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Abstract. The linear hyperbolic system
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S = Pola)u+ Pila,) g + Palon) 5
is considered, where Py, P1, P> and q are respectively the nxn matrices and
the n-dimensional vector whose components are measurable and essentially
bounded functions in the rectangle D,y = [0,a] x [0, b] or in the strip D, =
=R x [0, b].

For system (1) problems with general functional boundary conditions are
investigated in the rectangle D,; and problems on bounded, almost-periodic
and periodic solutions in the strip D.

Optimal in a certain sense conditions are established, guaranteeing the
unique solvability of the problems and the stability of their solutions with
respect to small perturbations of the coefficients of system (1) and of the
boundary conditions.
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Beginning from the 60ies, prob-
lems on periodic solutions in a strip or in the large as well as problems
with boundary conditions connecting the values of an unknown solution in
various characteristics have been intensively studied for partial differential
equations of hyperbolic type (see, e.g., [1-4, 6-10, 16, 17, 29, 31-36, 38-
47,51]). These problems naturally lead us to boundary value problems in a
rectangle with general functional boundary conditions, and also to problems
on bounded and almost-periodic in a strip solutions. This work deals just
with such a class of problems for the linear hyperbolic system

Pulr,y) _ du(z,y)
ulz
+Pa(e) P50 4 (o, ), 01)

where Py, P1, P> and q are, respectively, nxn matrices and an n-dimensional
vector whose components are real measurable and essentially bounded func-
tions given in the rectangle

Dup = [0,a] x [0,b]

or in the strip
Dy =R x [0,0]

(a and b are positive numbers, R is the set of real numbers).
We start with the following two definitions.

A vector function u : Dy = R”® (u : Dy — R?) is called
a solution of system (0.1) if it is absolutely continuous in Dy, ! (in every
rectangle contained in D) and satisfies system (0.1) almost everywhere in
Dab (il’l Db)

A solution u : Dgp — R™ (u : Dy — R™) of system (0.1) is

. . . . . . . 2
called classical if it has the continuous partial derivatives 2%, 2% and 2%
oz’ Oy Oxdy

in Dab (in Db)

L According to the well-known definition of an absolutely continuous function of many
variables (see [5, §570], [11] and [49]), a vector function u : Dy, — R™ is absolutely
continuous if and only if it admits the representation

oy
u(z,y) = v1(z) +v2(y) +/ / v(s,t)dsdt for (z,y) € Dap,
o Jo

where v1 : [0,a] = R™ and vz : [0,b] — R™ are absolutely continuous and v : Dy, — R™
is summable.



Definition 0.1 was earlier used when investigating initial value problems
for hyperbolic systems with discontinuous coefficients [11-13,49,50]. As for
boundary value problems for system (0.1), they were studied, as a rule,
in terms of the concept of a classical solution for P; (i = 0,1,2) and ¢
being continuous or even smooth. In fact, the concepts either of a classical
solution or of an absolutely continuous one, do not appear to be sufficient
for investigating even very simple boundary value problems. 2 Therefore
we have to extend the concept of a solution on the basis of Picone’s canonic
representation of system (0.1) [37].

For an arbitrary = € [0,a] (y € [0,b]) by Z1(z,-) (Z2(-,y)) we denote the
fundamental matrix of the system of ordinary differential equations

dz(x,y)

dz(z,y) = P (z,y)2(z,y) ( I :732(35,21)2’(17,29))7

dy

satisfying the initial condition
Zl(xao):E (Z2(07y):E)7

where F is the unit n x n matrix.

According to Lemma 3.2 below, if the matrix function Pz(z, ) is abso-
lutely continuous, then a solution w : D,, — R"™ of system (0.1) is also a
solution of the system

52 e 2 3 (2 @utan) | =
= Z; Nz, y) (P(z,y)u(z,y) + q(z,y)), (0.1

where
67)2 (il',‘, y)

P(Z’,y) = ,P[)(Z',y) + Pl(xay),])2(xay) - ay

and vice versa. System (0.1") is called the Picone canonic form of system
(0.1).

A vector function u : Dypy = R™ (u: Dy — R™) is called a
generalized solution of system (0.1) if: i) v admits the representation

u(z,y) = Za(z,y) oz, y) +vi(y)],
where vy : Dy — R* (vo : Dy — R") is absolutely continuous (locally

absolutely continuous) and vy : [0,b] — R™ is summable; ii) equality (0.1")
holds almost everywhere in Dy, (in Dp).

2For the periodic boundary value problem this fact was taken into account in [51].
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In the rectangle Dy, for system (0.1) we study boundary value problems
of four types

PCY ) = 1 (1) 0.2

oy )
- PalaOule,0) = nle), A(P5) ) =i 03)

u(@,0) = po(@),

Ou(z,0)
ox

tim (P80 e yyuta, ) = vole), Aul)@) = i) (04

y—0 ox

~—

tim (250 pue, ) = (),

y—0 i

P (0.5)

(5, (uC9) = 220, 0)u0,)) ) ) = 1 (0),
where o : [0,a] — R" is absolutely continuous, 1o : [0,a] — R™, ¢
and ¢; : [0,b] - R" are summable and h is a linear continuous operator
acting from the space of absolutely continuous in [0, a] n-dimensional vector
functions to the space of measurable and essentially bounded in [0,b] n-
dimensional vector functions. We are especially interested in the case when
h(v)(y) = v(a)—v(0), i.e. when boundary conditions (0.2)-(0.5) are periodic,

du(a,y) _ 0u(0,y)

u(e,0) = pol@), =5 oy tews 02

w — Pa(z,0)u(z,0) = 1o (x), 00

aug;, y) _ aug)y, D 4 o) 34

tim (P55 oy, ) = (o), 04
u(a,y) = u(0,y) + ¥1(y);

i (P850 o yue, 1) = o), 05

a%(u(a,y) —u(0,)) = ().

For any k € {2,3,4,5} under a solution (a classical solution, a generalized
solution) of problem (0.1),(0.k) we understand a solution (a classical solu-
tion, a generalized solution) of system (0.1) satisfying boundary conditions
(0.k) almost everywhere in Dgp.

The behaviour of the matrix function My : [0,b] — R"*™ induced by
the operator h and the fundamental matrix Z,, 2 affects essentially the

31.e., My is the matrix function satisfying the equality h(Z2(:,y)c) = Mo(y)c almost
for all y € [0,b] and an arbitrary ¢ € R™.
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solvability and correctness of boundary value problems of type (0.1),(0.k)
and differential properties of solutions of these problems. For example: 1)
if My is singular at isolated points, then despite the smoothness of P; (i =
=0,1,2) and g and the unique solvability of problem (0.1),(0.2) the latter’s
solution may be non-classical (see Remark 4.2); 2) if M, is singular in the
set of positive measure, then problem (0.1),(0.2) may be non-Fredholmian
(see Theorems 4.1 and 4.1") or may have the unique classical solution and
an infinite set of absolutely continuous solutions (see Remark 4.3); 3) if
My(y) = O, where O is the zero n X n matrix, then problem (0.1),(0.4) may
have a unique generalized solution which is not absolutely continuous (see
Remark 4.13).

Two fundamentally different cases

(i) det(Mo(y)) # 0
and

(i) Mo(y) = ©.
will be treated by us separately.

The optimal in a certain sense conditions for the existence and unique-
ness of classical, absolutely continuous and generalized solutions of prob-
lems (0.1),(0.2) and (0.1),(0.4) (problems (0.1),(0.3) and (0.1),(0.5)) and for
the stability of these solutions with respect to small, in an integral sense,
perturbations of coefficients of system (0.1) are obtained in case (i) (case
(i1)). Moreover, the effective methods for constructing a solution of problem
(0.1),(0.2) are developed.

The sufficient conditions for the unique solvability of problems (0.1),(0.2)
and (0.1),(0.4) are obtained also in case (ii). In this case, however, the latter
problems are ill-posed, since for their solvability it is necessary that certain
integral equalities (see equalities (4.49) and (4.84)) be fulfilled; these equal-
ities can be violated at arbitrarily small perturbations of the coefficients of
system (0.1) or the vector functions ¢, and ¢, (k= 0,1).

The above results and their particular cases for problems (0.1),(0.k;)
(k = 2,3,4,5) are stated in Chapter II (§§4-6). They are proved by the
unified method that consists in reducing problems under consideration to
the modified characteristic initial value problem with either of the two con-
ditions below

u(,0) = po@), 20 =) 4
) y Pus.y) (0.6)
+ [ [@uls. i)+ (9@ 5, 2 s
and
. (Ou(z,y)
lim ( ——= — Pa(z,y)u(z,y) ) = ¢(x),
y—0 ( 0 ) (07)

u(0,y) = ¥(y) + /Oy /Oa q(y, s, t)u(s, t)ds dt.
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The material required to realize the method in question is stated in Chap-
ter I. More exactly, in this chapter: (a) the sufficient conditions for the
existence and uniqueness of a solution of a system of special type operator
equations are established, on whose basis the unique solvability and cor-
rectness of auxiliary problems (0.1),(0.6) and (0.1),(0.7) are proved (see §§1
and 3); (b) new conditions for the unique solvability of the general linear
boundary value problem for a system of ordinary differential equations with
a parameter are obtained and the properties of matrix functions induced by
this problem are studied (see §2).

The problem

(152 1+ 1252

u(z,0) = p(z), esssup ) < 400 (0.8)

(z,y)EDy

in the strip Dy is considered for system (0.1) in Chapter III, where the
sufficient conditions for the existence and uniqueness of its solution are also
given (see §7). When P; (i = 0,1,2) and q are periodic in the first argument
with a period a and ¢(z + a) = ¢(z), this solution is also a solution of the
periodic problem

u(z,0) = ¢(z), w(@+a,y) = u(z,y). (0.9)

Other conditions for the unique solvability of problem (0.1),(0.9) fol-
low from the results of Chapter II that deals with problems (0.1),(0.k;)
(k=2,3,4,5) (see §8). In the last §9 the problem of the almost-periodicity
of a solution of problem (0.1),(0.8) is considered assuming that o is almost
periodic, while P; (i = 0,1,2) and ¢ are almost-periodic in the first ar-
gument. Theorem 9.1 proved here is an analogue of Favard’s well-known
theorem [16]. Applying this theorem, one can obtain from the results of §7
the effective conditions ensuring the almost periodicity in the first argument
of a solution of problem (0.1),(0.8).

R = (—00,4+00), Ry =10,+00).
R™>*™ the space of m x n matrices X = (z;;) with real components z;;

(t=1,...,m;j=1,...,n) and the norm
m n
XN = Jal-
i=1 j=1
Re = RoX1
(zij)ij=1 is the square matrix with components z;; (i,j = 1,...,n)

and (z;)_, is the n-dimensional column vector with components z; (i =
=1,...,n).

By an absolute value of the matrix X = (z;;) € R™*"™ we understand
the matrix |X| = (|z;;]) € R™*" with components |z;;| (i =1,...,m;j =
=1,...,n).



A matrix X = (z;;) € R™*"™ is called non-negative if z;; > 0 (i =
=1,...,m;j7=1,...,n).

The inequalities between the matrices X = (z;;) and ¥ = (y;;) € R™*"
are understood componentwise, i.e.,

XSY";}.’Eiijij (’L.ZI,... ,m;j:l,...,n).
If Xp = (zij1) e R™*™ (k=1,...,ko), then

(B, X = (o, v

det(X) is the determinant of the matrix X € R**".

r(X) is the spectral radius of the matrix X € R**".

X~ is the matrix reciprocal to X € R**".

diag(zy,...,z,) is the diagonal n X n matrix with diagonal elements
Lly--- yTp-

FE is the unit matrix.

O is the zero matrix.

A matrix function Z : D — R™*" is called measurable, summable, con-
tinuous, etc., if its components are such.

Let D be a k-dimensional segment, kg € {1,...,k}, D° be the projection
of D onto RFe and M, : D° — R™*™_ A matrix function Z : D — R™*™ ig
called My-continuous (Mp-summable) if it admits in D the representation

Z(x1,... ,x) = Mo(z1,...,Tk) Zo(T1, ... ,Tk),

where Zy : D — R™*" is continuous (summable).

Let My : [0,b] — R™*™. We say that a matrix function Z : Dy —
— R™*" gatisfies the Carathéodory condition with My weight if it admits
the reprezentation

Z(x,y) = Mo(y) Zo(z,y)

in Dyp, where Zo(-,y) : [0,a] = R™*™ is measurable for all y € [0,b],
Zo(z,-) : [0,b] = R™*™ is continuous almost for all z € [0,a] and

OrggéchZo(-,y)H is summable in [0, a].

C(D; R™*"), Loo(D; R™ ™) and L(D; R™*") are the spaces of continu-
ous, measurable and essentially bounded and summable functions Z : D —
— R™*" with the norms

1Zllc = max (@1, )l

1Z
(.Tl,... ,wk)E'D

1Zlle. = esssup [ Z(z1,. .., z)ll;
ml,...,mk)ED

||Z||L:/ ./||Z(a:1,... Jz)||dzy - - da.

(
D



If Z = (2ij) € Loo(D; R™*™), then

ess sup Z(a:l,...,a:k):( ess sup zij(arl,...,a:k)).

(zl,...,zk)GD (11,...,Ik)€D
If Z € L(Dap; R™*™), then

||Z||g)) = esssup / /
(z,y)EDas

||Z||(Ll) max / H/ (s,t)ds |dt+/
(2,y)E€Das
|/ sydsH-{—H/ a:tdtH

Ck ([0, a]; R™*™) is the space of k times continuously differentiable matrix
functions Z : [0,a] — R™*™ with the norm

Yy
Z(s,t)dtHds],

||Z||2) = esssup
zy)E'Dab

k
12l = max 311200
ico

((Njkfl([O,a];]RmX”) is the space of matrix functions Z : [0,a] — R™*"
which are absolutely continuous together with their derivatives up to the
k — 1 order inclusive, with the norm

k—1 a
1Zlgo0 = Y 11ZP(0)]] +/0 125 ()| d.
i=1

@Oo (R, R™*™) is the space of bounded and Lipschitz continuous matrix
functions Z : R — R™*™.

CkS1([0,a]; R™*™) is the space of matrix functions Z : [0,a] — R™*"
which are Lipschitz continuous together with their derivatives up to the
k — 1 order inclusive, with the norm

1Z|lze = ZHZ ||+ess[gu5>||z<’“( 2)||dz.
S
C([0,a]; R™*™) =T ([0, al; R™*"), Cox ([0, a]; R™*™) =C2 ([0, a]; R™¥™).

C(Dap; R™*™) is the space of absolutely continuous matrix functions Z :
Dap — R™*™ with the norm

12k = 12001+ [ |Z2& O ar 4 [ 2200 g

62Z (z,y)
d d
/ / H 0x0y ‘ Y.
@06 (Dp; R™*™) is the space of locally absolutely continuous matrix func-
tions Z : Dy — R™*™,
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If Z € C(Dgp; R™*™), then

121 = 120,01+ max (/0

e | 175,

(,y)EDas
aZ (z,y)
Z(~—Z00 + esssup H H H 7Y H
1212 = 12(0,0)] (”wb( o))

G (Dgp; R™*™) is the space of measurable matrix functions Z :

Dap — R™*™ such that Z(z,-) € Ck1([0,b]; R™*™) almost for every z €
€ [0,a], and

0'Z(x
ess sup Z Hin < +o00.
("%y)E’Dab i=0
ct-b (Dgp; R™*™) is the space of measurable matrix functions Z :

Dap — R™*™ such that Z(-,y) € Ci1([0,a]; R™*™) almost for every y €
€ [0, ], and

'Z(
ess sup Z H #

Z H < +00.
(I,y)GDab i=0 61‘
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CHAPTER I

§ 1.

Let n, n; and no be natural numbers, I be a finite or an infinite interval
of the real axis,

D=1x10,0b]
and A1,A» and A be some nonempty closed subsets of the spaces Lo, (D;R™),

Loo(D;R™) and Lo, (D; R™). The boundary value problems considered in
this work are reduced to a system of operator equations of the type

Zi(way) = gi(zlvz2)($vy) (Z = 152) (11)

or to the equation

z(x,y) = 9(2)(x,y), (1.2)

where g; : Ay x Ao = A; (i=1,2) and g : A — A are continuous operators.
By a solution of system (1.1) (equation (1.2)) we shall understand a pair
of vector functions (z;)?_; € A; X Ay (vector function z € A), which satisfies
system (1.1) (equation (1.2)) almost everywhere in D.
For arbitrary y € [0,b] and z € Ly (D, R¥) assume

|2[1,y = esssup |2(z,t)], |2(-,y)lr = esssup|z(z,y)l,
(z,t)eIx[0,y] zel
lzllry = esssup |lz(z, )|, ||z(-,y)|lr = esssup|[z(z,y)||.
(z,t)eIx[0,y] zel

Let Ap be a subspace of the space Loo(I; R"2) satisfying the following
conditions:

1)ifv(z) =ce R for z € I, then v € Ag;

2) if v1 and vy € Ag and v(z) = ax vi(z), then v € Ag;

3) if (o and ¢ € Ao, then |((-,y) — Co(-,y)| € Ap almost for all y € [0, b].

An operator [ : Ag — R"2 is called non-negative if for any non-negative
vector function v € Ag the vector I(v) is non-negative.

