0

0

k)�Z

�1

2

P

1

be N

0

-summable in D

ab

. Then problem (8:1),(8:2) is solvable

and the non-singularity of N

0

almost everywhere in [0; b] is necessary and

su�cient for the solution to be unique. If N

0

is singular in the set with a

positive measure, then the homogeneous problem corresponding to (8:1); (8:2)

has an in�nite dimensional set of solutions.
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If N

0

is non-singular almost everywhere in [0; b] and

Z

a

0

Z

b

0

kN

�1

0

(y)k

�

kP

0

(x; y)k+

+(1 + k'

0

(x)k)kP

1

(x; y)k+ kq(x; y)k

�

dxdy < +1;

then problem (8:1); (8:2) has one and only one solution.

0

If P

i

(i = 0; 1; 2) and q are continuous, '

0

is continuously

di�erentiable and N

0

is non-singular in [0; b], then problem (8:1); (8:2) has

the unique solution and this solution is classical.

Assume

B

0

(y) =

Z

a

0

P

2

(s; y)ds;

and when B

0

(y) is nonsingular

B(y) = max

0�x�a

h

Z

x

0

�

�

�

B

�1

0

(y)

Z

s

0

P

2

(�; y)d�P

2

(s; y)

�

�

�

ds+

+

Z

a

x

�

�

�

B

�1

0

(y)

Z

a

s

P

2

(�; y)d�P

2

(s; y)

�

�

�

ds

i

:

For k = 2 and m = 1 the following assertions follow from Corollaries 4.2

and 4.2

0

.

Let the inequalities

det(B

0

(y)) 6= 0; r(B(y)) < 1 (8.7)

hold almost everywhere in [0; b] and

Z

b

0







�

E �B(y)

�

�1













B

�1

0

(y)







dy < +1:

. Then problem (8:1),(8:2) has one and only one solution.

0

If P

i

(i = 0; 1; 2) and q are continuous, ' is continuously

di�erentiable and inequalities (8:7) hold in [0; b], then problem (8:1),(8:2)

has one and only one solution and this solution is classical.

The conditions for the unique solvability of problem (8.1),(8.2) are given

also in [2,4,7,42], where the periodic boundary value problem is investigsted

for quasilinear hyperbolic equations and systems with continuous right sides.

For example, L.Cesari [7] proved the solvability of problem (8.1),(8.2)

under the assumptions that det(N

0

(0)) 6= 0, b is su�ciently small and

2akP

2

(x; 0)k < 1 for x 2 R: (8.8)

It is obvious that this result follows from Corollary 8.1

0

; moreover, condition

(8.8) is unnecessary.
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A.K.Aziz and S.L.Brodsky [2] considered a system with a small parameter

" > 0

@

2

u(x; y)

@x@y

= "

h

P

0

(x; y)u(x; y)+P

1

(x; y)

@u(x; y)

@x

+P

2

(x; y)

@u(x; y)

@y

+q(x; y)

i

and proved the unique solvability of problem (8.1),(8.2) for su�ciently small

b and " assuming that

det

�

Z

a

0

P

2

(s; 0)ds

�

6= 0:

This result also follows from Corollary 8.1

0

.

A.K.Aziz and A.M.Meyers [4] considered problem for n = 1 and proved

its unique solvability under assumptions that P

1

has a continuous partial

derivative in the �rst argument,

P

2

(x; y) 6= 0 for (x; y) 2 D

b

(8.9)

and

l

h

1

l

�

+

exp(l

�

a)� 1

l

�

(exp(l

�

a)� 1)

i

< 1; (8.10)

where

l

�

= min

(x;y)2D

b

jP

2

(x; y)j; l

�

= max

(x;y)2D

b

jP

2

(x; y)j;

l = max

(x;y)2D

b

�

�

P

0

(x; y) + P

1

(x; y)P

2

(x; y)�

@P

1

(x; y)

@x

�

�

:

But, in view of Corollary 8.1

0

, for n = 1 it is su�cient to have instead of

condition (8.9) a more weaker condition

Z

a

0

P

2

(s; y)ds 6= 0 for 0 � y � b:

As for condition (8.10) and the requirement for

@P

1

@x

to exist, they are un-

necessary.