If A€ Loo(I;R™*"2) and A(-)c € A for ¢ € R, then by [(A) we shall
denote a matrix such that

[(A()e) = I(A)c for ceR™.
Let for any ¢; and (; € A; (i = 1,2) the inequalities
191 (¢, &) (@) — 91(Cr, G) (@, w)| <
< /Oygo(t)(llCl = Gillze + 2 = Gllre) dt (1.3)
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and
192(C1, C2)(2,9) — 92(C1, G) (@, y)| <
< ApilG = Clry + /Oy A2 (1)|¢2 — Gal e dt +
+ A1 (2, )G y) = QG+ Ao (@, )G Y) — GGy (1.4)

hold almost evrywhere in D, where g : [0,b] = Ry is a summable function,
Ap1 is a non-negative constant ns X ny; matriz, Ags € L(]0,b]; R™2*"2) and
A; € Lo (D; R™2%72) (4 = 1,2) are non-negative matriz functions,

Ai(y)e € Ay for y€[0,b], c€R™ (i=1,2)

and | : Ag = R™ is a non-negative linear operator. Besides, let

esssupr(l(A4a(,y))) <1 (1.5)
0<y<b
and
esssupr(A(y)) <1, (1.6)
0<y<b
where
A(y) = esssup [A1(w,y) + As(w,y) (B = I(As(, ) 1A (,9))]-(1.7)

zel

Then system (1.1) has the unique solution (z;)?_, € A1 x Ay. Moreover,
for an arbitrary (zi0)?_, € A1 X Ay we have

Zim(z,y) = zi(z,y) for m — +o00 (i =1,2), (1.8)
where
Zim(Z,Y) = gi(Z1m-1,22m-1)(z,y) (=1,2; m=1,2,...). (1.9)
To prove this lemma we need

Let By, be a non-negative constant no X ny matriz, Bz €
€ L([0,b]; R*>>*"2) and B; € Loo(D;R™*"2) (i = 1,2) be non-negative ma-
triz functions,

Bi(-,y)c € Ay for y€[0,b], ce R* (i=1,2)

and | : Ag — R™ be a non-negative linear operator. Moreover, let

%s<s 51<1{[))r(l(B2(-,y))) <1 (1.10)
and
esssupr(B(y)) <1, (1.11)

0<y<b



where
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B(y) = esssup [Bi(z,y) + Bz (2,y) (E — 1(Ba(-,y))) " U(Bi(-y))]. (1.12)

zel

Then there exists a positive number p such that for vector functions

w; € Loo (D; R™) (i = 1,2) satisfying the condition
w2 (- y)| € Ao
almost everywhere in [0,b] and the inequalities

y
[Jws (2, y)|| <0 +/ 9o () (lwallr.e + [lwallr.e) dt
0

and

y
|wa(z,y)| <1+ Bot|wi|r,y + / By (t)|wa]r,: dt +
0

+ Bi(@,y) w2 (-, 9) |1 + Ba(, y)l(Jw2 (-, 9)]),

almost everywhere in D, the estimates

b
il < pesp (o [ ao0) ) @+l G =1,2)

are valid for any 6 € Ry, n € R™ and go : [0,b] = Ry

(1.13)

(1.14)

(1.15)

Proof. Because of the non-negativity of [ and the restrictions imposed on

the space Ag, from (1.14) we have

y
(w2 (- y)]) < 1(77 + Boi w1,y +/ Boz(t)|w2|1 ¢ dt) +
0

HUBLCy)w2 (5 y) |1 + LB (5 y)(lwa (-, 9)])

and hence

(B = 1(Ba )]s (- 9)]) < 1+ Borlwn |1, +

+ [ BoaOuals ) + 151 (sl

which by virtue of condition (1.10) implies

(o)) < (B = UBa () "1 (n+ Bo w1, +

0

4 [ Bra(Oluslne de) + (B = 1Ba(.00) 1B Gl
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According to the latter estimate and equality (1.12) we find from (1.14) that

Yy
wao)ls < B+ Borlurlry + [ Boa(o)lwalrade) +
0
+ B(y)|w2(7 y)|17

where By is the non-negative constant n, X ny matrix depending on [ and
Bs only. From this and taking into account (1.11), we get

_ Yy
wao)ls < (B = B) " Ba(n+ Borlurliy + [ Boa(®luwelrsdt)
0

and
y
el < o (Il + sl + [ 1Boa)] el )

where
p1 = (1+[|Bor )| Bol| esssup [|(E — B(y))~"||-
0<y<b

By Gronwall’s lemma ([19],p.37) from the latter inequality it follows that

lwalzy < pa(llnll + llwillzy), (1.16)

where
b
p2 = p1exp (Pl / || Boz2(2)]| dt)-
0

In view of (1.13) and (1.16)

b Yy
lwillry < 6+ pallnl / go(t) dt + (14 pa) / go(®)lfwn |1 dt.
0 0

From this again by Gronwall’s lemma we obtain
b y
lwrllry < (54 palll [ anltyat) exp (14 o) [ antrd) <
0 0
b
< (1 ) exp (24 p2) [ on(t) de) (5 + Il
0

Estimates (1.15) follow from the latter inequality and (1.16), where p =
= 2(1+ p2)? is the number depending on By;, B; (i = 1,2) and [ only. W

Proof of Lemma 1.1. In view of (1.5)-(1.7) there exists v € (0,1) such that
the matrix functions

Bi(z,y) =~ 'Ai(z,y) (i=1,2) (1.17)

satisfy conditions (1.10) and (1.11), where B is the matrix given by (1.12).
First let us prove the existence of a solution of system (1.1).
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Let us choose arbitrarily (z4)?_; € A; x Az, compose the sequence
(zim)?2; (m = 1,2,...) by formulas (1.9) and show that this sequence is
fundamental in L, (D;R™ ) x Lo, (D; R"2). Put

Vim(T,y) = 'y*m[zim(a:,y) — zim_l(z,y)] =12, m=1,2,...).
Then in view of (1.3),(1.4) and (1.17) we obtain

Yy
V1im\T, < _1/ t V1 m— T+ V2 m— dt
oam (@)l <77 | g0 Yl m-allre + w2 m-1llre) (1.18)

and

[vam (z,y)| < Bo1|v1im—1|r,y + /Oy Boa(t)|v2 m—1]r1,e dt +
FB1 @, 2 mt (s + Ba(@, (o2 ma (o)) (m=2,3,...), (1.19)
where
Bor =7 '401,  Boa(t) =7 ' Ap2(t). (1.20)
Introducing the notation
wim(z,y) = 1rgr}cagxm lvie(z,y)] (i=1,2; m=1,2,...),
§ = lloiillre, 1= lvailrs, Folt) =n1y ™" go(t),
from (1.18) and (1.19) we get

y
llwim (z, y)| < 5+/ Go(®) (lwimllre + llwamllre) dt (m=1,2,...),
0

[wam (z,y)| <1+ Bot|wim|r,y + /Oy Boa (t)|wam|r,¢ dt +
+ Bi(z,y)|lwam (- 9) 1 + Bz(z, )l (Jwem (- 9)) (m=1,2,...),
whence according to Lemma 1.2 it follows that
lwimllrp <po (i=1,2; m=1,2,...),

where pg is a positive constant independent of m.
Therefore

||sz _Zimflul,b S 007m (7’ = 172a m = 1727)

Consequently, ((z,m)le);o:o is a fundamental sequence in Lo (D;R")x

x Loo (D; RP2). Put

1

m——+o00
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Since the sets A; (i = 1,2) are complete and the operators g; : Ay x As — A;
(i = 1,2) are continuous, it becomes obvious that (z;)7_; € A; X Az is a
solution of system (1.1).

To complete the proof of the lemma we have to show that system (1.1)
has no solution different from (z;)?_,. Let (2;)7_, be an arbitrary solution
of this system. Then in view of (1.3) and (1.4)

Yy
lz1(z,y) — Z1(z,y)|| < / 9o()(llz1 — Zillre + |22 — Z2||1.e)dt
0
and

y
|z2(2,y) — Z2(,y)| < Aorlz1 — 211y +/ Aoz (t)|z2 — Za|redt +
0
+A1 ($,y)|22(,y) - 22('7y)|1 + A2($,y)l(|22(,y) - 22(',3/)),

whence according to conditions (1.5) and (1.6) and Lemma 1.2 it follows
that

lzi = Zllrps =0 (i=1,2). W

When [ is the zero operator Lemma 1.1 takes the form of

Let for any (; and (; € A; (i = 1,2) inequality (1.3) hold
almost everywhere in D and

192(C1, &) (2, ) — 92(G1, &) (@, y)| < Ao |G — Gilry +

+/0y Apa ()]G — Glredt + Ay) |G (y) — G y)l, (1.21)

where go : [0,b] = Ry is a summable function, Ag1 is a non-negative con-
stant na x ny matriz, Aoz € L([0,b]; R™ * "2) and A € Lo (D;R™*"2)
are non-negative matriz functions. Moreover, it is assumed that A satisfies
condition (1.6). Then system (1.1) has the unique solution (2;)?_, € A1 x Ay
and for arbitrary (zi0)?_, € A1 x Ay conditions (1.8) hold, where

sz(xay) = gl(zl m71,22m71)(ﬂ3,y) (71 = ]-7 2) m = ]-7 27 v )
Equation (1.2) is equivalent to system (1.1), where

ny =n, na = 17 Al = A7 A2 = LOO(D7]R)7
g1(z1, ) (®,y) = g(21)(®,y), 92(21,22)(x,y) =0.

Therefore from Lemma 1.3 immediately follows

Let for any ¢ and { € A the inequality

l9(¢)(@,y) — g(O) (@, )| < /Oy go®IIC = Clliredt (1.22)
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hold almost everywhere in D, where go : [0,b] = Ry is a summable function.
Then equation (1.2) has the unique solution z € A and for arbitrary zo € A
we have

zm(z,y) = 2(x,y) for m — 400, (1.23)
where
2m (2, y) = g(Zm—1)(z,y) (m=1,2,...). (1.24)

Remark 1.1. From the above arguments it becomes clear that if condi-
tions of Lemma 1.1 take place, then

1zi = Zimllrp < poy™ (m=1,2,...),

where v € (0,1) and pp > 0 are constants independent of m. If conditions
of Lemma 1.4 hold, then

Iz = zmll < 2 m=1,2,...).

§ 2.

In this section for a system of linear differential equations

dz(z,y)
dz

= Az, y)z(z,y) + c(z,y) (2.1)

depending on a parameter y € [0, b], we investigate boundary value problems
of the type

h(z(-,9))(y) = ¢(y), (2.2)

where

A(,y) = (aij(,y)) € Loo([0,a]; R™™)  for y € [0, 8],

= su Az, < 400,
¥ (w)epDabll (9l (2.3)

c(,y) € Loo([0,al; R"), @(y) € R* for y € [0,0]

and h is a linear continuous operator acting from the space ((Nj([O, al; R™) to
a subspace of the space Lo ([0, b]; R™).
The operator h uniquely defines matrix functions

Hy € Loo([0,b); R**™),  H € Log(Dgp; R¥*™) (2.4)
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such that

hu)(y) = Ho(y)u(0) + / " H(s, gy (5) ds

for u € C([0,a];R™), y € [0,b].*

(2.5)

Along with (2.1),(2.2) let us consider the corresponding homogeneous boun-
dary value problem

EEI) — a(e,y)eta.n), 2.1
M) ) = 0. (2.2

By Zo(,y) will be meant a fundamental matrix of system (2.1p), satis-
fying the initial condition

ZO(an) =FE.

By My and M we denote matrix functions given by the equalities

Mofy) = Ha(o) + [ H(s) 2255 s,

S
BZO (87 y)
0s

(2.6)

M(z,y) = H(xz,y)Zo(z,y) + /a H(s,y) ds.

Moreover, we shall use the notation
Ing, = {y €10,b] : det My(y) # 0}.
In view of (2.5) and (2.6),

h(Zo (- y)u(-)(y) = Mo(y)u(0) + /Oa M(s, y)u'(s) ds

for u € C([0,a]; R™), y € [0,b].

(2.7)

It is easily seen that the condition

Yy € IMO (28)

is necessary and sufficient for problem (2.15),(2.2p) to have only the trivial
solution.

4See Lemma 2.1.
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h
In this subsection we shall give some results of Dunford-Pettis’ theorem
([20],Ch.XI, §1, Theorem 6) on the integral representation of the operator
h which will be necessary in the sequel.

1 h is the linear continuous operator acting from @([0, al; R™)
to L ([0,0]; R™) if and only if representation (2.5) is valid. Hy and H here
are the matriz functions satisfying conditions (2.4).

Proof. It is easy to see that if the matrix functions Hy and H satisfy condi-
tions (2.4), then the operator h given by equality (2.5) is a linear continuous
operator acting from C([0,a]; R™) to Loo([0,b];R™). Let us now show the
converse: if h : C([0,a];R") — Loo([0,]; R?) is a linear continuous oper-
ator, then representation (2.5) is valid. For an arbitrary vector function
v € L([0, a]; R™) assume that

l(v)(z) = /Omv(s) ds

and

h(v)(y) = h(1(v))(y).
It followstrom the continuity of operators I : L([0,a]; R™) — @([O,a]; R™)
and h : C([0,a];R") — L (]0,b];R™) that h is a linear continuous op-
erator acting from L([0, a]; R") to L ([0,b]; R™). Therefore, according to

the above-mentioned Dunford-Pettis theorem, there exists a unique matrix
function H € Ly (Dgp; R"*™) such that

h(v)(y) = /Oa H(s,y)v(s)ds for v e L([0,a];R™), y €[0,b]. (2.9)

On the other hand, since ¢ — h(c)(y) is a linear continuous operator
acting from R™ to Lo ([0,b]; R™), there exists a unique matrix function
Hy € Lo ([0, b]; R»*™) such that

he)(y) = Ho(y)e for c€R™, ye [0,b]. (2.10)
Let u € C([0,a]; R") be an arbitrary vector function. Then
(@) = u(0) + 1(u)(z) for « € [0,d].
Therefore, in view of (2.9) and (2.10), we have
Bw)(y) = h(u(0)(y) + h(u)(y) =
= Holy)u©) + [ Hs)u'()ds for y € 0,1

Consequently, representation (2.5) is valid, where Hy and H are the
matrix functions satisfying conditions (2.4). H
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25 his a linear continuous operator acting from C([0, a]; R™)
to C([0,b]; R™) if and only if representation (2.5) is valid, where

Ho € C([0,b; R™*"), H € Loo(Dap; ™M) (2.11)

and

/I H(s,-)ds € C([0,b]; R™*™) for z € [0,a]. (2.12)

Proof. Let h: C([0, a); R*) — C([0, b]; R™) be a linear continuous operator.
Then, according to Lemma, 2.1; representation (2.5) is valid, where Hy and
H are matrix functions satisfying conditions (2.4). On the other hand,

Hy(-)(c) = h(c) € C([0,b];R™) for c € R"

and
(/Oz H(s,-) ds)c = h(Xcz) € C([0,b]; R™) for ¢ € R", z €0,a],

where

sc for0<s<z
Xea(s) = :
zc for s>z

Consequently conditions (2.11) and (2.12) hold. Thus the first part of
the lemma is proved.

Assume now that Hy and H are the matrix functions satisfying conditions
(2.11) and (2.12), and h is an operator admitting representation (2.5). First
of all let us show that h acts from C([0, a]; R*) to C(]0,b]; R"). To do this,
it is enough to show that for an arbitrary v € L([0, a]; R™) the condition

a
w(-) = / H(s,-)v(s)ds € C([0,b]; R™) (2.13)
0
holds.
Without loss of generality we may assume that
Y= sup [[H(z,y)| < +oc. (2.14)
(z,y)GDab

Let v : [0,a] = R® (k= 1,2,...) be a sequence of continuously differen-
tiable vector functions satisfying conditions

/ [|lok(s) —v(s)||ds - 0 for k — +oo. (2.15)
0

Put

wl) = [ " H(s, y)ou(s) ds.

5This lemma can also be obtained from B.Z.Vulikh’s theorem ([48], Theorem 2).
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Then
where

whence, in view of (2.11) and (2.12), it follows that
wy € C([0,0;R™) (k=1,2,...).
On the other hand, in view of (2.14) and (2.15),

a
sup [lwe(y) —w@Il <%0 [ [lve(s) —v(s)llds = 0 for k= +oo.
y€[0,b] 0

Now, applying the well-known Weierstrass theorem, the validity of condi-
tion (2.13) becomes evident. Hence h is a continuous operator acting from
T(0,al; B to C(0, b R"). W

3 Let k be an arbitrary positive integer. h is a linear con-
tinuous operator acting from C([0,a]; R™) to C*=1([0,b]; R?) if and only if
condition (2.5) holds, where

Hy € C*-1([0,b); R*™) (2.16)
and

H e CCVF=D (D RP™), (2.17)

Proof. It is evident that if the matrix functions Hy and H satisfy conditions
(2.16) and (2.17), respectively, then operator the h, given by the equality
(2.5), transforms C([0, a]; R™) into (C’c L([o, ,b]; R") and is linear and con-
tinuous. Let us show the converse: if b : C([0,a]; R*) — Ck1([0,b];R™)
is a linear continuous operator, then (2.5) is valid and Hy and H satisfy
conditions (2.16) and (2.17), respectively.
For an arbitrary vector function u € ((NZ([O, al; R") we put
. dt
RO () (y) = @h(u)(y) (i=0,...,k).

It is evident that A(*) and () (:)(0) (i = 0,...,k — 1) are linear continuous
operators acting from C([0,a]; R™) respectively to Lo ([0,5]; R?) and R".
According to Lemma 2.14,

1O (u)(y) = Hox(y /Hksy 5) ds

for u € C([0,a];R"), y € [0,0],
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and
O @)(0) = Hou(0) + [ CHisn(s)ds (1= 0,1,...,k—1),

where

H[)k € Loo([oab]aRnxn)a Hk € Loo(Dab;Rnxn)a
Ho; € R™", H; € Loo([0,a; R™™) (i=0,...,k—1).

Therefore from the identity

there follows representation (2.5), where

k—1
y' 1 v _
Ho(?/) = E FHOZ + m/o (y—t)k 1H0k(t)dt,
=0

and

k—1 yl 1 y -
o) = Y 1) + g [ =0 e

are the matrix functions satisfying conditions (2.16) and (2.17). W

4 Let k be an arbitrary positive integer. h is a linear contin-
uous operator acting from C([0,a]; R™) to C*([a,b]; R™) if and only if (2.5)
15 valid, where
Hy € C*([0,b]; R™™),

the matriz function H satisfies condition (2.17), and

/ZH(S,-) ds € C*([0,b]; R™™)  for x € [0,a).
0

This lemma can be proved similarly to Lemma 2.13, with the only differ-
ence that instead of Lemma 2.1; we use Lemma 2.15.

Zoy My M
v If
A € Loo(Dgp; R**™), (2.18)
then

Zo € Loo(Dgy; RP*M) (2.19)
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and
07,
—— € Lo (Dyp; RY*™). 2.2
0 € Lo (D B) (220)
In the case when
/ A(s,-)ds € C([0,b; R™™™)  for z €10,aqa], (2.21)
0

then instead of (2.19) we have
Zy € C(Dgp; R**™). (2.22)

Proof. In view of (2.3) and (2.18) it is clear that the matrix function Zj is
measurable and satisfies inequalities

H 9Zo(z,y)

2| < 4] Zota,w)|

and
T
|Zaw)ll < n+y [ Zals )l ds
0
almost everywhere in D,,. From this, using Gronwall’s lemma, we obtain

=

1ol < nexpira), [PZ2ED ) < rexplym). (229

Hence Z; satisfies conditions (2.19) and (2.20).
Assume now that (2.21) holds. Then, in view of (2.3), the matrix function

xr
Ai(ag) = [ Als,y)ds
0
is continuous in D,;,. Therefore it is clear that the function

o) = _max _|l4(@y) = 4@, 9 (224)
ly—g|<d

satisfies the condition
lim w(8) = 0. (2.25)
In view of (2.3), (2.23) and (2.24), from the equality
Zo(w.9) = Zafe,9) = [ 1AGs,9) = AGs.0) Zalsp) ds +
+ [ Aa)Zal ) = Zo(o,plds = (A1 (2.9) = Ao, (o) -

—/Om[Al(s, y)—Ai(s,9)1A(s,y) Zo(s,y) d8+/0m A(s,9)[Z0(s,y) = Zo(s, y)lds
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it follows that

T
120(2,y) = Zo(2, 9| < nw(ly —7) +7/ 120(5,9) = Zo(s,9)|| ds
0
for 0<z<a, 0<y,j<b,

where
m = n(1+ ay)exp(ya),
whence, according to Gronwall’s lemma, we get

where 9 = 71 exp(ya). The validity of (2.22) becomes evident if we take
into account the above estimate and conditions (2.20) and (2.25). H

2 If
A€ CLMO) (Dyp; RM), (2.27)
then
Zo € C(Dap; R™*™), (2.28)
0Zy 07y 0% 7,
%0 9% Lo (Dop: RPXM). 2.2
ox’ Oy and 0xdy € (Das ) (2.29)
When
0A
A and e € C(Dap; R**™), (2.30)

then instead of (2.29) we have

BZO 8Z0 62 Z[)
nd

. i i .PNXn
520 5y M a9, € CDwRT), (2.31)

Proof. In view of (2.27) there exists a positive number [y such that the
function w given by (2.24) satisfies the inequality

w(0) <lpd for § > 0.
Therefore from (2.26) we get

Taking into account the above arguments and conditions (2.3),(2.23) and
(2.27), it follows from the identity

BZO (xa y)
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that
0Zy _ ~(_10) CRX
5 € CY) (Duy; RV M), (2.34)
0% Zy(x,y) 0Zo(z,y) , 0A(z,y)
Towgy |~ Awy)—p T+ =5 = () (2.35)
and
0Zo(,y) :Zo(a:,y)/ Zo—l(s,y)MZO(s,y) ds.  (2.36)
Oy 0 Ay

The validity of conditions (2.28) and (2.29) becomes evident if we take into
consideration (2.32)-(2.35) together with (2.3),(2.20) and (2.27).

In the case when conditions (2.30) hold, conditions (2.31) follow from
equalities (2.33),(2.35) and (2.36). ¢ W

By virtue of Lemmas 2.1y - 2.14, 2.2; and 2.2, from (2.6) we get the
following propositions:

v If h: C([0,a]; R") = Loo([0,b];R™) is a linear continuous
operator and the matriz function A satisfies condition (2.18), then

Moy € Loo([0,0]; R"™™), M € Loo(Dap; R**™).

5 Let h: C([0,a]; R*) — C([0,b]; R") be a linear continuous
operator and let the matriz function A satisfy conditions (2.18),(2.21). Then

My € C([0,b); R™*™), M € Loo(Dap; R**™)

and

/OI M(s,-)ds € C([0,b]; R™™™) for z € [0,a).

s Let h: C([0,a]; R") = Cso ([0,b]; R™) be a linear continuous
operator and let the matriz function A satisfy condition (2.27). Then

My € Coo ([0, b]; R*™)
and

M € CCL0 (D R™M). (2.37)

6This fact is a consequence of the well-known Peano theorem on the differentiability
of a solution of the Cauchy problem with respect to a parameter ([19], Theorem 3.1).
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4+ Let h: C(]0,a]; R™) — C'([0,b]; R") be a linear continuous
operator and let the matriz function A be continuous and have a continuous
partial derivative in the second argument. Then

My € C' ([0, b]; R™™™),

the matriz function M satisfies condition (2.37) and

/Ow M (s,-)ds € C'([0,b]; R*™™™)  for z €]0,a).

Let the parameter y € [0,b] be such that

M(a:,y)Z(;l(a:,y)c(a:,y) = Mo(y)c()(a:,y) fOT‘ 0 S T S a,

o(y) = Mo(y)po(y), (2.38)

where
c(,y) € L([0,a]; R") and ¢o(y) € R".

Then the vector function

2(x,y) = Zo(x,y) [goo(y) - /Oa co(s,y)ds + /090 Zy (s, y)e(s, y) ds] (2.39)

is a solution of problem (2.1),(2.2), which is unique if and only if condition
(2.8) holds.

Proof. According to the Cauchy formula, 7 the vector function

o) = zepfat [ 7 s d]  @a0)

is a solution of system (2.1) for every a € R™ and, vice versa, for every
solution of this system there exists & € R™ such that representation (2.40)
is valid.

If we substitute (2.40) into (2.2), then with regard to (2.7) and (2.38) we
shall find

Mo(y)a + / "M (s,9) 25 (5,y)els,y) ds = o(y)

and
Mo(w)a = M) o) — [ eols ) ds]- (2.41)

"See [19], Ch.4, §2, Corollary 2.1.
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Consequently the vector function (2.40) is a solution of problem (2.1),(2.2)
if and only if « is a solution of the system of linear algebraic equations
(2.41). It is obvious that

o= po(y) — /Oa co(s,y) ds

is a solution of this system which is unique if and only if condition (2.8)
holds. W

According to Lemmas 2.2;, 2.25 and 2.3; -2.34, from Lemma 2.4 we get
the following assertions.

1 Let h: C([0,a]; R") — Loo([0,b];R™) be a linear continuous
operator, the matriz function A satisfy condition (2.18) and

mes Iy, = b.
Moreover, let
¢ € Loo(Dup; R*), o € L([0,b]; R*), n € L([0,b]; R"),

where
n(y) = 1My W) + 1My ()W)

Then for almost every y € [0,b] problem (2.1),(2.2)has the unique solution
Z('ay); and
0z(x

osssup (IIZ(w,y)II + HTQ;‘IJ)H)/n(y) < +oo.

5 Let h: C([0,a]; R*) — C([0,b]; R™) be a linear continuous
operator, A € C(Dyp; R"*™) and Ip, = [0,b]. Moreover, let

¢ € C(Dap; R™), ¢ € C([0,b];R™).
Then for every y € [0,b] problem (2.1),(2.2) has the unique solution z(-,y),
and 9
z
— Dap; R?).
z and e € C(Dup; R?)

s Let h: C([0,a]; R") — Cuo([0,b]; R") be a linear contin-
uous operator, the matriz function A satisfy condition (2.27), and Iy, =
= [0,b]. Let, in addition,

cé€ @;1’0) (Dap; R™), @€ @([O,b];]R”).

Then for every y € [0,b] problem (2.1),(2.2) has the unique solution z(-,y)
and _
S (C(Dab;Rn).
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4+ Let h: C(]0,a]; R™) — C'([0,b]; R") be a linear continuous

operator, A : Dypy — R™™™ and c : Dy — R™ be continuous and have the
continuous partial derivatives % and g—;, @ : [0,b] = R™ be continuously
differentiable and Ip;, = [0,b]. Then for every y € [0,b] problem (2.1),(2.2)

has the unique solution z(-,y), where z : Doy — R™ is continuous and has

: ; : : oz 0Oz 0%z
the continuous partial derivatives 5=, Y and a0y -

M;'(y) For every k € {1,...,n} let e; denote
an n-dimensional column vector whose k-th component is unity and the
remainder are zero. We have

If Iz, # @, then
1M5 @I =D 20,9l for y € Tu,, (2.42)
k=1

where every zi(-,y) is a solution of system (2.1g) satisfying the condition

h(ze (- y))(y) = ex. (2.43)

Proof. According to Lemma 2.4, problem (2.1y),(2.43) has the unique solu-
tion zx(-,y) for every k € {1,...,n} and y € Ip;,. Let Z(z,y) be a matrix
with columns z1(x,y), ..., 2z,(z,y). Then

Z(z,y) = Zo(z,y)Z(0,y).
Hence, in view of (2.7) and (2.43), we have
E = My(y)Z(0,y) for y € In,.
Consequently, equality (2.42) is valid. W
Let us introduce the notation
Ao(s,z,y) =0, Ai(s,z,y) = A(s,y),
Apalsan) = [ A€DA G ENE (=12,..0),

Moo(y) = Ho(y), Mo;(y) = Holy) +

(2.44)

+/0 H(s,y)A(s,y) [E+ZZ;/O A€, s,y)delds (j=1,2,...). (2.45)

If the inequality
det Mo k—1 (y) # 0
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holds for any y € [0,b] and natural k, then for every natural m we put
m—1 z
Bun(s,r.)= [E+ Y [ A€, de] M ) H (5, Als.9), - (240)
i=0 0

m—1 T
Bin(s.9) = [E+ 3 [ s ae] Mzl 1)
i=0

« [ HEDACHA e Bk @A)

and

x
Blnlv) = mas [ [ 14n(s,2,9) = Bun(s,2,0)]ds +
+/a B (5,7, )] ds|. (2.48)
Let there exist natural k and m and a nonempty set Iy C [0, b]
such that

det Mox—1(y) #0 for y €Iy (2.49)

and
r(Bh,(y)) <1 for y€ Io. (2.50)

Then Iy C In, and

1M W1 < poll(B = B, W)~ NI Mgy I for y € T, (2.51)

where py is a positive constant.

Proof. Let z(-,y) be an arbitrary solution of system (2.1p). Then for any
natural j we have

z(z,y)= [E + Z /I Ai(s,z,y) ds]z(O,y)-{—/z Ai(s,z,y)z(s,y) ds.(2.52;)
=00 0
In view of (2.5),(2.44) and (2.45), from (2.52) we find that
D)) = Moa)=(0) + [ Hsp)AGs)s(s)ds for k=1
and

h(z(-,y))(y) = Mok-1(y)z(0,y) +

+/0“ (/sa H(&y) A&, y)Ak—1(s,€,y) dﬁ)Z(s,y) ds for k> 1.
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Hence, by virtue of (2.49) it follows that
0,9) = Mg Wh(=(0)) ) = Mig'0) [ H(s,)Als,)2(5,9) ds
0

for k=1, yely

and
2(0,5) = My )h(2(,9) (1)~ ML, (y / / H(E,y)

XA(E,9) Ap-1(5,€,y) d€ ) 2(s,y)ds for k> 1, y €Iy,

If we substitute the value z(0,y) into the formula (2.52,,), then, in view
of the notation (2.46) and (2.47), we shall get

ny) = [E+ z_: /OI Ails,2,y) ds| Mg h(=(,9) () +
i=0

T a
+/ [Am(sa T, y) _Bkm(sa T, y)]Z(S, y) ds _/ Bkm(sa T, y)Z(S, y) ds for /RS IO)
0 T
whence, with regard to (2.48), we obtain
2(y) < Bim W)Z() + A ) Mgy W)I|7(2( 1)) (w)| for y € I,

where

2(y) = max |z(z,y)|

m—1 g
E+§/0 Ai(&,w,y) de]-

By condition (2.50) it follows that

and

A0 (y) =
m () Jnax,

2(y) < (B = BL.®) " ASW)|Me )[h(z(,9) ()] for y € Iy,
and, consequently,
2, )| < 1A% @) (B = B, ) ™ [ 1M, )| [ A (=(. ) W)

for Ogarga, y € lp.
However, in view of (2.3),

po=n sup A% W) < +o0.
0<y<

Thus we have proved that an arbitrary solution z(-,y) of system (2.1p)
admits the estimate

2z, y)l| < 22 ||E B )™ | IMg |2 (2(,9)) )|
for ngga, y € Iy,

(2.53)
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where pg is independent of Iy and z(-,y). It is easily seen that for every
y € Iy problem (2.19),(2.2p) has only the trivial solution, i.e. Iy C Ipz.

By virtue of Lemma 2.4, for every y € Iy and k € {1,...,n} problem
(2.19),(2.43) has the unique solution z(+,y). On the other hand, in view of
(2.53)

||Zk($ay)|| < — || E Bkm || || Ok 1
for ngga, y €l (k:l,...,n).
With regard to these inequalities, from (2.42) we get (2.51). W

Remark 2.1. Let h : C([0,a];R™) — C([0,b]; R") be a linear continuous
operator, the matrix function A satisfy condition (2.21) and let Iy C [0, b]
be a closed set. Then, as follows from Lemmas 2.2; and 2.3, for conditions
(2.49) and (2.50) to be fulfilled for some k and m, it is not only sufficient
but also necessary that

Iy C [Mo
Let
h(u)(y) = (wilai(y));_,, (2.54)
where a; : [0,b] = [0,a] (i =1,...,n) are measurable functions. Moreover,

let there exist a nonempty set Iy C [0,b] such that the matriz function A is
bounded in [0,a] x Iy and

r(A%(y)) < 2% for y € I, (2.55)
where
A°(y) = esssup |A(z,y)|.
0<z<a
Then Iy C In, and
1My (W) < pol| (B — —AO || for y € Iy, (2.56)

where py is a positive constant.

Proof. Let z(-,y) = (z:(-,y))"; be an arbitrary solution of (2.1p). Then
zi(z,y) = zi(a;i(y +Z/ a;j(s,y)zi(s,y)ds (i=1,...,n)
and
l2i(, )| <Ji(aiy |+Z% \/ 1235, 9) | ds
(1= 1, con),

(2.57)
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where

afj(y) = esssuplai;(z,y)|-

By Minkovsky’s inequality it follows that

(/oa Ho)de) <ot o)l +

+jia?j(y)(/0a‘/:(y)|Zj(8,y)|ds‘2da:)1/2 (i=1,...,n). (2.58)

However, by Virtinger’s inequality, &
a T 2 2(7/ 2 a 9
LI teewlasar< (2) [ 2@ Gi=1.m,
0 a; (y) ™ 0
Taking into account the above inequalities and condition (2.54), we get from
(2.58)

20) < I )]+ 2 A w)2),

= (( [ #enas)”)"

From this inequality, in view of condition (2.55), one arrives at the following
estimate

where

2a 1

Z(y) < a'?(E - =A"(y))

by which means from (2.57) we get
2. 0)] < IhC) W) + 0 2A0(0)2() <
< ()W) +adw) (B - 22 40) 7 ()0 =
= (5+ T220000)) (8- 22000) " G

The fact that A° is bounded in the set Iy results in

- |h(z(y)) ()| for y € I,

o)l < ool (B = 22 4%0) [ M)W for y e o, (2:59)

where
(m—2)
T

E+ “AO(y)H

Po = n Sup
y€lop

is a constant independent of z(-,y).
By virtue of (2.59) it follows from Lemmas 2.4 and 2.6 that Iy C Ip,
and estimate (2.56) is valid. W

8See [18], Ch.VI, Theorem 256.
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If problem (2.19),(2.2¢) is periodic, i.e.

2
then Hy(y) =0, H(z,y) = E and, consequently,

Mo(y) = Zo(a,y) — E.
The lemmas below have something to do with the considered case.

Let condition (2.60) hold and there exist a nonempty set
I C [0,b], a diagonal matriz function

AO(xa y) = diag[am (xa y)a tey aOn(xa y)] (261)
and a non-negative matriz function B : Iy — R ™ such that for every
y € Iy agi(r,y) : [0,a] > R (i = 1,...,n) are summable and of constant
stgm,

a
sup / laoi(s,y)|ds < +00 (i=1,...,n), (2.62)
y€lo JO
a
/ api(s,y)ds #0 for yely (i=1,...,n), (2.63)
0
r(B(y)) <1 for y €y (2.64)
and

|A(£L‘,y) - AO(xay)| S |A0($,y)|B(y) fOT 0 S T S a, ye€ IO' (265)

Then Iy C In, and
—1
1365 W1 < ol (B B) ([ Aalsds) | sor v Do, (260

where py is a positive constant.

Proof. First of all let us note that in view of conditions (2.62),

a
p1 = sup || exp (/ |A0(s,y)|ds) H < +00,
y€lp 0
nful
po= sup ————— < +00.

0<|u|<py |exp(u) — 1]
Let y € Iy and z(-,y) be an arbitrary solution of (2.1p). Then

dz(di’y) = Ao(w,9)2(w,y) + [A(z,y) — Ao(z,y)]2(z,y).

Therefore, according to conditions (2.61),(2.63) and Lemma 2.4, we have

o) =exo ([ o€ ) [exw ([ Aol ds) -] het) )+
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+[E—exp (/Oa Ao(s,y) ds)]71 /Ow exp (/j Ao(&,y) df) [A(s,y)—

-1

Ao (s,y)]z(s,y) ds+exp (/Oa Ao(s,y) ds) [E—exp (/Oa Ao(s,y) ds)] X
<[ e ([ Auen) ) o) - Al le(s. ) ds. (267

If we assume
2(y) = max [z(z,y)l,

then, in view of conditions (2.61), (2.63) and (2.65) and taking into account
the fact that functions a;(-,y) (i =1,..., n) are of constant sign, we obtain
from (2.67) that

IZ(wy|<@‘/aAosyd8‘_l|h »Y) (W)| +
+‘E exp /Aosyds ‘/ exp /Aogydg)Aosyds‘+
vexp ([ atonas)] [ e ([ daten) ) do(o.n) ds]| B)zto) =
—@/aAosyds‘_lw L)) )| +

+‘E exp /Aosde)‘ HE exp /AOfydf)‘
oo ("ot de) —exo ([ aten de) || Bz =
= 2| [Caofs)ds| |6 0]+ BWw)

and

) < B + 2| [ () 0]

By virtue of inequality (2.64), we have

12(y)| < pg‘(E By /Aosyds ‘|h
Consequently,
Po
[|z(z,9)|| < H (E—-B(y / Ao(s,y) ds H”h

for 0<z<a, y€l.

According to this estimate, it follows from Lemmas 2.4 and 2.6 that Iy C Iy,
and estimate (2.66) is valid. W
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Let condition (2.60) hold and there exist a nonempty set
Ip C [0,b] and functions o; : In — {—1,1} (i =1,...,n) such that

a;i(y) = esssup (Ui(y)aii(zay)) < o0,
0<z<a

_ N (2.68)
aij(y) =esssup |ag;(z,y)| <+oo (i#j, i,j=1,...,n) for y €I
0<z<a
and for every y € Iy the real parts of eigenvalues of the matriz
Ay) = (ayw)!,_,
are negative. Then Iy C Ip, and
1M W)l < pll A W) for y € Lo, (2.69)

where p > 0 is a constant.

Proof. From the asymptotic stability of the matrix A(y) (the real parts of
eigenvalues of A(y) are negative for y € Ip) we have

a;i(y) <0 for yely (i=1,...,n) (2.70)

and the matrix

Bly) = ((1—8,) 220"

@i (y)|/ ig=1"
where 6;;, Kronecker’s symbol, satisfies condition (2.64).
Assume

Ao(z,y) = diaglai1 (2,y), ..., ann(z,y)],  Ao(y) = diag[ai1(y),.. ., Gnn(y)]-
Then by (2.68) and (2.70),
|[Ao(y)| < |Ao(z,y)| for 0<z<a, yel
and
Az, y) — Aoz, y)| < ((1=8ij)ai;(y));,_, = 14o(y)|By) <
< |Ao(z,y)|B(y) for 0<z<a, y€l.

Consequently, all conditions of Lemma 2.9 are fulfilled. Therefore Iy C I,
and estimate (2.66), where po > 0 is a constant, takes place. On the other
hand,

(E-B(y) ™ =4 (y)A(y)
and

HAo(y)(/Oa Ao(3,y) ds)_luzzn: |ai,»(y)|‘ /0 aii(s, y) ds‘_l <Z foryel.
i=1

According to these conditions, from (2.66) there follows estimate (2.69),
where p = Zpo. W
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§ 3.