B.P.Tkach [42] proved the unique solvability of problem (8.1),(8.2) under

the assumptions that

det(B

0

(y)) 6= 0; r(B(y)) < 1 for 0 � y � b;

where

B(y) =

a

2

2

jB

�1

0

(y)j

�

max

(x;y)2D

b

jP

2

(x; y)j

�

2

:

This result is the special case of Corollary 8.2 because

B(y) � B(y) for 0 � y � b:

The following assertions follow from Theorems 4.2, 4.2

0

, 4.5 and 4.5

0

.
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Let the restrictions of P

i

(i = 0; 1; 2) and q on D

ab

belong,

respectively, to

e

C

(�1;0)

1

(D

ab

;R

n�n

) and

e

C

(�1;0)

1

(D

ab

;R

n

) (P

i

(i = 0; 1; 2)

and q be continuous and have a continuous partial derivative in the second

argument), '

0

be absolutely continuous (continuously di�erentiable) and

N

0

(y) = �; det(N(y)) 6= 0 for 0 � y � b:

Then problem (8:1),(8:2) is uniquely solvable (and its solution is classical)

if and only if

Z

a

0

Z

�1

2

(s; 0)

�

P

0

(s; 0)'(s) + P

1

(s; 0)'

0

(s) + q(s; 0)

�

ds = 0:

Let the restriction of P

2

on D

ab

belong to

e

C

(�1;0)

1

(D

ab

;R

n�n

),

N

0

(y) = �; det(N(y)) 6= 0 almost everywhere in [0; b]

and

Z

b

0

kN

�1

(y)kdy < +1:

Then problem (8:1),(8:3) has one and only one generalized solution if and

only if

Z

a

0

Z

2

(s; 0)'(s)ds = 0: (8.11)

0

Let the restriction of P

i

(i = 0; 1; 2) and q on D

ab

belong,

respectively, to

e

C

(�1;0)

1

(D

ab

;R

n�n

) and

e

C

(�1;0)

1

(D

ab

;R

n

) (P

i

(i = 0; 1; 2)

and q be continuous and have a continuous partial derivative in the second

argument,  be continuous) and

N

0

(y) = �; det(N(y)) 6= 0 for 0 � y � b:

Then the ful�lment of condition (8:11) is necessary and su�cient for prob-

lem (8:1), (8:3) to have the unique generalized solution which is absolutely

continuous (classical).

For P

2

(x; y) � � the result similar to Theorem 8.3 was obtained by

S.V.

�

Zestkov [51].

In Theorem 8.3

0

the requirement for N to be non-singular in [0; b] is

optimal and cannot be weakened. The following corollary concerning to the

problem

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+ q(x; y); (8.12)

lim

y!0

@u(x; y)

@x

= 0; u(x+ a; y) = u(x; y) (8.13)

veri�es this assertion.
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Let the restriction of P

0

in D

ab

belong to

e

C

(�1;0)

1

(D

ab

;

R

n�n

) (P

0

be continuous and have a continuous partial derivative in the

second argument). Then for an arbitrary P

1

and q whose restrictions in

D

ab

belong repectively, to

e

C

(�1;0)

1

(D

ab

;R

n�n

) and

e

C

(�1;0)

1

(D

ab

;R

n

) (are con-

tinuous and have a continuous partial derivative in the second argument),

problem (8:12); (8:13) has the unique generalized solution and this solution

is absolutely continuous (classical) if and only if

det

�

Z

a

0

P

0

(s; y)ds

�

6= 0 for 0 � y � b:

This corollary follows from Corollary 4.10 and Theorem 8.3

0

.

Now consider the problem of relation between problems (8.1),(8.2) and

(8.1),(8.4).

Let '

0

0

be essentially bounded and almost for every y 2

2 [0; b]




0i

(y) �

Z

a

0

p

2ii

(s; y)ds 6= 0 (i = 1; : : : ; n): (8.14)

Let, besides, there exist constants � 2 (0; 1),�

0

> 0 and essentially bounded

measurable functions a

ik

: [0; b] ! R

+

(i 6= k, i; k = 1; : : : ; n), such that

the spectral radius of the matrix A(y) = (a

ik

(y))

n

i;k=1

, where a

ii

(y) � 0

(i = 1; : : : ; n), is less than � almost for all y 2 [0; b] and the inequalities

Z

a

0

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+ jq

i

(s; y)j

�

ds � �

0

j


0i

(y)j

(i; k = 1; : : : ; n)

(8.15)

and

Z

x+a

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds �

� a

ik

(y)

�

1� exp(�


0i

(y))

�

(i 6= k; i; k = 1; : : : ; n) (8.16)

hold almost everywhere in D

ab

. Then problems (8:1),(8:2) and (8:1),(8:4)

are uniquely solvable and their solutions coincide.