In this section for the linear hyperbolic system

o) = Puta (e p) + Pula ) g +
Pl 25 e (3.1)

we shall investigate two modifications of the characteristic initial value prob-
lem

w0 = g0, PO =y 4
Y
. Dulo.y) (3.2)
+ [ (Qulmuts.n) + 97 ()@ () Zp s
and
tim (280 yyute ) = o)
. (3.3)
w0.) = v+ [ [ Qs uts. s
where
P; € Loo(Dab;Rnxn) (Z =0, 152)7 q € Loo(Dab;Rn)a
(3.4)

vo € C([0,a;RY), 7i(z) =1+ [lph(@)]],

and the vector and matrix functions ¢ : [0,a] = R*, ¢ : [0,b] = R and
Qi : Doy = R”™ (i = 0,1), @ : [0,0] X Dgp — R"™™ are summable.
Moreover, there exists a summable function 7 : [0,b] — [0, 4+00) such that

1Q, s, DIl <n(y) for y€0,b], (s,t) € Dap- (3.5)

For an arbitrary z € [0,a] (y € [0,b]) by Zi(,-) (Z2(-,y)) we mean the
fundamental matrix of the system of ordinary differential equations

dz dz

5, = D) (= Pelaw)2),

which satisfies the initial condition

Before we proceed to formulating the conditions of the unique solvability
of problems (3.1),(3.2) and (3.1),(3.3), we have to establish some properties
of solutions of system (3.1).
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Every solution u of system (3.1) satisfies the conditions

Ou( a 0)
s || Qe (14 | 2420 )] < 4 (3.6)
and
Ou(z,y) u(0,y)
— /1t l—5 . 3.7
D [|| By ||/( +|| 3y ||)] < +00 (3.7)

Proof. According to conditions (3.4) and due to the absolute continuity of
u, there exists a positive number v such that

1P1(z, y)l| < v
and

/ 1Poa, tyu(z, £) + Palar, 1) 2 (Bt )

almost for every (z,y) € Dgp. Therefore from the equality

+q(z,t)||dt <~

2ur) 20 4 [ fpotatyute, ) +
+’Pl(a:,t)% + Pa(x,t) é )+q(a:,t)]dt

we get
ou(z,y) Ou(z,0) Y. ou(zx,t)
124G < e (1 D252 o 12

It follows from the above inequality and Gronwall’s lemma that
||M|| < (14~ (1 n ||M||) exp(7h).

Hence, inequality (3.6) holds. The validity of inequality (3.7) can be proved
similarly. W

If Pa(x,-) : [0,b] = R™™ is absolutely continuous almost for
every « € [0, a], then every solution of (3.1) is a solution of the system

S 127 ) Zalo0) 4 (2 )] =
= Z7 (@, y) (P(z,y)u(z,y) + q(x,y)), (3.8)
where

6P2 (xa y)

P(Z’,y) = ,P()(xay) + Pl(xay)tp2(xay) - 8:[/
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and, vice versa, every solution of (3.8) is a solution of (3.1).

Proof. Let u : Dy, — R™ be an arbitrary absolutely continuous vector
function. Then, by virtue of the equalities

BZfT;x,y) = _Zl_l(xay)Pl(xay)
and )
6Z287§;I;,y) = —Z{l(a:,y)P2(a:,y)
we have
S (2 @ ule,) = 257 )P pute,y) + 75 ) P
and
S 120 @) Zala ) 5 (2 @ putenn)) =
= o 127w (P~ Patepute, )] =
= 20 [T+ (Pl Pato) - D e,y -
ou(z,y) ou(z,y)
~Pale )=~ Paleny) =5 =]

The latter equality shows that u is a solution of system (3.1) if and only if
it is a solution of system (3.8). W

If
Py € CCMO (Dyy; RPXM), (3.10)

then an arbitrary generalized solution u of system (3.1) admits the repre-
sentation

o) = Za(e,) o) + [ 23" (5.0) 215 0)on (9] +

+Zs(z,y / / (s,9)Z1(s,y) Z7 " (5,) (P(s,t)u(s, ) —l—q(s,t))déc-ii,l)

where

vo(y) = u(0,y), wvi(z)= lim (W — ’Pg(z,y)u(z,y)) (3.12)

y—0

and, vice versa, whatever summable vector functions vy : [0,b] = R™ and
1 : [0,a] = R™ might be, the summable vector function u : Dy, — R,
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admitting representation (3.11), is a generalized solution of system (3.1)
satisfying conditions (3.12).

Proof. Let u be an arbitrary generalized solution of (3.1). Then, in view of
conditions (3.4),(3.9) and (3.10), the vector function

Zfl('a )(P(a )’LL(, ) + q('a )) :Dap — R™

as well as the vector functions vp : [0,b] = R™ and v; : [0,a] = R™ defined
by (3.12), is summable. As for the vector function

24, ) 2ol ) (2, e, ) £ [0,8] > B

it is absolutely continuous almost for all 2 € [0, a] according to Lemma 2.25.
Moreover,

Tl ) e (2 ), ) = 240Y)

Therefore, the integration of equality (3.8) from 0 to y yields

— Ps(z,y)u(z,y). (3.13)

27 ) 2 ) o (257 (0 )l ) =
= v (z) + /Oy Z7 Nz, 1) (P(x,t)u(x,t) + q(z,t))dt

and, consequently,

(25 )l ) = 25 @, 0) 2 e () +
+/0y Zy N2, y) 2 (2, y) Z, (2, 1) (’P(a:,t)u(a:,t) + q(a:,t))dt.

Then, because of the fact that the vector function
Z2_1('7 y)u(a y) : [07 a] - R”

is absolutely continuous almost for every y € [0, b], we get equality (3.11).

Assume now that vp : [0,b] = R™, vy : [0,a] = R and u : Dy — R™ are
arbitrary summable vector functions. Moreover, u admits representation
(3.11), i.e.

u(z,y) = Zz(z,y)[vo(y) + v(z, )],
where

v(z,y) = / " 25 (5,9) 2 (s, y)0n (s)ds +

+/0 /0 Z5 M (s,y) Z1(s,9) Z1 (s, t) (P (s, t)u(s, t) + q(s, t))ds dt.

Then by Lemmas 2.2; and 2.2, and conditions (3.4),(3.9) and (3.10), the
vector function v : D,y — R™ is absolutely continuous. It is also evident
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that the vector function u satisfies system (3.8) and conditions (3.12) almost
everywhere in Dg;,. Consequently, u is a generalized solution of system
(3.1). m

Problem (3.1),(3.2) has one and only one solution u, and

ug(z,y) = u(z,y), 'yfl(x)T = ’yfl(a:) Ou(z,y)

or ’
_ BUk(Z',y) — au(xay)
1 1
% (y)iay =7, (y)iay for k — +oo,

auk (17, y)

(3.14)

where

Y2(y) =1+ [lb ()l + /Oa[HQo(S,y)H +1Q:1(s,y)lllds,  (3.15)
uo(z,y) =0 and

ug(z,y) = /¢ t)dt +

y ra 1 Oup_1(s,t)
[ @b, 4 00@u 5,0 P s an +

// [Po(s, t)uk—1(s,t) + Pi(s, )Bukal(st)+

Oug_1(s,1t)
ot
Proof. Let ny = 2n, ny = n and -y > 0 be large such that

+Ps(s,) +q(s,t)]ds dt. (3.16)

r(A) <1, where A=n~;" esssup |Pa(z,y)|- (3.17)
(2,y)€Das

For arbitrary vector functions z1 = (2{)1_g € Loo(Dap; R™), where 2¢ €
€ Loo(Dap; R™) (i =0,1) and 23 € Loo(Dgp; R*?), assume that

9 (21, 22) (z,y) / G(t)dt +
e 0 1
+/ / [Qo(s,t)z](s,t) + Q1(s,t)z;(s,t)]dsdt +
/ / 5,0)27 (5, 1) +71(8)Pi(s, )21 (s, 1) +
+72(t) exp(y05)Pa(s, t)z2(s,t) + q(s, t)]ds dt; (3.18)

911, 22) () =97 () o (o1, 20) (2,0, (3.19)

91(z1,22) (z,y) = (g} (21, 22) (2, 9)) 10>
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and
-1 9 4
g2(21, 22)(,y) = 73 (y)exp(-VOx)zﬁ;gl(21,22)(x,y)- (3.20)

Let us show that problem (3.1),(3.2) is equivalent to the system of functional
equations (1.1).
Indeed, let problem (3.1),(3.2) have a solution u. Introduce the notation

Da9) =uley), ) = ) 2,

z1(x,y) = (Zi (xﬂy))zl:D z(z,y) = 751(y) exp(—=70) aug;’ y)

(3.21)

According to Lemma 3.1,
(2:)2_1 € Loo(Dap; R™) X Lo (Dap; R™2).

On the other hand, it becomes evident from equalities (3.18)-(3.21) that
(zi)%_, is a solution of system (1.1).

The converse is obvious: if 2i € Leo(Dap; R?) (i = 1,2), 21 = (1)1,
22 € Loo(Dap; R™) and (2;)7_,is a solution of system (1.1), then u(:,") =
29(-,+) is a solution of problem (3.1),(3.2), and equalities (3.21) are valid.

To complete the proof of this lemma, it remains to show that system
(1.1) in the space Loo(Dap; R™) X Loo(Dap; R™) has the unique solution
(2;)2_, and conditions (1.8) hold, where zjo(z,y) =0 (i = 1,2) and (z%){25
(1 = 1,2) are the sequences given by (1.9).

According to conditions (3.4) and the restrictions imposed on the vector
and matrix functions g, ¥ and Q; (i = 1,2), it follows from (3.18)-(3.20)
that operators g; : Loo(Dap; R™ ) X Lo (Dap; R*?) — Loo(Dap; RY) (i = 1,2)
satisfy, for arbitrary ¢; and (; € Loo(Dap; R?) (i = 1,2), inequalities (1.3)
and (1.21) almost everywhere in D, where I = [0, al,

gdﬁzw@ﬂbkﬁ+ﬂf%@MQ£§gPUWM%MH+

Py (@, + exp(r02)P2(2, )]

Ap1 = esssup [7;1(1/) /Oa(|Q0(5,y)| + |Q1(s,y)|)d3] +

0<y<b

+ ess sup / (Po(s,9)| + 71 ()P (5,9) s, Aoa(y) = ©
0<y<b Jo

and

Ay) = A.

The validity of Lemma 3.4 becomes evident if we take condition (3.17)
into account and apply Lemma 1.3. H
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" If P Dgp —» RY™ (1 =0,1,2), ¢ : Dgy — R, ¢ :

[0,b] = R™ are continuous, o : [0,a] — R™ is continuously differentiable

and Q; : Dy, — R™ (i = 0,1) satisfy the Carathéodory conditions, ° then

problem (3.1),(3.2) is uniquely solvable, its solution u is classical and

uk(xay) = u(a:,y), oz = ox )
Oug(x,y) - ou(z,y)
9y 9y

where ug(z,y) = 0 and for an arbitrary natural k the vector function uy is

given by equality (3.16).

(3.22)

for k — oo,

Proof. By Lemma 3.4, problem (3.1),(3.2) has the unique solution u and
conditions (3.14) hold. On the other hand, according to the restrictions
imposed on P; (i = 0,1,2), ¢, o and @Q; (¢ = 0,1), it becomes clear from
(3.16) that

8uk ou Uk

Pk ang Lk iR (k=1,2,...),

5, An oy € C(Dap; R™) ( )

71 € C([0,a]; (1, +00)), 72 € C([0,b]; (1, +00)).

Therefore, by virtue of the well-known Weierstrass theorem, it follows from
(3.14) that u is a classical solution and conditions (3.22) take place. W

If condition (3.10) holds, then problem (3.1),(3.3) has one
and only one generalized solution u and

Uk,

el y) = 7 wutey), P ey =
w — Po(@, y)u(z,y) for k — +oo, (3-23)
where 5(y) = 1+ W)+ 1(y), uo(r,y) = 0 and
ui(e.y) = Za(e,y)| //Qy,stuk (s, dsdi] +

+2a) [ 2 6 Zaeeis + 2w [ [ 2
x Z1(5,4)Zy L (s, t)[P(s, t)ug_1(s,t) + q(s,t)]dsdt. (3.24)

Proof. According to Lemma 3.3, an arbitrary generalized solution of prob-
lem (3.1), (3.3) is a solution of the system of integral equations

u(z,y) = Z2a:y //Qy,st (s,t)dsdt| +

9.e., Qi(-,y) : [0,a] — R™*™ are measurable for all y € [0,b], Q;(z,-) : [0,b] — R?*™
are continuous almost for all € [0, a] and there exists a summable function v : [0,a] —
— [0, 4+00) such that ||Q;(z,y)|| < v(z) almost for all (z,y) € Dy (i = 0,1).
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+Z5(x,y) /090 Zy M(s,9) Z1(s,y)p(s)ds + Za(z,y / /
xZ1(5,9)Zy H(s,t)[P (s, t)u(s, t) + q(s,t)]ds dt (3.25)

and, vice versa, an arbitrary summable solution of this system is a general-
ized solution of problem (3.1),(3.3 ). On the other hand, in view of condi-
tions (3.4)-(3.6), it becomes clear that a summable function u : Dy — R?
is a solution of system (3.25) if and only if the vector function

2(z,y) =7 (y)u(z,y)

belongs to Lo (Dap; R™) and is a solution of functional equation (1.2), where
1) =7 02w [p0)+ [ [ Qs 0@ ndsa] +
+v*1<>zgu:y>/°zz (5,0) 75,0 ($)ds + (1) ) x

/ / (5,9) 21 (5,9) 20 (5, D[P (s, )y (1) (s, ) + q(s, )] ds dt.

It follows from conditions (3.4)-(3.6) that the operator g transforms the
space Loo(Dgp; R?) into itself and for every ¢ and ( € Loo(Dap; R?) satis-
fies inequality (1.22), where I = [0,a], go(t) = con(t) and co is a positive
constant. Therefore, by virtue of Lemma 1.4,system (1.2) has the unique
solution and condition (1.23) holds, where zo(z,y) = 0 and (21)32, is a se-
quence given by (1.24). It is clear from the above arguments that problem
(3.1),(3.3) has the unique solution

u(z,y) = v(y)z(z,y)
and conditions (3.23) take place. W

Remark 3.1. From the proof of Lemma 3.5 it is clear that the following
assertions are valid:

a)if ¢ € Loo([0,D]; R™) and @ € Lo ([0, b] X Dgp; R**™), then the general-
ized solution u of problem (3.1),(3.3) belongs to Loo(Dyp; R ), and condition
(3.23) takes the form

0 )
u(a,) = uey), P py gy (ey) =
oz, y) (3.26)
S e Pa(z,y)u(z,y) for k — +oo;

b) if ¢ € C([0,b]; R™), @ € Loo([0,b] X Dap; R**™) and Q(-, s,t) : [0,b] —
— R™ "™ is continuous almost for every (s,t) € Dy, then the generalized
solution u of problem (3.1),(3.3) is continuous, and condition (3.23) takes
the form of (3.26).
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" Let the matriz function Py satisfy condition (3.10),
¥ € C([0,B;R*), Q € Loo([0,b] X Dyp; R**™),

Q(,s,t) : [0,b] = R™ ™ be absolutely continuous almost for every (s,t) €
€ Dup and the inequality

H 9Q(y, s, t)
Oy
hold in [0,b] X Dgp, where n : [0,b] = Ry and 1o : Doy — Ry are summable
functions. Then problem (3.1),(3.3) has the unique generalized solution u

which is absolutely continuous, and

H <n(y)mo(s,t)

Oz = or '

_ a’U/k(fE, y) — 8u(:17, y)
1 TR\ I 1 T\ I
7 (y) 9y =9 (y) 3y for k — +oo,

’U/k(w, y) = U,(QZ, y)a
(3.27)

where y(y) = 1+ [|[¥'(y)]| + n(y), wo(z,y) = 0 and the vector function uy, is
given by equality (3.24) for an arbitrary natural k.

From Lemmas 2.25 and 3.5’ there immediately follows

" Let Pi: Dop — R*™™ (i = 0,1,2), ¢ : Doy = R* and
¢ :[0,a] = R” be continuous and P> have a continuous partial derivative
in the second argument. Moreover, let

P € C([0,0); R"), Q € Loo([0,b] x Dgp; R**™),
Q- s,t) : [0,b] = R™*™ be absolutely continuous almost for all (s,t) € Dy,
T
Q(,s,-) : [0,b] = R™ "™ be continuous almost for all s € [0,al, [ Q(-,s,t)ds :
0

[0,b] = R™ ™ be continuously differentiable for x € [0,a] and almost for all
t € [0,b], and the inequality

hold in [0,b] x Day, where no : Dap — [0, 00) is a summable function. Then
problem (3.1),(3.3) is uniquely solvable, its solution u is classical and con-
dition (3.22) takes place, where uo(z,y) = 0 and the vector function uy, is
given by equality (3.24) for an arbitrary natural k.

For any a > 0 there exists 3 > 0 such that if
IPolle <o, [|Pill. S (i=1,2),

- (3.28)
1Qollr <, [l ' @il <a,
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then the solution u of problem (3.1),(3.2) admits the estimate

lullz < B(leollz + 191l + [lallz)- (3.29)
Proof. In view of (3.1) and (3.2)
Bu((;;, y) _ oh(z) + /Oy (Po(z, t)u(z,t) +
+’Pl(a:,t)% + Py(a, t) au(a”;’ b4 g(x, b)) dt, (3.30)
2D — 2o [p) + [ (Qolosp)ute) +
7 Qo) s + Zato) [ 27 ) %
<[Pots puts, )+ Pr(s. ) 20D (s ]as (331)
and
u(z,y) = o(z) + /Oy %dt. (3.32)

Moreover, as follows from (3.28),
1Zo(@ )l < a1y (12 (2, )] < (3.33)

where a; = nexp(aq).
If we assume

Ou(
) = gmax el o) = [ 2522 s,

0<z<a

then taking into account (3.28) and (3.33), from (3.31) and (3.32) we obtain
au (z,y) a
12452 < vl + | [ GanllQots. )l +

+Oé§||770(8ay)||)d8} o) +alar + o) +af [ s, p)llds (3:34)

and

y a
i) < llnllz +aallol+ [ [ (nl@os. ol +

Yy
+adlPo(s, Ol )ds|po(0)dt + afan +a) [ (et + L.
0

whence according to Gronwall’s lemma and inequalities (3.28)

Yy
o) < [lleollz + anlvll + ol + alen + ) [ plo)it] x
0
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Yy
xexp (a1 [Qolls-+a3 [Pall) < ae [l +Ivll +lall+ | plt)dt], (3.39
0

where
as = (14 a)(aq + af)explala; + a?)).
In view of (3.28),(3.34) and (3.35) from (3.30) we get

y a
o) < llgolx + / ( / ||7>o<s,t)||ds)po<t)dt+
8 t)
+a/ dt+a/ / 1225 D g 4 gl <
0

Y

< ligollx + aas gollx + 11z + llalls + / p(t)dt] + a / p(t)dt +

1] 0

y
+aaau ol + aa® (@ + ) [leollz + Woll + ol + [ ptrde] +

1]
Y
+ao®(an + o) / p(t)dt + aaa?|lgllz + [lallr <
0

Yy
< allpollz + 111z + llallz + / plt)dt), (3.36)

where
a3 = aas + aaraz(ag +af) + ar (1 + a)(aq + a?).