Proof. In view of (8.5), conditions (8.14)-(8.16) yield conditions (7.23)-

(7.26), where




i

(y) = j


0i

(y)j; �

i

(y) =

(

�1 for 


0i

(y) � 0

1 for 


0i

(y) < 0

(i = 1; : : : ; n):

Therefore, by virtue of Corollary 7.1 problem (8.1),(8.4) has the unique

solution u

0

. Consider the vector function

u(x; y) = u

0

(x+ a; y):
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According to (8.5), u is also a solution of problem (8.1),(8.4) and in view

of the unique solvability of the latter, we have u(x; y) � u

0

(x; y). Conse-

quently, u

0

is a solution of problem (8.1),(8.2). Theorem will be proved if

we show that an arbitrary solution u of problem (8.1),(8.2) is also a solution

of problem (8.1),(8.4), i.e. u satis�es the condition

ess sup

(x;y)2D

b

�










@u(x; y)

@x










+










@u(x; y)

@y










�

< +1:

By virtue of Lemma 3.1 and the essential boundedness of '

0

, we have

ess sup

(x;y)2D

b










@u(x; y)

@x










< +1: (8.17)

Consequently, it remains to show that

ess sup

(x;y)2D

b










@u(x; y)

@y










< +1: (8.18)

Put

@u(x; y)

@y

=

�

z

i

(x; y)

�

n

i=1

;

P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+ q(x; y) =

�

q

0i

(x; y)

�

n

i=1

:

Then

@z

i

(x; y)

@x

=

n

X

k=1

p

2ik

(x; y)z

k

(x; y) + q

0i

(x; y) (i = 1; : : : ; n) (8.19)

z

i

(0; y) = z

i

(a; y) (i = 1; : : : ; n): (8.20)

On the other hand, in view of conditions (8.5),(8.15),(8.17) and the essential

boundedness of 


i

(i = 1; : : : ; n), there exists a constant � such that the

inequalities

Z

x+a

x

jq

0i

(s; y)jds � �j1� exp(�


0i

(y))j (i = 1; : : : ; n) (8.21)

hold almost everywhere in D

ab

. In view of (8.14) from (8.19) and (8.20), we

have

z

i

(x; y) =

�

exp(�


0i

(y))� 1

�

�1

n

X

k=1

(1� �

ik

)�

�

Z

x+a

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

p

2ik

(s; y)z

k

(s; y)ds+

+

�

exp(�


0i

(y))� 1

�

�1

Z

x+a

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

q

0i

(s; y)ds (8.22)

(i = 1; : : : ; n):
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If we assume

z(y) =

�

max

0�x�a

jz

i

(x; y)j

�

n

i=1

; q = �

�

exp(akp

2ii

k

L

1

)

�

n

i=1

;

then with regard to (8.16) and (8.21), from (8.22) we �nd

z(y) � A(y)z(y) + q;

whence in view of the condition

r(A(y)) < � < 1

and the essential boundedness of A it follows that

z(y) �

�

E �A(y)

�

�1

q

and

ess sup

0�y�b

kz(y)k < +1:

Consequently, condition (8.18) holds. �

The following assertions follow from Theorem 8.4 and Corollary 7.1

0

.

0

Let P

j

and q be continuous, ' be continuously di�eren-

tiable and




0i

(y) �

Z

a

0

p

2ii

(s; y)ds 6= 0 for 0 � y � b (i = 1; : : : ; n):

Let, besides, there exist continuous functions a

ik

: [0; b] ! R

+

(i 6= k, i; k =

= 1; : : : ; n), such that the spectral radius of the matrix A(y) = (a

ik

(y))

n

i;k=1

,

where a

ii

(y) � 0 (i = 1; : : : ; n), is less than unity for every y 2 [0; b] and

inequalities (8:16) hold in D

b

. Then problems (8:1),(8:2) and (8:1),(8:4)

are uniquely solvable and they have one and the same solution which is

classical.

Let the inequalities

�

i

(y)p

2ii

(x; y) � l

ii

(i = 1; : : : ; n);

jp

2ik

(x; y)j � l

ik

(i 6= k; i; k = 1; : : : ; n);

where �

i

: [0; b] ! f�1; 1g (i = 1; : : : ; n) are measurable functions and

l

ik

(i; k = 1; : : : ; n) constants such that the real parts of eigenvalues of the

matrix (l

ik

)

n

i;k=1

are negative. Then problems (8:1),(8:2) and (8:1),(8:4) are

uniquely solvable and their solutions coincide.

0

Let P

j

(j = 0; 1; 2) and q be continuous, ' be continuously

di�erentiable and the inequalities

�

i

p

2ii

(x; y) � l

ii

(i = 1; : : : ; n);

jp

2ik

(x; y)j � l

ik

(i 6= k; i; k = 1; : : : ; n);

hold in D

b

, where �

i

2 f�1; 1g and l

ik

(i; k = 1; : : : ) are constants and the

real parts of eigenvalues of matrix (l

ik

)

n

i;k=1

are negative. Then problems
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(8:1),(8:2) and (8:1),(8:4) are uniquely solvable and they have one and the

same solution which is classical.

x

9.

In this section we investigate the problem of almost-periodicity in the

�rst argument of a solution of the problem

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+

+P

2

(x; y)

@u(x; y)

@y

+ q(x; y); (9.1)

u(x; 0) = '(x); ess sup

(x;y)2D

b

�










@u(x; y)

@x










+










@u(x; y)

@y










�

< +1: (9.2)

In addition, it is assumed everywhere that

P

j

=

�

p

jik

�

n

i;k=1

2 L

1

(D

b

;R

n�n

) (j = 0; 1; 2);

q = (q

i

)

n

i=1

2 L

1

(D

b

;R

n

); ' = ('

i

)

n

i=1

2

e

C

1

(R;R

n

):

The concepts of almost-periodicity and S-almost-periodicity in the �rst

argument of a matrix function of two variables which are introduced below,

are the modi�cation of Bohr's and Stepanov's concepts of almost-periodicity

of a function of one variable ([30], Ch.1,x1 and Ch.5,x2).

A continuous matrix function Z : D

b

! R

m�n

is called

almost- periodic in the �rst argument if for an arbitrary " > 0 there exists

l > 0 such that an arbitrary segment [x

0

; x

0

+l] contains at least one number

� for which the inequality

sup

(x;y)2D

b

kZ(x+ �; y)� Z(x; y)k < "

takes place.

A locally summable matrix function Z : D

b

! R

m�n

is

called S-almost-periodic in the �rst argument if for an arbitrary " > 0 there

exists l > 0 such that an arbitrary segment [x

0

; x

0

+ l] contains at least one

number � for which the inequality

sup

x2R

Z

b

0

Z

x+1

x

kZ(s+ �; t)� Z(s; t)kdsdt < "

takes place.

For any locally summable matrix function Z : D

b

! R

m�n

we put

kZk

S

= sup

x2R

Z

b

0

Z

x+1

x

kZ(s; t)kdsdt:
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A sequence of locally summable matrix functions Z

k

: D

b

! R

m�n

(k =

= 1; 2; : : : ) is called S-convergent to Z if

lim

k!+1

kZ

k

� Zk

S

= 0:

A continuous (locally summable) matrix function Z :D

b

!

! R

m�n

is called normal (S-normal) if for any sequence of real numbers

(�

k

)

+1

k=1

the sequence of matrix functions (Z

k

)

+1

k=1

, where Z

k

(x; y) = Z(x+

+�

k

; y), contains uniformly convergent (S-convergent) subsequence.

A continuous (locally summable) matrix function Z : D

b

!

! R

m�n

is almost-periodic (S-almost-periodic) in the �rst argument if and

only if it is normal (S-normal).

This lemma is an analogue of Bochner's well-known theorem ([30], The-

orem 5.4.2) for matrix functions of two variables and can be proved in the

same way as Bochner's theorem.