Applying again Gronwall’s lemma, from (3.36) we obtain

p(y) < cullleollz + 191 + llllL), (3.37)

where ay = azexp(bas).
By (3.34),(3.35) and (3.37) we have

" ou)
[ 12522 s < i + el + o),
)l < x5 + Nl

au (z,t)
/ 1222t < ool + 11 + o)

where a5 = as(1 + bay),
ag = at + ag(a; + a?)(ay + as).

With regard to the latter estimates and conditions (3.28) we get

b ou(0,t Bust
ol = ol + [ 120D+ [* [ | 2 s <
0
< ligollx + as(llgollz + I4llx + llallz) + / / {||Po<s,t>||||u<s,t>||+
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au (s,t)
2,

+[|P1(s |||| || + [|P2(s dsdt + [|q||L <

< (1+ag + aas + baay + aaae)(llwolla + 191z + llallz)-

Consequently, estimate (3.29) is valid, where 8 = 1+ag+aas +baas+acag
depends on a, b and a only. H

For any a > 0 there exists 3 > 0 such that if

1P| <o, IPillr. <a (i=1,2),

(3.38)
1Qoll <o, 1 '@l < @
then the solution u of problem (3.1),(3.2) admits the estimate
lullS) < Bllvollz + el + llalli), (3.39)

but for po € Coo ([0,a]; R™) and ¢ € Loo([0,b];R™), it admits the estimate

Il < Bllleollz + el + llall ). (3.40)
Proof. Put
Ou( f, Bu (s,7)
pr(@,) = lloo(O)l + max (/ = d€ + / I=5llar )

It is clear that p; : Dy, — R, is continuous and
_ (1)
pr(a.b) = [lul .

From (3.1) and (3.2) we obtain

¢ Ou(s,y) Y Ou(z,t)
oo @1+ [ s+ [ < ol + sl +

+ /0 '
| [ ottt s+ 7] [ ot truts, s

Y
/731(3, a““dtHd + /731 ) Hdt+
0

/ Pa(s )dtHd +

5, )
at ds||dt + ||q||\". (3.41)

/Qost (s,)d </ Qo(s,t)d )[800(a)+/0t%d7]—

/a [@ols, (s, t) + 717 (5)@u (5, ) 8“((;’9’ t)]dstt +

0

ds + dt +
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- [ ([ @utennie) 25t (3.42)
[ Poto.tuts, s = ([ Potsst)as) [onto / Oulr,7) o) -

- /0 ’ ( /0 sPo(g,t)d£> “é‘it s, (3.43)
" putostyuts e = ([ Pats ) [onts) + [ 2] -

_ /0 y( Otpo(s,T)dT) %dt. (3.44)

If along with these inequalities we take into account conditions (3.38), then
from (3.41) we shall get

* . Ous, v.0 ,t
||<P0(0)||+/ ||M||ds+/ 1249 e < ol + Il +

6 6
Wil +a [ Digat@+ [ 125 ar 42 [ 12420 s +
ou(
+a/ [||g00(s)||+2/ ||7u85’t ||dt]ds+
0 0 §

v ¢ Oul(z, * Ou(s,t
o f [||<p0(a:)||+/ ||M||dr+/0 12450 45 +
T ry
//||‘9“ Jasit+20 [ [ 12250 s <
0

Yy
< (14 2+ aa)lleollz + 110l + ol + 20 [ pa(a vyt +
0

Yy T
+3a/ pl(z,t)dt+4a/ p1(s,y)ds
0 0

and, consequently,

pi(z,y) < (1 + 2ba + aa)(llpollz + ¥l + llall ) +

+5a/ pl(a,t)dt+4a/ p1(s,y)ds.
0 0

Applying twice Gronwall’s lemma, we find from the latter inequality that

pi(z,y) < (1+ 2ba + aa) exp(daa) (||pollx + ¥l + llall) +
Y
+5aexp(4aa)/ p1(a, t)dt,
0

p1(a,y) < Bolllwollz + 181l + llgll )
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and, consequently,

Il < Bollwollz + 1811z + llal ), (3.45)
where
Bo = (1 + 2ba + aa) exp[4ac + 5ba exp(4aa)].
Now consider the case when
0 € Coo ([0,a]; R"), b € Loo([0,]; R").
In this case according to Lemma 3.1 and conditions (3.2),(3.38) and (3.42),

8“((92"7’) and auéz’y) are essentially bounded. Assume
y

du(z,y)
p2(y) = Oglfga ”Ty”

Taking into account conditions (3.38) and (3.42)-(3.44) we obtain from (3.1)
and (3.2)

the vector functions

H u(z,y)

| <tiesco+ | [ Potoyuto, ] +

+ /y Pl(x,t)wdtH + H /y’P2(a:,t) Ou(,?) dtH + gl
<llenllz, + ol + [l +2 [ Ha““ |ae] +

/ Haua:t ‘d +a / Haua:t ‘dt< +a+aa)||<po||cm+

+lqll +3a/0 pg(t)dt+a/ HMHdtS

<+ 3a+aa) Il + 112 + [ pat0a] +a [ |20 ar

and

[P < ol + | [ (@ pratonn) +
o

+7 ' (5)Q1(5,9) 95 (s,y)u(s,y)ds|| +

o [ gyl

8 ,t)
+||q||f)s||¢||Lm+||q||L +a[||<Po(a)||+ / II—“a‘i It +
* Qu(s, Y Ou(x,t
v2 1292 ) afliol [ 1250 i+
0

8usy *10u(s,y) “ 1 0u(s,y)
[N s o [P s o [T 2 s <

)dsH +
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< (20 -+ 200)lallz_ + 10l + Nl + 40 [ |25 fas+

Oul(
+2a / pa(t)dt + / ||M||dss(1+4a+2aa>[||¢o||g +
0

e 015+ [ s [T 1G] o [

whence by Gronwall’s lemma,

Ou(z, Y
124590} < 8y figoll + bl + lall? + / pa(t)dt]  (3.46)

and

37 [

I < Ba[llvollz + 191z, + llgl

Ou(
+/ p2(t)dt+/ ||%Hds], (3.47)
0 0

where
81 = (1+3a+aa)exp(ba), (2= (1+4a+ 2aa)exp(ac).
By virtue of (3.46) and (3.47) we get

y
pay) < (L+ Br)Ba[llollz + bl + lall? + / pa(t)d].

If we apply again Gronwall’s lemma, then from the latter inequality we
obtain

p2(y) < Bsllleollz_ + Illze + Nall$], (3.48)

where 83 = (1 + (1a) 82 exp(B2b + (1 B2ab).
The estimate

1ull? < Ba(llpoll= + 19llr.. + llal|$?) (3.49)
C Cso
follows from (3.46) and (3.48), where

By = B1(L+ Bsb) + B3+ 1.

According to (3.45) and (3.49) it is clear that estimates (3.39) and (3.40)
are valid, where § = By + 84 depends on a, b and a only. B

For any a > 0, Py € @g‘;’—l) (Dap; R*") and P, € @(;1,0)
(Dap; R**™) there exists 8> 0 such that if 1 € Lo ([0, b]; R™), @ € L ([0, b] x
XDap; R"),

1Pollz <, Q. < e, (3.50)



51

then the generalized solution u of problem (3.1),(3.3) admits the estimate

lullo. < BUlells + [llon + gl ™). (3.51)

Proof. By Lemma 3.3 the generalized solution u of problem (3.1),(3.3) ad-
mits the representation

u(e,y) = /xZ@: v, 5,.) 1 (s, 9)p(s)ds +
+Z5(z,y) [ / / Q(y, s, t)u(s, t)dsdt] +
+ / / 2,0, 5,0 [P(s,uls, 1) +a(s, 0] dsdt,  (3.52)

where
Z(x,y,s,t) Z2(a: y)Z (5 y)Zl(s y)Z (S t)

and P is a matrix function given by (3.9).
However,

/Oy /z Z(a:,y,s,t)q(S,t)det:/y /z q(s, t)dsdt —
_/j@Za:y,a:t(// STdeT>dt_
_/ azxy’sy<// 5td§dt>ds+
// {82 ;sg£St// &r dﬁdT]dsdt

On the other hand, by virtue of Lemma 2.25 and the restrictions imposed
on the matrix functions P; and Ps, there exists a positive number «q such
that the inequalities

P> (x, .
1P e, 0)Pae )l + 1 722D <, (1ZuGe )l < 0 (= 1,2) (359)
and
8Za:y,.9t BZzy,st)
12(@.p,001 | I+] [+
82 ($7y7 S7t
— < .
H D50t | < (3:54)

hold almost everywhere in D, and Dgyp X Dyp- Therefore

T ry
H/ / Z(a:,y,s,t)q(s,t)dsdtH < [1+ (a+b+ab)ao]|lg|\” (3.55)
0 0
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and
IP(z, )|l < |Po(z,y)|l + ao-
Put

py) = Jnax, l|u(z, y)l|-

(3.56)

Then with regard to inequalities (3.50) and (3.53)-(3.56) we obtain from

(3.52)

Yy
o) < ol + oIl +aa [ p(eyie] +

+ao [ [ 1Puts,0llds + ao] o0 + 1+ (@-+ b+ ablaallal <

y
+a0/ [aa+a0a+/ ||730(s,t)||ds]p(t)dt,
0 0

< (L+ao +a3)(L+a+b+ab) (el + ¥l + llallpo) +

which by Gronwall’s lemma and (3.50) implies estimate (3.51), where
B=(1+a+a3)(l+a+b+ ab)exp (apa + abag(a + ap)) is a constant

depending on Py, P2, a, b and a only. H

Alongside with
problems (3.1),(3.2) and (3.1),(3.3), for any natural k let us consider the

problems
*ulz,y) Ou(z,y)
T@y = Pok(z, y)u(z,y) + Pir(z,y) O +
Ou(w,
+P2k($7y) U(aw y) + qk(xay)a
Y
ou(0,
u(r,0) = por(a), 2D =y ) 4
Yy
@ _ ou(s,
+ [ [Quts.puto) + 257 ()@ (o) 25 s
0 S
and
Pu(z,y) Ou(z,y)
Tay - POk(xay)u(xay) + 731 (xay) ox +

Ou(z,
#Pala) G 4 (o),

nm(w Paa, y)ule,)) = ou(@),

y—0

u(0, / / Qr(y, s, t)u(s, t)dsdt,

(3.57)

(3.58)

(3.59)

(3.60)
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where
Pik € Loo(Dap; R**™) (i =0,1,2), qr € Loo(Dap; R™),
por. € C([0,a; R"), mp(x) =1+ [[he ()],
Pk € L([Oaa];Rn)a /‘/}k € L([Oab])Rn)a
Qik € L(Dgp; R™™™) (i =0,1)
and

Qk € Loo([0,b] X Dyp; R*™™).
As above, by v, and 7 we imply the functions
n@) =1+|lpo@)ll, 12y) = 1+||1/J(y)||+/0 [1Qo(s, I+ 1Q1(s, )l ds.
Let
sup || Pirllp.. < +o0 (i =1,2), sup ||y Qirllr.. < +oo, (3.61)
k>1 E>1

li w—PillL=0 (i=0,1,2), L —qll = 62
k;rfmllpk Pill. =0 (i=0,1,2) k;rfwllqk qll. =0 (3.62)

and
GHm [lpor — ollz =0, G m lor — ¥l =0, 56
. B _ . . B _ )
kl&‘foo 1Qox = Qollz =0 kginoo 1My, @k — QullL = 0.
Then
G flur — ullz =0, (3.64)

where u and uy, are, respectively, solutions of problems (3.1),(3.2) and
(3.57),(3.58).

Proof. For an arbitrary natural k the vector function

v(z,y) = uk(z,y) — u(z,y)

is a solution of the problem

T — Porta ol + Puste ) 2 +
P (o) 5 4 o), (3.69)
o(w,0) = Fo(e), 20— )

dy
+ [ okt et + 70 00Quus,0) W as, (3.6
0
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where

a/k(xvy) = [POk(way) - ’Po(z,y)]u(x,y) + [Plk(xay) - P1($7y)] X

du(z,y)

+ [Por(z,y) — Pa(z,y)] oy T (z,y) —q(z,y) (3.67)

du(z,y)

Xaa:

and
Por(z) = por(x) — o(z), Vu(y) = vuly) — v(y) +

+/0a [(Qor(5,y) — Qo(s,))u(s, y) +

Ju(s,y)
O0s

+ (714 (9)Qur (s, ) — 7, H(5)Q1(5,1)) ]ds. (3.68)

In view of conditions (3.61)-(3.63) there exists a > 0 such that

[Porlle <o, |[Pikllee, <a (i=1,2),

3.69
Qorllz <, |MkQikllz., <a (k=1,2,...). (3.69)
By virtue of Lemma 3.1 we may consider without loss of generality that

el < 0 [0 <ante) | 28D <ant). G0

By Lemma 3.6 conditions (3.69) guarantee the existence of a positive
constant 3 such that

llur — ullz < BUIGok Iz + 10kl + 1@ll) (k=1,2,...). (3.71)
However, in view of (3.67),(3.68) and (3.70),
2
1G]l < afllPok = Poll + Y 11%(Pix = Pl + llar — gllz]

i=1

(k=1,2,...)

(3.72)

and

el < Nk — ¢l + a[llQox — Qollz + 171y, @k — Q1llL]

(k=1,2,...). (3.73)

According to conditions (3.61)-(3.63), from estimates (3.71)-(3.73) we get
equality (3.64). W

Lemmas 3.10 and 3.11 below alsi deal with the correctness of problem
(3.1),(3.2).
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Let conditions (3.61) hold,
sup||’POk||(LQ) < +o00, sup||Q0k||(LQ) < +00, (3.74)
k>1 k>1
lim [Py —PilllY =0 (i=0,1,2), lim |lg —qll =0, (3.75)
k—+o00 L T k—+o0 L ’

L oo —@ollz =0, lim |l — [ =0,

i L : - . (3.76)
kkin"o Qe = Qolly” =0, kkllloo I Que — Qi1 =o0.
Then
s — ) = |
(Jm e = ullz” =0, (3.77)

where u and uy are, respectively, the solutions of problems (3.1),(3.2) and
(3.57),(3.58).

Let conditions (3.61) take place, po and @or € @oo([(),a];
R™), v and 1 € Loo([0,D]; R™),

. D (2) — -
kETOOHPZk Pl”L 0 (Z 07172)7

‘ o (3.78)
L llae —dllz” =0,
Jim oo pollz, =0, Tim [l —¥la.. =0,
lim [|Qox — Qoll) =0, lim [|Qux — Q1| = 0. (379
k—+oc0 L ’ k—+o00 L
Then
: o2
kBToo [l u||6 =0. (3.80)

To prove the above stated lemmas we need three auxiliary assertions.

Let pp : Dy — R (k=1,2,...) be a sequence of summab-
le functions satisfying the condition

: (1) _
Jim [l =0 (3.81)

for some i € {1,2} and let the function z : Doy — R be such that z(-,y)
and z(z,-) are absolutely continuous almost for any y € [0,b] and x € [0, a],
respectively, and the inequalities

0z(7,y) 0z(w,y
|T|§21(33)a | 2y

take place almost everywhere in Dy, where z1 : [0,a] = Ry and 25 : [0,b] —
— Ry are summable functions. Then

)| < 2y) (3.82)

Jim[lpezlly) = 0. (3.83)



56

Proof. In view of (3.82), from the equalities

| tssteds = st [ putoids -
—/Oz(/ospk(f,m) 0004,

and
Y Y
/ Pz, 8)2(z, £)dt = 2(z,y) / P, t)dt —
1] 1]
Yy t
_/ </ pk(x,r)dr> azg’t)dt (3.84)
0 0 t
we have
. a b .
Ipezl® < [ max 12z, w)ll + / 21 (s)ds + / 2a(t)e] |pe]| 2,
(2,y)EDap 0 0

whence according to (3.81) we have equality (3.83). W

Let pr, : Doy — R (k= 1,2,...) be a sequence of measu-
rable and essentially bounded functions satisfying conditions (3.81) for some
i €{0,1} and

a = sup ||pr||L., < +oo. (3.85)
k>1

Then equality (3.83) is valid for any summable function z : Dy, — R.

Proof. Since z is summable, there exists a sequence of functions z, : Dy —
— R (m = 1,2,...) such that for any m > 1, j and I € {1,...,m} the
function 2, is constant in the rectangle (] 1a i La) x (=Lb, Lb) and

lim ||z —zmllz =0. (3.86)

m—+00
By (3.81) and (3.85)

Pzl < 11k (2 = 2012 + x2S < allz = 2]l + [Ipe2m )

and
lim (i) _ =1,2,...).
i i ||kam||L 0 (m ,2,...)

Therefore

lim sup ezl < allz = zallY  (m=1,2,...),
+

from which with regard to (3.86) we get equality (3.83). M
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Let pr, : Doy — R (k= 1,2,...) be a sequence of measu-
rable essentially bounded functions satisfying condition (3.85) and

: (2) _
Jim el =0, (3.87)

Then for any function z belonging to ((Nj(()gl’o) (Dup; R) or @é%‘l) (Dup; R) we
have

: (2) _
Jim ez = 0. (3.88)

Proof. To be more prec1se we assume that z € (C om0 (Dap; R) since the

case when z € Clo ( «b; R) is considered similarly.
Choose 3 > 0 such that the inequalities

Oy

hold almost everywhere in Dy;. Then from (3.84) we find that

|2(z,y)| < B, | <8 (3.89)

‘ [ )zt nat] < 1+ 0812 (3.90)
0

Let € be an arbitrarily small positive number. Choose a natural m such
that

aab
m

N ™

For every j € {1,...,m} we put
jb
20(x) = 2(x, E)

and choose a step-function z; : [0,a] = R such that
@ €
a/ |20 (s) — z;(s)|ds < 7
0
Then, taking into account (3.85) and (3.89),

[ ntsstnis| < [Tl - 266, Djas+

+/Ox Pk (s, 9)[1205(s) — 2j(s)|ds + I/xpk(s,y)Zj(S)dSI <

ac
<—/3+a/ 120 (s) — 23(s)|ds + [lpez; ]| <

j—1 b
<e+t ||Pij||L for Tb Sy < o (3.91)
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It follows from (3.90) and (3.91) that
ez <o+ (1+ 6Bl + max llpez; |-
<js<m

On the other hand, in view of (3.87) we have

(2) _
=

li i i=1,... .