Let P

i

2 L

1

(D

b

;R

n�n

) (i = 0; 1; 2) and there exists a

sequence of real numbers (�

k

)

+1

k=1

such that

lim

k!+1

kP

ik

�P

i

k

S

= 0;

where

P

ik

(x; y) = P

i

(x + �

k

; y) (i = 0; 1; 2; k = 1; 2; : : : ):

Then we shall say that the triple of matrix functions (P

0

;P

1

;P

2

) belong to

the class H(P

0

;P

1

;P

2

).

Let P

i

(i = 0; 1; 2) be S-almost-periodic in the �rst argu-

ment and for any (P

0

;P

1

;P

2

) 2 H(P

0

;P

1

;P

2

) the homogeneous problem

@

2

u(x; y)

@x@y

= P

0

(x; y)u(x; y) + P

1

(x; y)

@u(x; y)

@x

+ P

2

(x; y)

@u(x; y)

@y

; (9.3)

u(x; 0) = 0; ess sup

(x;y)2D

b

�










@u(x; y)

@x










+










@u(x; y)

@y










�

< +1 (9.4)

have only the trivial solution. Then for any almost-periodic ' : R ! R

n

and

S-almost-periodic in the �rst argument q : D

b

! R

n

a solution of problem

(9:1); (9:2), if it exists, is almost-periodic in the �rst argument.

Proof. Let for an almost-periodic ' : R ! R

n

and S-almost-periodic in the

�rst argument q : D

b

! R

n

problem (9.1),(9.2) have a solution u. According

to Lemma 9.1, to prove the theorem it su�ces to show that u is normal.

Assume on the contrary that u is not normal. Then by Lemma 9.1 there

exist sequences of real numbers (�

k

)

+1

k=1

, of natural numbers (k

l

)

+1

l=1

and

(j

l

)

+1

l=1

and a positive number � such that the sequences of matrix and

vector functions

(P

ik

)

+1

k=1

(i = 0; 1; 2); (q

k

)

+1

k=1

(9.5)



132

and

('

k

)

+1

k=1

; (9.6)

where

P

ik

(x; y) = P

i

(x + �

k

; y) (i = 0; 1; 2);

q

k

(x; y) = q(x+ �

k

; y) '

k

(x) = '(x + �

k

)

are, respectively, S-convergent and uniformly convergent and

sup

(x;y)2D

b

ku(x+ �

k

l

; y)� u(x+ �

j

l

; y)k > � (l = 1; 2; : : : );

from which the existence of sequences x

l

2 [0; a] and y

l

2 [0; b] (l = 1; 2; : : : )

such that

ku(x

l

+ �

k

l

; y

l

)� u(x

l

+ �

j

l

; y

l

)k > � (l = 1; 2; : : : ) (9.7)

becomes evident.

Assume

u

l

(x; y) = u(x+ x

l

+ �

k

l

; y)� u(x+ x

l

+ �

j

l

; y);

'

l

= '

k

l

(x + x

l

)� '

j

l

(x + x

l

);

P

il

(x; y) = P

i

(x+ x

l

+ �

k

l

; y) (i = 0; 1; 2)

and

q

l

(x; y) = [P

0

(x+ x

l

+ �

k

l

; y)�P

0

(x+ x

l

+ �

j

l

; y)]u(x+ x

l

+ �

j

l

; y) +

+

�

P

1

(x+ x

l

+ �

k

l

; y)�P

1

(x+ x

l

+ �

j

l

; y)

�

@u(x+ x

l

+ �

j

l

; y)

@x

+

+

�

P

2

(x+ x

l

+ �

k

l

; y)�P

1

(x+ x

l

+ �

j

l

; y)

�

@u(x+ x

l

+ �

j

l

; y)

@y

+

+q(x+ x

l

+ �

k

l

; y)� q(x+ x

l

+ �

j

l

; y): (9.8)

Then, in view of (9.1) and (9.2), for any natural l we have

@

2

u

l

(x; y)

@x@y

= P

0

l

(x; y)u

l

(x; y) + P

1

l

(x; y)

@u

l

(x; y)

@x

+

+P

2

l

(x; y)

@u

l

(x; y)

@y

+ q

l

(x; y); (9.9)

u

l

(x; 0) = '

l

(x) (9.10)

and

sup

(x;y)2D

b

ku

l

(x; y)k � 
; ess sup

(x;y)2D

b

�










@u

l

(x; y)