Therefore
limsup ||pi2[|> < e.
k—+o00

From this and in view of the arbitrariness of ¢, we get equality (3.88). H

Proof of Lemma 3.10. For every natural k the vector function v(z,y) =

= ug(z,y) — u(z,y) is a solution of problem (3.65),(3.66), where qx, Por

and ¢, are the vector functions given by equalities (3.67) and (3.68).
According to conditions (3.61),(3.74) and Lemma 3.7 there exists a pos-

itive number § such that
g — qu) <Ber (k=1,2,...), (3.92)

where g, = ||q~k||(Ll) + [[porllz + |¥k]lz. On the other hand, by virtue of
Lemma 3.1 inequalities (3.70) take place for some a > 0.
In view of (3.67) and (3.68)

er < 1(Por = Poully +11(Pix — Pr)wnl{ + |(Pa — Po)wally +
+Hlgk — all?” + lleor — wollz + I — Wllr. +
H1(Qok — Qo)ull’? + (75 Quie — Qo) w15,
where 5 5
wio) = 2L o, y) = 2400,

from which by virtue of conditions (3.61) and (3.74)-(3.76) and Lemmas
3.12 and 3.13 we have

lim Ek = 0.
k—+o00

Then taking into account estimate (3.92), we obtain equality (3.77). W

Proof of Lemma 3.11 proceeds analogously to that of Lemma 3.10. The
only difference is that instead of Lemma 3.13 we use Lemma 3.14.

Let Py € CX 7Y (Dap; RV™)

sup || Pokllr.. < +oo,sup ||Qkllr. < +oo, (3.93)
k>1 k>1

i — Pl = - _ O

Jim |[Pox —Polly” =0, lim Jlge —qlly =0, (3.94)

L flow —ellp =0, lim g —9llr,, =0 (3.95)
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and
Y2 z
lim  esssup / / [Qk(y,s,t) - Q(y,s,t)]dsdtH =0 (3.96)
k—+00 0<y; <y <b, y1 J0
(2,9)EDas
Then
li - = .
k_iffooﬂuk ullr., =0, (3.97)

where u and uy are, respectively, the generalized solutions of problems (3.1),
(3.3) and (3.59),(3.60).

Proof. For every natural k the vector function v(z,y) = uk(z,y) — u(z,y)
is a generalized solution of the problem

O%v(x,y) ov(z,y)
8.’178:[/ - ,P()k(xa y)v(a:, y) + 731 (xa y) ox +
ov(z, -
+Pa(o ) Y+ (o),

tim (Y 4 oo, ) = Fula),

y—0 oz
o~ Yy a
0(0,y) = Dily) + / / Quly. 5. tyo(s, t)dsdt,

where
ak(xay) = [POk(xay) - PO(xay)]u(xay) + Qk(x,y) - q(xay)a
—p(x), Pr(y) = vely) — ) +

P (37) = @k(w)
+/0y/0 Qk(y,s,t) — Q(y, s, t)]u(s, t)dsdt.

By conditions (3.93) and Lemma 3.8 there exists 3 > 0 such that

g = ulleee < BB + 0l + 3T (k=1,2,..0). (3.98)
By virtue of conditions (3.93),(3.94) and Lemma 3.13

: =10 _
Jim ] = 0. (3.99)
On the other hand, in view of (3.93) and (3.96) we have
Yy ra
lim sup / / [Qk(y,s,t) —Q(y,s,t)]u(s,t)dsdtH =0 (3.100)
k—+o00 0<y<b 0 0

Taking into account conditions (3.95),(3.99) and (3.100), we obatin eq-
uality (3.97) from (3.98). W




60

CHAPTER II

§ 4.
In this chapter for the linear hyperbolic system
Ou(z,y) Ou(z,y)
Tay = ,P[)(xa y)’u‘(xa y) + 731 (xa y)T +
Ou(z,
o) 20 4 (e, y) (@)
Y
we study boundary value problems of four types
ou(,
uw,0) = anle), (L)) = 1), (4.2
ou x, 0 ou K
P~ Pafa,0ula,0) = (o), () @) = i), (43)

tim (250 pute, ) = vole),  hul ) = i) (44)

y—0

and

tim (2459 _ 0, gy, ) = voe),

y—0 T

5 (4.5)
(g, (40 )) = Z2(,0)u(0,9) ) ) = (v),
whose special cases are periodic boundary value problems
u(w,0) = gofe), PG P )
D) — Pafa,Oule0) = (o), T = BB sy, (a3,
(Ou(z,y)
lim (S = Pa(ay)ula,y)) = (), )
u(a, y) = U(O, y) + 1/}1 (y)
and
(Ou(z,y)
lim ( —— — 732(x,y)u(a:,y) = 1/]0(21'),
y—0 ( T ) (451)

a%(u(a,y) —u(0,)) = ().
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Here and everywhere below, unless stated otherwise, we assume
PiELOO(Dab;Rnxn) (7’:07172)7 qELOO(Dab;]Rn)a

o € C([0,al;R™), ; o1 € L([0,b]; R"), (4.6)
o € L([0,al; R"), ¢y € L([0,b];R")

and h : C([0,a]; R") = Loo([0,B]; R?) is a linear continuous operator. Ad-
ditional restrictions on the coefficients of system (4.1) and on the boundary
conditions will be given in the theorems formulated below.

By Z1 : Dyy — R ™ and Z5 : Dy, — R™*" will be meant solutions of
the matrix differential equations

07 (z,

D) a1 Z1(a)
and

075 (x,

B0 _ (o) Zu.),

satisfying the initial conditions
Z1(z,0)=FE for 0<z<a

and
Z>(0,y)=FE for 0<y<b.

According to Lemmas 2.1, and 2.31,

h(v)(y) = Ho(y)o(0) + / " H (s, ) (s)ds

(4.7)
for v € C([0,a];R"), y € [0,0]
and
B(Z2 o) 0) = Malw)ol0) + [ Mo, (5 s
for v e C([0,a];R™), y€[0,b],
where
Hy € Loo([0,b]; R*™), H € Loo(Dap; R™™), (4.9)
Moly) = Holy) + [ ()22 s
0 . 0 Zs(s5.) (4.10)
M) = Ha)Zalo) + [ #0502
and

My € Loo([0,b]; R*™™), M € Loo(Dgp; R™ ™). (4.11)
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Assume
Ing, = {y €10,0] : det Mo(y) # 0}.

Moy(y)Z0O Alongside with (4.1),(4.2) we
have to consider the homogeneous problem

8%u(z, ou(x, ou(x,
TR — oo puten) + Pala) 2 4 PaGe) P50, (0.1
ou(-,
u(z,0) =0, h(%)(y) =0. (4.20)
Y
Let the vector and the matriz functions
o1, MZy'q, MZy'Po, (1+ lleol)MZy " Py (4.12)

be My-summable. Then problem (4.1),(4.2) is solvable and its solution is
unique if and only if

mes Ipr, = b. (4.13)

Moreover, if condition (4.13) is violated, then the space of solutions of ho-
mogeneous problem (4.1),(4.20) is infinite dimensional.

Proof. According to the My-summability of vector and matrix functions
(4.12), there exist

@10 € L([0,b];R"), qo € L(Dap; R"), Qi € L(Dap; R**™) (i = 0,1)
such that
e1(y) = Mo(y)pr0(y), M(z,y)Z5 " (x,y)q(z,y) = —Mo(y)qo(,y),
M (x,y)Zy (2, y)Po(x,y) = —Mo(y)Qo(,y), (4.14)
M (z,y)Zy (,y)Pr(z,y) = =71 ' (z) Mo(y) Q1 (x, y),

where 71 (z) = 1+ [[¢p(2)]-
Let u be an arbitrary solution of system (4.1). Then

aug;,y) _ ZQ(z,y)(BuéOy,y) +/0x Zy (5,9) [Po(s, y)u(s, y) +
+P1(s,y) aU(;S’ v) + q(s,y)]ds), (4.15)

whence, in view of representation (4.8), it is clear that the boundary con-
dition

h(aué:y’y) ) () = ¢1(y) (4.16)

holds if and only if

e1(y) = Mo(y) Ou

g;’ 0, /Oa M (s,y)Zy " (s,9) (Po(s, y)u(s,y) +
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Ou(z,y)
Os

+P1(s,y) +q(s,y))ds for 0<y<bh

By (4.14) from the above equality we have

3o ) 29 = aa(y) (wi0) +

+ [ Tutomuts.n) + 21 (601 (5 2 as),

where
Y(y) = p10(y) +/ qo(s,y)ds.
0

Consequently, for conditions (4.2) to be fulfilled, it is sufficient, and when
(4.13) holds, it is necessary that

’LL(:L‘, 0) = 900(37)7 By = 1/1(?J) + (4 17)

+ [ Qs o) +7 Qs T s

However, according to Lemma 3.4, problem (4.1),(4.17) has the unique so-
lution. Thus we have proved that problem (4.1),(4.2) is solvable and its
solution is unique in the case if condition (4.13) is fulfilled.

For completion of the proof it remains to show that if

mes Ipr, < b, (4.18)

then homogeneous problem (4.1p),(4.2) has an infinite dimensional space
of solutions.

In view of (4.18) there exists a measurable function ¢ : [0,b] = R™ such
that

lleo(y)]| =1 for y & Ing,, co(y) =0 for y € Iy (4.19)

and
Mo(y)eo(y) =0 for y € 10,b].

As shown above, the solution u of system (4.1p) satisfies the condition

ou(-,y)
if and only if

ou(0,y)
Oy

Ou(s,y)
0s

_ Mo(y) / " [Qo(s.p)uls,9) + 7 (5)Q1(5,9) ]ds.

Mo(y)



64

Therefore it is clear that for all natural k the solution of system (4.1g)
satisfying boundary conditions

u(e,0) =0, 220 _ iy / " [Qo(s.p)uls,y) +
0

dy
Ou(s,y)
0s

(4.20)

+77 ()@ (s,9) lds

is the solution of problem (4.1p), (4.29).

According to Lemma 3.4, problem (4.1p),(4.20) has the unique solution
which we denote by wuy. It follows immediately from (4.18) and (4.19) that
functions ug (k =1,2,...) are linearly independent. H

If condition (4.13) holds and

N 185 (IPoler ) + (1 + b @IDIP )] +
+lla(z, vl + ||<Pl(y)||)d$dy < 400, (4.21)
then problem (4.1),(4.2) has one and only one solution.
Proof. According to conditions (4.6),(4.11) and Lemma 2.2y,
MZy;' € Loo(Dap; R™).

If we take this and conditions (4.21) into consideration, then it becomes
evident that

Mg o1 € L([0,b]; R"), My 'MZ;'q € L(Duy; R"),
My ' MZy " Py € L(Dap; R™™),
(L + ol My " M Zy Py € L(Dap; R™™).
Thus, the vector and the matrix functions (4.12) are My-summable. W

Remark 4.1. In the above proven corollary condition (4.21) is essential
and we cannot neglect it. To convince ourselves that is so consider the
problem

Ou(z,y) _ Ou(z,y)

oxdy Y Oy +1,
_ o Oulay) _ 0u(0,y)
u(z,0) =0, o~ oy

for which all conditions of Theorem 4.1, except of (4.21), are fulfilled because

Mo(y) = exp(ay) — L.
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Let us show that this problem has no solution. In fact, otherwise we should
have

Ou(z,y) du(0,y) N exp(ry) — 1

83/, = exp(zy) 9y " for 0 <y <b,

from which according to the condition

du(a,y) _ Ou(0,y)
oy Oy

it follows that

1
3U(0,y):__ for 0<y<bd

Ay y

and a 1
U(ﬂfay):__ for 0 <y <b.

Oy y

But this contradicts the absolute continuity of w.

" Let h : C([0,a]; R") — C([0,b]; R™) be a linear conti-
nuous operator,

Pi € C(Dap; R*™) (i = 0,1,2), g € C(Dgp; R™),

) (4.6')
Yo € C ([O,Cl];]Rn), p1 € C([Oab]aRn)

Moreover, let the vector and the matriz functions M Zy*q and M Zy *P; (i =
= 0,1), respectively, satisfy the Carathéodory condition with Moy-weight,
and let p1 be My-continuous. Then problem (4.1),(4.2) has at least one
classical solution but for its uniqueness it is necessary and sufficient that

Iy, =0, 5. (4.13")
When condition (4.13") is violated the space of classical solutions of problem
(4.19),(4.20) is infinite dimensional.
Proof. According to Lemma 2.32 and the restrictions imposed on ¢y, MZ;lq
and MZ,'P; (i = 0,1),
My € C([0,b); R™™™) (4.22)

and the representations

e1(y) = Mo)pro(y), M(z,9)Z5 " (z,y)a(z,y) = —Mo(y)q0(z,y),
are valid, where @190 € C(]0,b];R™), while g9 € L(Dgp;R™) and Q; €
€ L(Dgp; R™*™) (i = 0, 1) satisfy the Carathéodory condition.

Let u be an arbitrary classical solution of system (4.1). It satisfies con-
dition (4.16) if and only if

Ou(0,y)

5y = M) (v) +

Mo(y)
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+ [ [Quts o) + Qa5 D),

where .
wwzwmw+/%@w@,
0

whence, in view of the continuity of %(;’y), it becomes clear that for bound-

ary conditions (4.2) to be fulfilled, it is sufficient, and when condition (4.13")
holds, it is necessary that

u(z,0) = @o(),

¢ u(s 4.23
=00+ [ [Qulssputs) + Qo) 22, 2

ou(0,y)
Oy

But according to Lemma 3.4', problem (4.1),(4.23) has the unique solution
u and this solution is classical. Thus, problem (4.1),(4.2) has at least one
classical solution and when (4.13") holds the solution is unique.

Suppose that condition (4.13') is not fulfilled. Then, according to (4.22),
there exist an interval [by,bs] C (0,b) and a continuous vector function
¢o : [0,b] — R™ such that

llco(w)|| >0 for by <y <b2, coly) =0 for y ¢ (bi,b2)

and
My(y)eo(y) =0 for y € [0,b].

Now, repeating the same arguments as in the proof of the second part of
Theorem 4.1 and applying Lemma 3.4' instead of Lemma 3.4, we convince
ourselves that homogeneous problem (4.1y),(4.29) has a countable system
of classical solutions. W

Remark 4.2. In Theorem 4.1’ the requirements for ¢; to be My-continuo-
us and for the vector and the matrix functions M Z; *q and M Z; *P; (i=0,1)
to satisfy the Carathéodory conditions with M, weight are the most essential
ones. The examples below show that if at least one of these requirements is
not fulfilled, then problem (4.1),(4.2) has no classical solution despite the
fact that the coefficients of system (4.1) and the functions given in boundary
conditions (4.2) are smooth.

Consider the boundary value problems

2
TUrs) gy et QBB g gyt — ot (a24)

ox0y dy
_ Lok du(a,y) _ 9u(0,y) _p o \2k—1,
u(z,0) = by + kao ) oy +a(y — bo) ; (4.257)
& u(z,y) 2k—19u(z,y) 2k—1
— =y — —_— - 4.24
u(z,0)=0, 2uay) _ u0y) (4.25,)

dy dy
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02 0 1
g(gay) = |y — bo |2k 1 U(a )+b_( _b0)2k 1 u(z,y) +
Ty y (4.245)
1
oy bol(y — bo)
0
_ du(a,y) _ u(0,y)
u(z,0) =0, oy oy (4.253)
and
0*u(z,y) ak—10U ak—10u
—— =y - — - - - — 4.24
Ou(a, ou(0,

u(z,0) = exp(x) + by, u((;y y) = U(By y), (4.254)
where by € (0,b) and k is a natural number. For each of these problems
(4.24i), (4.25;) (1 =1,2,3,4) we have

h(v)(y) = v(a) —v(0), Zx(z,y) = exp(ly — bo[** ),

My(y) = exp(aly — bo[** 1) — 1,
M (z,y) = exp(aly —bo|** "), Ins, =[0,6]\{bo}.

Proceeding from this, it is easy to convince ourselves that for these
problems all conditions of Theorem 4.1 are fulfilled and therefore they are
uniquely solvable. The following functions

z
uy (z,y) = |y — bo| + ﬂ(y —bo)**, us(z,y) = bo — |y — bol,
uz(z,y) = bo — |y — bol, wa(z,y) =exp(x)+ |y — bo|

are respectively the solutions of problems (4.24;), (4.25;) (i = 1,2, 3,4). But
none of these solutions is classical, because they have no partial derivative
in the second argument when y = by. This case is due to the fact that for
each of these problems one (and only one) of the conditions of Theorem 4.1’
is violated.

More precisely, for problem (4.24,),(4.25;) the function

1(y) = aly —bo)** "
is not Myp-continuous, for problem (4.245),(4.255) the function
M(z,y)Zy  (z,y)q(z,y) = exp ((a — 2)|y — bo|**~") (y — bo)**~
does not satisfy the Carathéodory condition with My weight, for problem
(4.243), (4.253) the function

M(z,y)Z5 (@, y)Po(e,y) = %wmw—mw—mw*xwww%4

and for problem (4.244),(4.254) the function
M (x,y)Zy " (2,y)P1(z,y) = exp ((a — )|y — bo** " — 2) (y — bo)**
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behaves similarly.

Remark 4.3. Let all conditions of Theorem 4.1' hold. If, in addition,
condition (4.13) takes place, then problem (4.1),(4.2) has the unique solution
and it is classical. If condition (4.13) is violated, then this problem has
the unique classical solution and an infinite set of absolutely continuous
solutions.

As an example let us consider the problem

Pulz,y) Ou(z,y)
0Dy =p(y) 9y

du(a,y) _ 0u(0,y)
oy oy

where p : [0,0] — [0,+00) is a continuous function with the set of zeros J,
which is nowhere dense in [0, b] and has a positive measure. In this case

My(y) = exp(zp(y)) — 1

(4.26)

u(z,0) =0,

(4.27)

and

Ingy = [0, 6]\ Jp.
Consequently, for problem (4.26),(4.27) all conditions of Theorem 4.1" are
fulfilled, but condition (4.13) is violated. Therefore ug(z,y) = 0 is the
unique classical solution of the problem under consideration. On the other
hand, for every summable function ¢ : [0,b] — R the function

uc(z,y) = /Oy 0(t)c(t) exp(zp(t))dt,

where

1 f
5(t) = ort e J,
0 fort¢glJ,

is an absolutely continuous solution of problem (4.26),(4.27).

' Let h : C([0,a];R") = Coo ([0,b]; R™) be a linear contin-
uous operator, P; (i = 0,1,2), ¢ and ¢; (i = 0,1) satisfy conditions (4.6")
and

Ing, = [0,8]. (4.13")
Then problem (4.1),(4.2) has one and only one solution u and it is classical.
Proof. By virtue of Lemmas 2.15 and 2.2,
Hy € Coo ([0,0]; R™™),  H € CZH (Dyp; ™M),
075
Zs and 222 € C(Dauy; RV™),
2 and —= € (Dap )

whence by equalities (4.10) and conditions (4.6") and (4.13") it follows
that ¢; is Mop-continuous and M Z, 'q and M Z, *P; (i = 0,1) satisfy the
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Carathéodory condition with M, weight. Consequently, all conditions of
Theorem 4.1 take place. Moreover, instead of (4.13") we have stronger re-
striction (4.13"). Therefore, by virtue of Theorems 4.1 and 4.1’, problem
(4.1),(4.2) has the unique solution and it is classical. W

Remark 4.4. When the matrix function P, satisfies the Lappo-Danilevsky
condition in the first argument, i.e. when

PQ(x,y)(/Oz 732(s,y)d.9) = (/Oz ’PQ(S,y)ds)P2(a:,y)
for (z,y) € Dus,

(4.28)

we have .
Za(a,y) = exp ([ Palssuds).
0

Therefore the matrix function My is calculated explicitly and conditions
(4.13) and (4.21) may be verified more or less effectively. But if condition
(4.28) is violated, then to verify these conditions effectively, we shall have
to apply Lemmas 2.7-2.10.

Let us introduce the notation

AO(Saxay) :97 Al(saxay) :P2(Say)a

A]'+1(S7$7y) = /z P2(€7y)‘4](s’€7y)d€ (.] = 1727 .- ')7
Moo(y) = Ho(y), Moj;(y) = Ho(y) +

a ]71 8
# [ PB4 T [ A6 s is =120,

If the inequality
det Mgk,1 (y) # 0
holds for some y € [0, b] and natural k, then for every natural m we assume

m—1 T
Bin(s.o.)= [E+ Y [ Aie,z,)de] x
i=0 ”0
X Hgl(y)H(S,y)'P2(5,y),
m—1 T
i=0

X/ H(&y)P2(€,y)Ap 1 (5, & y)dE for k> 1

and

Bgm(y) = max |:/0 |Am(S,$,y) —Bkm(S,.’E,y)|dS +
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From Lemma 2.7 and Corollaries 4.1 and 4.1’ there follow the following
assertions.

Let there exist natural k and m such that the inequalities

det Mox—1(y) #1, r(Bpn(y)) <1 (4.29)

hold almost everywhere in [0,b] and

a b
L1 = i) 1t 0l (Pl +
L b @I @1l + )l + ler )y < -+,

Then Problem (4.1),(4.2) has one and only one solution.

" Let h : C([0,a); R*) — Cu ([0,b];R™) be a linear conti-
nuous operator and p;, P; (i = 0,1) and q satisfy conditions (4.6"). More-
over, let inequality (4.29) hold everywhere in [0,b]. Then problem (4.1),(4.2)
has one and only one solution and this solution is classical.

From Corollaries 4.1 and 4.1' according to Lemmas 2.8, 2.9 and 2.10 we
obtain respectively Corollaries 4.3 and 4.3/, 4.4 and 4.4’ and 4.5 and 4.5'.

Let

h(v)(y) = (viai(y) ), (4.30)

where a; : [0,b] = [0,a] (i =1,...,n) are measurable functions. Moreover,
let the matriz function

A(y) = esssup [Pz (z, y)|
0<z<a
satisfy the inequality
r(A(y)) < — (4.31)

almost everywhere in [0,b], and
a b ) _
[ [ 1 =2 aw) | (ot +
o Jo

+(1+ [leo @) IDIP (@, )l + lla(z, )1l + ||s01(y)||)dwdy <Aoo (4.32)

Then problem (4.1),(4.2) has one and only one solution.
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" Let conditions (4.6') and (4.30) hold, where a; : [0,b] —

—[0,a] (i =1,...,n) are continuous functions. Let, moreover, the matriz
function
Aly) = max [P,y)
be such that
r(Aly)) < ;—a for 0<y<b. (4.33)

Then problem (4.1),(4.2) has one and only one solution and this solution is
classical.

Remark 4.5. Condition (4.33) is optimal in the sense that it is impossible
to replace it by the requirement that inequality (4.31) be fulfilled evrywhere
in [0,b] except at some finite number of points and that integral (4.32) be
convergent. To convince ourselves that this is so consider the problem

d%uy(x,y) _ Ous(w,y)

0xdy oy ’

° ( ) s ) (4.34)
U2,y - _ 2 U\, y 2
“ordy wa(y)iay + 2wy (y),
) _ . 6ul (07 y) _ 6“2 (aa y) _
u;(2,0)=0 (i=1,2), - oy 0, (4.35)

where
waly) = 5-[1= (5)°], ae @1l

In that case
%@w:(_éw)g),mw=(@h)é>

r(A®y)) = wa(y).

Consequently, all conditions in Corollary 4.3" except (4.33) hold. Instead
of condition (4.33) we have

and

r(A(y)) < % for 0<y<b, r(A0) = ;—a.
In addition,
2a -1 Yy-a Yya] ™l 1 2
(E_7A(Z/)) = (g) [2_ (g) ] ( 20,2 (y) 1 )

for 0<y<b.

From the above it becomes evident that condition (4.32) holds for a €
(0,1) and is not fulfilled for & = 1. According to Corollary 4.3, problem
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(4.1),(4.2) has the unique solution (u;)?_, for every a € (0, 1). By immediate
verification we convince ourselves that

Yy H t
uy(z,y) = —/ " sin(wa (1)2) dt + zy,
0 Wa

(t) cos(awq (t))
Y cos(zwq(t))
=— ———Cdt
’U,Q(z,y) /0 cos(awa(t)) +y7
and this solution is not classical because
limwz—oo for 0<z<a (i=1,2).
y—0 Oy

Remark 4.6. As been admitted above, for problem (4.34),(4.35) all con-
ditions of Corollary 4.3 except (4.32) take place for « = 1. Let us show that
in this case problem (4.34),(4.35) has no solution. Suppose the converse
holds, i.e. the problem does have a solution (u;)%_,. Assume

aul(xay)
z2(z,y) = ———=.
(z,y) By
Then for every y € (0,b) we shall have
8%z(x,
THoD) — i w)aten) + i),
_ o Oz(z,y) _
z(0,y) =0, e | = 0.
Therefore )
Z(xay) = _Wl(y) cos(aw1 (y)) Sln(wl (y)x) +
and B (2.9) .
uy (x,y .
= — sin(w T)+ .
ay wi(y) sin (22 (wily)z)

But this is impossible because for every x € (0, a] the function in the right-
hand side is not summable in the second argument on the interval [0, b]. The
obtained contradiction proves that problem (4.34),(4.35) has no solution.
Thus it is impossible to omit condition (4.32) from Corollary 4.3.

Remark 4.7. When o = 1 problem (4.34),(4.35) is an example of a prob-
lem of type (4.1),(4.2) which is unsolvable although the corresponding ho-
mogeneous problem has only the trivial solution.

Let there exist a diagonal matriz function Ay € Loo(Das;
R™*™) such that

det (Ao(z,y)) #0 (4.36)
almost for every (z,y) € Duy and the inequality
r(A(y)) <1 (4.37)
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holds almost everywhere in [0, D], where

A(y) = esssup |4y (z,y)Pa(z,y) — B

0<z<

Let, moreover, every diagonal element of the matriz Ao(-,y) be a function
of constant sign almost for every y € [0,b] and

/Oa /Ob H (E — A(y))l(/oa Ao(s,y)ds)_lH (||730(a;,y)|| +
+(1+ (106 (@) DN (z, )| + [la(z, y)Il + ||s01(y)||)dwdy < +00. (4.38)

Then problem, (4.1),(4.21) has one and only one solution.

" Let conditions (4.6") hold and there exist a diagonal matriz
function Ag € C(Dap; R**™) such that

det (Ao(z,y)) #0 for (z,y) € Dap (4.39)
and
r(A(y)) <1 for 0<y<b, (4.40)

where

— —1 _
A(y)—orgggalflo (z,y)Pa(z,y) — E|.

Then problem (4.1),(4.21) has one and only one solution and this solution
is classical.

Remark 4.8. The example considered in Remark 4.1 shows that it is im-
possible to omit condition (4.38) from Corollary 4.4 and to replace condition
(4.39) by the requirement for inequality (4.36) be fulfilled everywhere in Dy,
except for one segment {(x,yp) : 0 < x < a} for some yo € [0, b].

Remark 4.9. Condition (4.40) is optimal in the sense that if it is violated
even at one point while all other conditions of Corollary 4.4" and condition
(4.38) hold, problem (4.1),(4.2;) may have no classical solution. As an
example verifying this fact, consider the problem

0%uy (z, Ou (x, Ous(w,
o) Qo) g g, 2t . )
0xdy Oy oy (4.41)
Pus(w,y) _ dwi(wy)  Ouslz,y)
dxdy Oy Oy ’
. _ aul(oay) _ aui(aay) .
u;(z,0) =0, oy (1=1,2), (4.42)

where
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In that case

7’2(%1/)2(} (I_Ef(y))2>, Ao(%l/)z(é ?)

and

r(Ay)) =1-ealy),
whence it is clear that all conditions of Corollary 4.4" except (4.40) take
place. Instead of (4.40) we have

r(A(y)) <1 for 0<y<b, r(A(D) =1

Besides,

a1 L (1-ca@)
=A™ = —s (] T,

Consequently, condition (4.38) holds for @ € (0, 1) while this condition is
violated for @ > 1. Let us show that for o € (0, 1) the solution of problem
(4.41),(4.42), whose existence and uniqueness follow from Corollary 4.4, is
not classical and for a > 1 this problem has no solution whatsoever. Indeed,
let (u;)?_, be the solution of problem (4.41),(4.42). Assume

Ouq (x, Oua(z,
o) = 20D 4 ) - 22l
Then
0z(z,y) _
6117 _Sa(y)z(way) _17
2(0,y) = z(a, y).
Therefore )
z2(x,y) = for 0<z<a, 0<y<b
€a(y)
and

lim z(z,y) = 400 for 0<z <a.
y—b

Besides, for a > 1 the function z is not summable in Dy, which is impossible
due to the absolute continuity of the functions u; (i = 1,2).

Let P2(z,y) = (p2ij(,y))i ;=1 and there exist functions
o;:[0,0] = {=1,1} (i = 1,...,n) such that the real parts of eigenvalues of
the matriz
Ay) = (ai; () j=1
where

aii(y) = esssup(oi(y)p2ii(2,y)), aij(y) = esssup |paij(z,y)|
0<z<a 0<z<a
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for (i#j; isji=1,...,n)

are negative almost for all y € [0,b] and

b
/0 1A~ I+ lor () )y < +oo. (4.43)

Then problem (4.1),(4.21) has one and only one solution.

" Let conditions (4.6') hold, Py(z,y) = (p2ij(%,y))} =, and
there exist numbers o; € {—1,1} (i = 1,...,n) such that the real parts of
eigenvalues of the matriz

A(y) = (ai; ()i, (4.44)

where

aii(y) = Orggga(aipm(w,y)), aij(y) = onax |p2ij (z, )

for (i#j; ivj=1,...,n)

are negative for all y € [0,b]. Then problem (4.1),(4.21) has one and only
one solution and this solution is classical.

Remark 4.10. The restriction in Corollary 4.5" imposed on the eigenval-
ues of matrix (4.44) is optimal and cannot be weakened. As an example let
us consider problem (4.41),(4.42). If oy = 09 = —1, then matrix (4.44) for
system (4.41) has the form

a = 0e)

and its eigenvalues
A(y) =ealy) =2, Xo(y) = —ealy)
satisfy the conditions
Ai(y) <0 for 0<y <b, Xo(y) =—caly) 0<y <b, A(b) =0

and condition (4.43) also holds for o € (0, 1). Nevertheless, problem (4.41),
(4.42) has no classical solution for any a > 0.
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Mo(y) = O

Let
Pi € CTH0 (Daup; R (i=10,1,2), ¢ € TV (Day; R), (4.45)
®o € @([O,G];Rn), pY1 € @([Oab])Rn)a (446)

and h : @([O,G]; R") — Coo ([0,0]; R™) be a linear continuous operator such
that

Mo(y) =0 for 0<y<b (4.47)

det. ( / M (5,3) 25" (5,9)[Po(5,9) + P (5,0)P(5,9)] Zas, y)ds ) 0
for 0<y <0

(4.48)

Then for the unique solvability of problem (4.1),(4.2) it is necessary and
sufficient that

/ M (5,0)Z5 (5, 0)[Po(s, 0)0(s) + P (5, 0)gh (s) +
+q(s,0)]ds = ¢1(0). (4.49)

Proof. Let u be an arbitrary solution of system (4.1). Then by Lemma 3.3,
u(e,y) = Zao ) [10.0) + | 25 6) Bi(ss0)0(6)ds] + Zalay) ¢
0
/ / (3,9)Z1(5,9) Z1 ' (5,8) (P (s, t)u(s, ) + q(s,t))dsdt  (4.50)

( Yo, y)ule,y)) = Zy ' (2,y) 21 (2, y) x

/ (, )u(z, t) + q(a;,t))dt], (4.51)
where
o(z) = Buéa;, 0 _ (2. 0)u(z,0) (4.52)
and
0P (z,y) .

P(x,y) = P()(.’E,y) + Pl(zay)P2(way) - By

In view of (4.50), from the obvious equality

Bu(a:,y) 6 BZgl(x,y)u(
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we obtain

Z;l(x,y)aug?;y) = aug:)y’y) +/$ Z_ (s,9)P1(s,y)Z1(s,y)p(s)ds +

s [ 25 (Pt +ats)as+ [ [ 257 6P x
xZ1(s,9)Z7 " (s,t) (P (s, t)u(s, t) + q(s,t))ds dt + v(z,y), (4.53)

where
’P(x,y) = PO(:U:y) + Pl(xvy)PQ(way) (454)
and
o) == [ 2 P s ds [ 20 75,
x [io(s) + /Oy Z7H(s,8) (P(s, u(s, 1) + q(s, £))dt] ds - 82267;”5"”)@%).
But
-1 6P2(xay) _
Zy (x’y)Ty =

= 27 (0,) [ (Pa(o ) al,0) = Palos) 00 27 0y =

_ =1 82Z2($vy) aZQ(zay) 8Z2($7y) -1 _
= 7@, )[ s (w,y)Ty]% (2,y) =
= ai(ZE (w,y)iaZQ;;’y))Zf(w,y) -

- ai (E)ZT(/)Z (z, y))Z (z,9)-

If we take into account the above equality and identity (4.51), we shall
have

o) = [ (P2 76, 23 sty +

” BZgl(s,y) 0,1 aZgl(x,y) _
+/0 TZ2(S’Z/)&(Z2 (s,y)u(s,y))ds — Tu(aj,y) =

_["0 075 (s,y) 0Zy  (z,y) _
_A aS( ay u(s,y))ds ay U(ilf,y) -

_ 925 1(0,y) _
= 9% 000, =0, (4.55)
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Therefore from (4.53) we get

Ou(z,y) _ Ou(0,y)

27 ) P = S b [ 25 (5P s, 21 ()l +

v/ " 25 (5,9) (Pls,y)uls, ) + a(s,9))ds + / ' / " 25 (1) %

xP1(s,y)Z1(s,y) Z1 (s, t) (P(s, t)u(s, t) + q(s, t))ds dt. (4.56)

According to representations (4.8) and (4.56) and condition (4.47), u
satisfies boundary condition (4.2) if and only if

p(x) = pp(x) — Pa(x,0)p0(2), (4.57)

u(0,0) = ¢o(0) (4.58)

and
- / " M(5,9) 25 (5,9) (P1(5,9) 21 (5,1)0(5) + a(5,9))ds +
+f aM(s,wz;(s,y)ﬁ(ay)u(ay)ds T

[ ] M7 6P 21(50)
xZ7 " (s,t) (P (s, t)u(s,t) +q(s,t))dsdt for 0<y<b.  (4.59)

On the other hand, if conditions (4.57) and (4.59) hold, then by (4.52)

we have
u(z,0) = @o(z) + Z2(x,0)(u(0,0) — ¢0o(0))
and

/ M(5,0)Z5 (s, 0)[Po(s,0)po(s) + P1(s,0)0h () + a(s, 0)]ds +

/ M(s,0) 75 (5,0)P(s,0) Za(s, 0)ds ) (u(0, 0) ~ po(0),

whence it is clear that condition (4.49) is necessary and sufficient for equality
(4.58) to be fulfilled.

Thus we have proved that condition (4.49) is necessary for problem
(4.1),(4.2) to be solvable. Moreover, if this condition is fulfilled, then the
solution u of system (4.1) satisfies boundary conditions (4.2) if and only if

Ou(zx,0)
Oz
and equality (4.59) holds, where ¢ is the vector function given by (4.57).

Thus to complete the proof we have to show that system (4.1) has one
and only one solution satisfying (4.59) and (4.60,).

~ Pa(a,0)u(,0) = p(x) for 0<z<a (460,
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According to (4.50),

/ M(s,y)Z )P (s,y)u(s,y)ds = Qo(y)u(0,y) +

+/0 /O/OQ1 z,y,8)Z; S,t)’P(s,t)u(S,t)dsda:)dt—l-cpg(y),

where

/ M(s,y)Z VP (s,y)Z2(s,y)ds,

Qi(z,y,s) = M(z,y)Z; (=, )75(93 ) Za(x,y) 2y (3,9) Z1 (s, Y)

[ [ et + [ 2 60000t dsas

//ley, (s, 6)P(s, tyuls, t>dsda:—/ Q5 5, tyu(s, 1)ds,

where

and

oy, 5,1) = /Qlary, dr) 2 (s, 1)P(s.1).

Therefore
/Msy YP (s, y)u(s, y)ds =
= Qo(w)u(0,y) + / / Qaly, 5, tyuls, )ds dt + a(y).

If we take onto account the formulas above and condition (4.48), then eq-
uality (4.59) will take the form

u(0,y) = ¥(y) +/0 /0 Q(y, s, t)u(s,t)dsdt for 0<y<b, (4.605)
where
by) = Q' 0 1) - () -

- [ M2 ) (Prlo) 215,065 + als, )] -

-Q5 ' ( / / M(s,9)Z5 " (5,9)P1(5,9) Z1(s,9) Z7 (s, t)q(s, t)ds dt
and

Q(yvs t) _Q(;l( )[QQ(Z/,S t) +
+M (s,9)Zy  (5,9)Pi(s,9) Z1(s,9) Zy (5, 0)P (s, 1)].



80

By conditions (4.45),(4.46) and (4.48) and Lemmas 2.2, and 2.3,, the
vector and matrix functions ¢, ¢ and @ satisfy the conditions of Lemma 3.5'.
Therefore problem (4.1),(4.60;),(4.602) has one and only one solution. W

" Let P; (i =0,1,2) and q be continuous and have a contin-
uous partial derivative in the second argument, po and o1 be continuously
differentiable and h : C([0,a]; R™) — C([0,b]; R™) be a linear continuous op-
erator satisfying conditions (4.47) and (4.48). Then the fulfilment of (4.49) is
the necessary and sufficient condition for problem (4.1),(4.2) to be uniquely
solvable and to have a classical solution.