@x










+










@u

l

(x; y)

@y










�

< 
; (9.11)
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where 
 is a positive constant independent of l. On the other hand, in view

of (9.7)

ku

l

(0; y

l

)k > � (l = 1; 2; : : : ): (9.12)

Because of the S-convergence of sequences (9.5) and the uniform conver-

gence of sequence (9.6) we have

kq

l

k

s

� 


2

X

j=0

kP

ik

l

�P

ij

l

k

S

+ kq

k

l

� q

j

l

k

S

! 0 for l ! +1 (9.13)

and

lim

l!+1

'

l

(x) = 0 uniformly in R: (9.14)

Taking into account Lemma 9.1 and an essential boundedness of P

i

(i =

= 0; 1; 2), without loss of generality we may assume that the sequences

(P

il

)

+1

l=1

(i = 0; 1; 2) are S-convergent to some matrix functions P

i

2

2 L

1

(D

b

;R

n�n

) (i = 0; 1; 2), i.e.

lim

l!+1

kP

il

�P

i

k

S

= 0: (9.15)

On the other hand, by virtue of the Arzela-Ascoli lemma and conditions

(9.11), again we may assume without loss of generality that the sequence

(u

l

)

+1

l+1

is uniformly convergent in the rectangle D

ab

for an arbitrary a 2 R.

Put

u

0

(x; y) = lim

l!+1

u

l

(x; y): (9.16)

From (9.11),(9.12) and (9.14) it is clear that u

0

: D

b

! R

n

is Lipschitz

continuous,

u

0

(x; 0) = 0; ess sup

(x;y)2D

b

�










@u

0

(x; y)

@x










+










@u

0

(x; y)

@y










�

� 
 (9.17)

and

max

0�y�b

ku

0

(0; y)k > 0: (9.18)

Besides, for an arbitrary a 2 R we have

lim

l!+1

Z

x

0

@u

l

(s; y)

@s

ds =

Z

x

0

@u

0

(s; y)

@s

ds; lim

l!+1

Z

y

0

@u

l

(x; t)

@t

dt =

=

Z

y

0

@u

0

(x; t)

@t

dt uniformly in D

ab

: (9.19)

It follows from (9.9) and (9.10) that

u

l

(x; y) = '

l

(x) � '

l

(0) + u

l

(0; y) +

Z

x

0

Z

y

0

h

P

0l

(s; t)u

l

(s; t) +
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+P

1l

(s; t)

@u

l

(s; t)

@s

+ P

2l

(s; t)

@u

l

(s; t)

@t

+ q

l

(s; t)

i

dsdt: (9.20)

However, in view of conditions (9.15),(9.16) and (9.19) and Lemma 3.13

lim

l!+1

Z

x

0

Z

y

0

P

0l

(s; t)u

l

(s; t)dsdt =

Z

x

0

Z

y

0

P

0

(s; t)u

0

(s; t)dsdt;

lim

l!+1

Z

x

0

Z

y

0

P

1l

(s; t)

@u

l

(s; t)

@s

dsdt =

Z

x

0

Z

y

0

P

1

(s; t)

@u

0

(s; t)

@s

dsdt;

lim

l!+1

Z

x

0

Z

y

0

P

2l

(s; t)

@u

l

(s; t)

@t

dsdt =

Z

x

0

Z

y

0

P

2

(s; t)

@u

0

(s; t)

@t

dsdt

uniformly in D

ab

.

If, alongside with the latter three equalities, we take into account condi-

tions (9.13) and (9.14), then from (9.20) we obtain

u

0

(x; y) = u

0

(0; y) +

+

Z

x

0

Z

y

0

�

P

0

(s; t)u

0

(s; t) + P

1

(s; t)

@u

0

(s; t)

@s

+ P

2

(s; t)

@u

0

(s; t)

@t

�

dsdt:

From this and condition (9.17) it follows that u

0

is a solution of prob-

lem (9.3),(9.4). But, according to the conditions of the theorem, problem

(9.3),(9.4) has only the trivial solution. Consequently, u

0

(x; y) � 0. But

this contadicts inequality (9.18). The obtained contradiction proves the

theorem. �

The theorem proved above is an analogue of J.Favard's well-known the-

orem [15] for system (9.1).

Let ' be almost-periodic, P

i

(i = 0; 1; 2) and q be S-almost-

periodic in the �rst argument and there exist constants � 2 (0; 1), � > 0 and

essentially bounded measurable functions a

ik

: [0; b] ! [0;+1) (i 6= k; i; k =

1; : : : ; n), a

i

: [0; b] ! (0;+1) and �

i

: [0; b] ! f�1; 1g (i = 1; : : : ; n)

such that the spectral radius of the matrix (a

ik

(y))

n

i;k=1

, where a

ii

(y) � 0

(i = 1; : : : ; n), is less than � almost for all y 2 [0; b] and the inequalities

�

i

(y)p

2ii

(x; y) � �a

i

(y) (i = 1; : : : ; n); (9.21)

�

�

�

Z

�

i

(y)

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j+

+jq

i

(s; y)j

�

ds

�

�

�

� � (i; k = 1; : : : ; n)

(9.22)

and

�

�

�

Z

�

i

(y)

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

� a

ik

(y)

(i 6= k; i; k = 1; : : : ; n)

(9.23)
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take place almost everywhere in D

b

, where �

i

(y) = +1 for �

i

(y) = �1 and

�

i

(y) = �1 for �

i

(y) = 1, respectively. Then problem (9:1),(9:2) has the

unique solution and this solution is almost-periodic in the �rst argument.

Proof. Let I

0

(p

2ii

) and �(p

2ii

) (i = 1; : : : ; n) be, respectively, the sets and

the functions appearing in Theorem 7.1. Because the function a

i

(i =

= 1; : : : ; n) is positive, from inequalities (9.21) we have

�(p

2ii

)(y) = �

i

(y); mes I

0

(p

2ii

) = 0:

Therefore inequalities (7.4) and (7.5) follow from equalities (9.22) and (9.23).

Consequently, all conditions of Theorem 7.1 hold, which guarantees the

unique solvability of problem (9.1),(9.2). It remains to show that the solu-

tion of the problem is almost-periodic in the �rst argument. By virtue of

Theorems 7.1 and 9.1 it su�ces to show that if

P

j

(x; y) =

�

p

jik

(x; y)

�

n

i;k=1

(j = 0; 1; 2)

and

(P

0

;P

1

;P

2

) 2 H(P

0

;P

1

;P

2

)

then the inequalities

�

i

(y)p

2ii

(x; y) � �a

i

(y) (i = 1; : : : ; n); (9.24)

�

�

�

Z

�

i

(y)

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

�

jp

0ik

(s; y)j+ jp

1ik

(s; y)j

�

ds

�

�

�

� �

(i; k = 1; : : : ; n)

(9.25)

and

�

�

�

Z

�

i

(y)

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

� a

ik

(y)

(i 6= k; i; k = 1; : : : ; n)

(9.26)

hold almost everywhere in D

b

. According to the de�nition of the class H

there exists a sequence of real numbers (�

l

)

+1

l=1

such that

"

l

= max

1�i;k�n

0�j�2

h

sup

x2R

Z

b

0

Z

x+1

x

jp

jik

(s; t)� p

jik

(s+ �

l

; t)jdsdt

�

�

�

! 0

for l ! +1:

(9.27)

By (9.21)

Z

t

y

Z

s

x

�

i

(�)p

2ii

(� + �

l

; �)d�d� � �(s� x)

Z

t

y

a

i

(t)dt

for 0 � y < t � b; x < s (i = 1; : : : ; n);
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whence, in view of (9.27), we have that

Z

t

y

Z

s

x

�

i

(�)p

2ii

(�; �)d�d� � �(s� x)

Z

t

y

a

i

(�)d�

for 0 � y < t � b; x < s (i = 1; : : : ; n):

It is clear from these estimates that inequalities (9.24) hold almost every-

where in D

b

. Inequalities (9.25) and (9.26) can be proved similarly. We

shall give here the proof of inequality (9.26) only. For any natural m we

put

�

im

(y) =

(

m for �

i

(y) = �1

�m for �

i

(y) = 1

:

�

�

�

x+�

im

(y)

Z

x

exp

�

Z

x

s

p

2ii

(� + �

l

; y)d�

�

jp

2ik

(s+ �

l

; y)jds

�

�

�

=

=

�

�

�

x+�

l

+�

im

(y)

Z

x+�

l

exp

�

x+�

l

Z

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

�

�

�

�

�

x+�

i

(y)

Z

x+�

l

exp

�

x+�

l

Z

s

p

2ii

(�; y)d�

�

jp

2ik

(s; y)jds

�

�

�

� a

ik

(y)

(i 6= k; i; k = 1; : : : ; n):

Therefore

�

�

�

Z

t

y

x+�

im

(y)

Z

x

exp

�

Z

x

s

p

2ii

(�; �)d�

�

jp

2ik

(s; �)jdsd�

�

�

�

�

�

Z

t

y

�

�

�

x+�

im

(y)

Z

x

exp

�

Z

x

s

p

2ii

(� + �

l

; �)d�

�

jp

2ik

(s+ �

l

; �)j �

� exp

�

Z

x

s

[p

2ii

(�; �) � p

2ii

(� + �

l

; �)]d�

�

ds

�

�

�

d� +

+

Z

t

y

�

�

�

x+�

im

(y)

Z

x

jp

2ik

(s; �)� p

2ik

(s+ �

l

; �)j exp

�

Z

x

s

p

2ii

(�; �)d�

�

ds

�

�

�

d� �

�

Z

t

y

exp

�

�

�

�

x+�

im

(y)

Z

x

jp

2ii

(�; �) � p

2ii

(� + �

l

; �)jd�

�

�

�

�

a

ik

(�)d� +
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+ exp(c

0

m)

Z

t

y

�

�

�

x+�

im

(y)

Z

x

jp

2ik

(s; �)� p

2ik

(s+ �

l

; �)jds

�

�

�

d� (9.28)

for 0 � y � t (i 6= k; i; k = 1; : : : ; n);

where

c

0

= max

1�i�n

kp

2ii

k

L

1

:

But,

exp

�

�

�

�

x+�

im

(y)

Z

x

jp

2ii

(�; �) � p

2ii

(� + �

l

; �)jds

�

�

�

�

�

� 1 +

�

�

�

x+�

im

(y)

Z

x

jp

2ii

(�; �)� p

2ii

(� + �

m

; �)jds

�

�

�

exp(2c

0

m)

and

Z

t

y

�

�

�

x+�

im

(y)

Z

x

jp

2ik

(s; �)� p

2ik

(s+ �

l

; �)jds

�

�

�

d� � m"

l

:

According to the above arguments from (9.28) we obatin

Z

t

y

�

�

�

x+�

im

(y)

Z

x

exp

�

Z

x

s

p

2ii

(�; y)d�

�

jp

2ik

(s; �)jds

�

�

�

d� �

�

Z

t

y

a

ik

(�)d� +m(1 + ka

ik

k

L

1

) exp(2c

0

m)"

l

for 0 � y � t � b (i 6= k; i; k = 1; : : : ; n):

Passing in these inequalities to the limit �rst for l ! +1 and then for

m! +1, on account of (9.27), we �nd

Z

t

y

�

�

�

x+�

i

(y)

Z

x

exp

�

Z

x

s

p

2ii

(�; �)d�

�

jp

2ik

(s; �)jds

�

�

�

d� �

Z

t

y

a

ik

(�)d�

for 0 � y � t � b (i 6= k; i; k = 1; : : : ; n):

from which it is clear that inequalities (9.26) hold almost everywhere in

D

b

. �

Similarly to Corollary 7.2 we prove
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Let '

0

be almost-periodic and P

i

(i = 0; 1; 2) and q be

S-almost- periodic in the �rst argument. Let, besides, inequalities

�

i

(y)p

2ii

(x; y) � l

ii

(i = 1; : : : ; n);

jp

2ik

(x; y)j � l

ik

(i 6= k; i; k = 1; : : : ; n)

hold almost everywhere in D

b

, where �

i

: [0; b] ! f�1; 1g (i = 1; : : : ; n) are

measurable functions and l

ik

(i; k = 1; : : : ; n) are constants such that the

real parts of eigenvalues of the matrix (l

ik

)

n

i;k=1

are negative. Then problem

(9:1),(9:2) has the unique solution and this solution is almost-periodic in the

�rst argument.
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