This theorem is proved using the same arguments as in proving Theorem
4.2, but instead of Lemmas 2.33 and 3.5' we apply Lemmas 2.34 and 3.5".
Consider the case when boundary conditions (4.2) have the form

u(e0) = gola), S )P o). e
In that case -
Mo(y) = iq’k(y)%(ak,y)
and -
M(z,y) = i P (y) Z2(ak, y)xk (2),
where =

1 for0<z<ayg
Xk(z) = .
0 forap<z<a

Therefore Theorems 4.2 and 4.2" imply several assertions.

N Let conditions (4.45) and (4.46) be fulfilled and ®) €
€ Cx ([0,0]; R**™) and ay, € [0,a] (k=1,...,m) be such that

m

> @k(y) Za(ar,y) =O© for 0<y<b (4.62)
k=1

and

o (Lt [ 25 olPten) +

k=1
+P1 (s,y)P2(s,y)]Z2(s,y)ds) #0 for 0<y<hb. (4.63)

Then problem (4.1), (4.61) is uniquely soluvable if and only if

> ®4(0)Zx(ax, 0) /0 75 (s,0) x

k=1
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x[Po(s,0)p0(s) + P1(s,0)p4(s) + q(s,0)]ds = ¢1(0). (4.64)

" Let P; (1 = 0,1,2) and q be continuous and have a
continuous partial derivative in the second argument, po, @1 and Py (k =
=1,...,m) be continuously differentiable, ay, € [0,a] (k = 1,...,m), and
conditions (4.62) and (4.63) hold. Then then fulfilment of equality (4.64) is
necessary and sufficient for problem (4.1),(4.61) to be uniquely solvable and
to have the classical solution.

Corollaries 4.6 and 4.6' for problem (4.1),(4.2;) take the form of
Let conditions (4.45),(4.46) hold,
Zy(a,y) =E for 0<y<b (4.65)
and

det (/0“ Z5 ' (s,9)[Po(s,y) + 731(s,y)732(s,y)]Z2(5,y)ds) 40
for 0 <y <hb.

(4.66)

Then problem (4.1),(4.21) is uniquely solvable if and only if

/Oa Zy 1 (5,0)[Po(5,0)00(s) + P1(s,0)9h(s) + a(s,0)lds = 1 (0).  (4.67)

" Let P; (i =0,1,2) and q be continuous and have a con-
tinuous partial derivative in the second argument, po and @1 be continu-
ously differentiable and conditions (4.65) and (4.66) hold. Then problem
(4.1),(4.21) is uniquely solvable and its solution is classical if and only if
equality (4.64) takes place.

Problem (4.1),(4.2) is ill-posed under conditions (4.47) and (4.48) due to
the fact that its solvability may be violated at arbitrarily small perturba-
tions either of coefficients of the system under consideration or of boundary
conditions. But problem (4.1),(4.3) is free from such a deficiency. Namely,
the following theorem is valid.

Let
P; € CCM0 (Day; R™™) (i = 0,1,2), q € CCUY (Day; RY),

o be summable, 11 absolutely continuous and h : @([O, al; R") — Coo ([0, b];
R™) be a linear continuous operator satisfying conditions (4.47) and (4.48).
Then problem (4.1),(4.3) has one and only one solution.

Proof. First we assume that problem (4.1),(4.3) has a solution u. Then u
is a solution of problem (4.1),(4.2), where

vo(7) = Za2(z,y)u(0,0) + z0(x), »1(y) = ¥1(y)
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and zp is the solution of the system of ordinary differential equations

dz(x)
dz

with the initial condition

= Py(z,0)2(x) + ho(x)

z(0) = 0.
According to Theorem 4.2,

where

Qo(0) = /Oa M(5,0)Zy *(s,0)[Po(s,0) + P1(s,0)Pa(s,0)] Za(s, 0)ds,

co = ¥1(0) — / M(s,0)Z5 " (5,0)[Po(s,0)z0(s) + Pi(s,0)2(s) + q(s,0)]ds.
0
However, by condition (4.48),
det Q()(O) ;é 0.

Therefore
u(0,0) = Q5" (0)co.
Thus we have proved that every solution of problem (4.1),(4.3) is a solu-
tion of problem (4.1),(4.2), where

po(x) = Za(2,0)Qy ' (0)co + 20(x), @1(y) = ¢1(y). (4.68)

The converse statement can be easily verified. If equalities (4.68) take place,
then every solution of problem (4.1),(4.2) is a solution of problem (4.1),(4.3).
Consequently, problem (4.1),(4.3) is equivalent to problem (4.1),(4.2), where
po and ¢ are given by equalities (4.68). But from (4.68) there follows
equality (4.49). Therefore by Theorem 4.2 we conclude that in that case
problem (4.1),(4.2) has one and only one solution. W

In the same way we can prove

" Let P; (i =0,1,2) and q be continuous and have a con-
tinuous partial derivative in the second argument, Yo be continuous, v be
continuously differentiable and h : C([0,a]; R") — C'([0,b]; R™) be a linear
continuous operator satisfying conditions (4.47) and (4.48). Then problem
(4.1),(4.3) has one and only one solution and this solution is classical.

When boundary conditions (4.3) have the form

Buéa;, O o (e, 0)ule, 0) = tola), Z@,C(y)%;’y) o), (469)
k=1

Theorems 4.3 and 4.3’ result in the following statements.
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Let
P; € CCMO (D R™™) (i = 0,1,2), g€ CCM0 (Dyy; R?),

o be summable, 11 absolutely continuous and ®; € ((Njoo([O,b];]R”X”) and
ap, € [0,a] (k = 1,...,m) be such that conditions (4.62) and (4.63) hold.
Then problem (4.1),(4.69) has one and only one solution.

" Let P; (i = 0,1,2) and q be continuous and have a con-
tinuous partial derivative in the second argument. Let 1y be continuous, Y
continuously differentiable and ®; € C'([0,b]; R"*") and ay, € [0,a] (k =
=1,...,m) be such that conditions (4.62) and (4.63) take place. Then prob-
lem (4.1),(4.69) has one and only one solution and this solution is classical.

Let
,Pi € @SLO) (Dab;Rnxn) (Z = 07 172)7 /S @g;LO) (Dab;]Rn)a

o be summable, 11 be absolutely continuous and conditions (4.65) and
(4.66) hold. Then problem (4.1),(4.31) has one and only one solution.

" Let P;(i =0,1,2) and q be continuous and have a contin-
wous partial derivative in the second argument, 1y be continuous, Y1 contin-
uously differentiable and conditions (4.65),(4.66) take place. Then problem
(4.1),(4.31) has one and only one solution and this solution is calssical.

Condition (4.48), appearing in Theorem 4.3 and its corollaries, is optimal
in the sense that it cannot be weakened. As an example, let us consider
problem (4.1),(4.31) for P2(z,y) =0, i.e. when it has the form

%g;y) = Po(z,y)u(z,y) + Pi(z,y) augl;’ v) +q(z,y), (4.70)
8’LL(£I’,‘,0) _ 8u(a,y) _ 8u(0,y)
ox - 1/}0(23')7 ay = ay + 1/11(y) (47]_)

For this problem we have
If
PO c C(()gl,o) (Dab; Rnxn),
then fulfilment of the inequality

det(/a’Pg(s,y)ds) #Z0 for 0<y<b
0

is necessary and sufficient for problem (4.70),(4.71) to be uniquely solvable
for every Py, q,vo and 1y satisfying the conditions

P1 € C1O (Dyy; R™), g € C1O) (D R,

N (4.72)
/‘/}0 € L([Oaa];Rn)a djl € C([Oab])Rn)
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Proof. The sufficiency follows from Corollary 4.9. Thus we have to show
that if for any yo € [0, b]

det (/Oapo(s,yo)ds) =0,

then there exist matrix and vector functions which satisfy conditions (4.72)
and for which problem (4.70),(4.71) has no solution. Indeed, choose ¢ € R”
such that the system of algebraic equations

(/Oa Po(s,yo)ds)z =c (4.73)

is unsolvable and assume
v c
Piles) = [ Polssulds, aley) = =5, dol@) =0 $i(p) =0. (474)
0

Suppose that for such P, ¢, o, and 1, problem (4.70),(4.71) has the solu-
tion u. Then

;x(augj vy _ 2 / Pos,y)ds ) u(z,)) -

Integrating this identity with respect to = from 0 to a and taking into
account conditions (4.71) and (4.74), we obtain

(/Oa PO(S’yO)dS)U(aayo) =c.

But this is impossible because of the fact that system (4.73) is unsolvable.
The obtained contradiction shows that if Py, q, vy and ¢ are given by eq-
ualities (4.74), then problem (4.70),(4.71) has no solution despite the fact
that conditions (4.72) hold. W

Let
Py € @ggl,[)) (DabE ]Rnxn),

b
mes In, = b, /0 (14 o @)D IMG " ()l dy < +o0. (4.75)

Then problem (4.1),(4.4) has one and only one generalized solution.

Proof. Let u be an arbitrary generalized solution of system (4.1). Then,
according to Lemma 3.3,

w%wzamwh@w+[éf@wawwmmﬂ+%@@x

/ / (5,9)Z1 (5, 9) Z; (5, 8) (P(s, t)us, £) + q(s, 1)) dsdt, (4.76)
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where
Po,1) = Pala,y) + Pa(o,i)Palany) — 25,
o@) = lim (P20 py(e uta,y)).

From this and representation (4.8) it becomes clear that boundary condi-
tions (4.4) are fulfilled if and only if

v1(z) = to()

and

1(y) = Mo(y)u(0,y) + P2 (y //Q1 (y, s, t)u(s,t)dsdt,

/Mw smmem + [ 2 s s, as
Q1. 5.1) = M(s,9) 25" (5,9) 2 (5,) 2 (3, )P (s, 1).

Moreover, as follows from Lemmas 2.2, and 2.3,
Yy € Loo([0,0]; R™™), Q1 € Loo([0,D] X Dyp; R™*™). (4.77)

Obviously, problem (4.1),(4.4) is equivalent to the problem of finding the
generalized solution of system (4.1), satisfying the boundary conditions

lim (w Pa(z,y)u(z, )) Yo(z),

y—0

u(0, //Qy,st (s,t)dsdt,

P(y) = My () (W1 (y) — (),
Q(y, s, t) =My (y)Q1(y,s,1).

(
However, by conditions (4.75) and (4.77)
(

(4.78)

where

)

¥ € L([0,b]; R™), @ € L([0,b] x Dgp; R™*™),
1Q(y, s, )l <m(y) for y €[0,b], (s,t) € Dy
and
n € L([0,b]; R).

Therefore, by Lemma 3.5 problem (4.1),(4.78) has one and only one gener-
alized solution. W
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" Let
Py € CG0 (Day; KM, 4 € C(0, 5 RY),

and h : C([0,a];R™) = Cso ([0,b]; R™) be a linear continuous operator such
that

Ing, = [0,0]. (4.79)

Then problem (4.1),(4.4) has the unique generalized solution and this solu-
tion s absolutely continuous.

" Let P; (i =0,1,2) and q be continuous, Py have a con-
tinuous partial deriative in the second argument, g be continuous, V1 be
continuously differentiable and h : C([0,a]; R") — C'([0,b]; R™) be a linear
continuous operator, satisfying condition (4.79). Then problem (4.1),(4.4)
has a unique generalized solution which is classical.

Theorem 4.4" (Theorem 4.4") can be proved similarly to Theorem 4.4
but in that case instead of Lemmas 2.3, and 3.5 we apply Lemmas 2.33 and
3.5" (Lemmas 2.34 and 3.5").

Remark 4.11. The effective conditions guaranteeing the fulfilment of con-
dition (4.75) (Condition (4.79)) are given in the above proven Corollaries
4.2-4.5 (Corollaries 4.2'-4.5").

Remark 4.12. The restrictions imposed on the operator h in Theorem
4.4" are optimal in the sense that they cannot be weakened. As an example,
consider the problem

0%u(,y)
= 4.
920y ; (4.80)
. Ou(zy) 1 (e
1}%7_57 u(a,y)—(l-l-y )U(O,y), (481)
where a € (0,1). In that case h(v)(y) = v(a) — (1 + y*)v(0) and
Mo(y) = —y*.

Consequently, the operator h : C([0, a]; R*) — C([0, b]; R") is continuous
and satisfies condition (4.75). On the other hand, problem (4.80),(4.81) has
the unique generalized solution

_ T
u(a:,y) =Yy a+g,

which is not absolutely continuous.

Finally, let us pass tothe investigation of problem @.1),@.4) when My(y)=
= 0 and h acts from C([0,a];R") to Cs ([0,b]; R*). Let us introduce the
matrix functions

75(33,31) = PO(a:ay) + ,Pl(xay)P2(xay)
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and

M H,

0 0s

o« OH z
) =y + [ [H) SR
+M(s,9)Z5 " (
Let
Py € CC1O (Dap; R™*™), by € C([0,b]; R?)

and h : C([0,a];R™) = Cao ([0,b]; R™) be a linear continuous operator such
that

Mo(y)=© for 0<y<b,

b . 4.83
mes Iy = b, /0(1+||w1<y>||>||M*1<y>||dy<+oo. (459

Then for the existence and uniqueness of a generalized solution of problem
(4.1), (4.4) it is necessary and sufficient that

/ M(s,0)Z5 " (s,0)1h0(s)ds (4.84)

Proof. In view of representation (4.10) and condition My(y) = ©, we have
Zs(

/ Hs, )2 2‘”’)d =0 for 0<y<b  (4.85)

If we differentiate this identity, then by virtue of Lemmas 2.13 and 2.25 we
obtain

Hy(y) +

"OH(s,y) 6Z2 (5,9) 4 / H(s 62Z2 (s y)ds. (4.86)

0 dy
Let u be an arbitrary generalized solution of system (4.1) and
ﬂ(xa y) = u(a:, y) - Z2(x7 y)U(O, y)

Then, according to Lemma 3.3, representation (4.76) is valid and, conse-
quently,

2; e ute) = | " 25 (5,9) 21 (5, ) (s)ds +

/ / (,9) 71 (5,9) Z; M (5,8) (P(s, t)uls, £) + q(s,0)) ds dt, (4.87)
where

o) = lim (289 0 yyuce ),

y—0
67)2 (xa y)

P(Z’,y) = ,P[)(Z',y) + Pl(xay),])2(xay) - 8:[/



88

Proceeding from this representation in a way which is similar to that of
proving equality (4.56), we can show that

ou(z,y)
dy

+f " 25 (5,0 (P(s, y)u(s,y) + a(s,y))ds +

Zy (z,y)

-/ A

+/0z /OyZ2_1(S,y)Pl(S,y)Zl(S,Z/)Zl_l(s,t)('P(s,t)u(S,t)+

6Z2 (il',‘, y)

+q(s,t))dsdt — Z; " (z,y) 9y

u(0,y). (4.88)

According to representations (4.7),(4.10) and condition (4.85), we obtain

/H Busy)d:

y)(y
/ M (s,y) 82 (s,y)u(s,y))ds.

h(u(,y)(y) = h(a(:

Therefore
= /a M(s,O)Q(ZQ_I(S,O)U(S,O))dS =
/ M(s,0)Z, " (s,0)v1(s)ds

and

Thu) = [ P gy (L),

dy 9y 0s Ay
whence it is clear that boundary conditions (4.4) are fulfilled if and only if
vi(#) = Yo(e), (4.89)
“0H(s,y) O0u(s,y) du(-,y) /
' —5y )W = 4.
/0 oy Os ds + h( Ay )(y) ¥ (y) (4.90)

and equality (4.84) holds.
In view of (4.8) (4.86) and (4.89) from (4.88) we obtain

p(280) / M(5,5) 75 (,4)P1 (5,4) Z1 (5, y)tbo(s)ds +
4 / M(s,9) 25 (,9) (P(s, w)us, y) + a(s,y))ds +
/ / M(s,y)Z5 (s,9)P1(s,y)Z1(s,y)Z1 Y(s,t) (’P(S,t)u(s,t) +

+q(s,t))dsdt — /0 H(s,y)agzigzy)ds)u(o,y) =1 (y) +
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//Qlyst stdsdt—l—/Msy Y(s,y) x P(s,y) x

Xusyds-l-HO /6Hsy angy)

ds|u(0,y), (4.91)
where

/ M(s,9) 25 (5, 9)[P1 (5,4) Za (5, 1) o) + a(5,1)]ds +

/ / M(s,9)Z5 (5,9)P1(8,9) Z1(s,4) Z7 (s, t)q(s, t)ds dt,
Quy, s,t) = M(s,9)Zy ' (5,9)P1(s,9) Z1(s,y) Z " (5,1) P (s, ).
But according to (4.76),
/Msy P (s, p)uls, )ds =
= [ M2 6P o) Zalss s u(0.0) + ) +

/ / / Q2(z,y,s dz) Z; (s, )P (s, t)u(s, t)dsdt,  (4.92)
0 0 s
where

Qz2(z,y,5) = M(z,y) Zy  (z,y)P(z,y) Z2(x,y) Z5 ' (5,4) Z1(s,y),

/ / Q2(z,y,s) ¢0 / (s, t)q(s, t)dt|ds de.

On the other hand, in view of (4.87),

/3H6(Z,y) 3usy //ngSt (s,t)dsdt, (4.93)
0

where

wiw) = [ (2 n(o) +

—I—%/j Z—l(S y)Z1 (s, y)’(,bo(s)ds] dz +

//M[Zl(x ) 2 (@, D), t) +
]

+M/ Zy M (s,9)Z1(5,y) Z; H(s,t)q(s, t)ds| dx dt,
Ox o
Qsly,51) = [/s aH(gz,y) : 6Z2a(§’y) Zy ' (s, t)dw + aHa(Z,y)] X

xZ1(5,y) 27 (s,1)P(s,1).
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From (4.89)-(4.93) we obtain equalities (4.78), where

P(y) = M~ (Y)W (y) — 2 (y) — ¥s(y) — va(y)],
Qy,s,1) = =M (1) [Qu(y, 5,) +

+(/sa Q2(z, v, s)dz) Z7 (s, t)P(s,t) + Qs(y, s,t)].

Thus we have proved that condition (4.84) is necessary for the solvability
of problem (4.1),(4.4). Moreover, if it is fulfilled, then problem (4.1),(4.4) is
equivalent to problem (4.1),(4.78). On the other hand, by virtue of Lemmas
2.13, 2.25 and 2.33 and condition (4.83), the vector and matrix functins,
and @ respectively, satisfy conditions of Lemma 3.5. Therefore problem
(4.1),(4.78) has one and only one generalized solution. W

If instead of Lemma 3.5 we apply Lemma 3.5’ (Lemma 3.5"), we shall
be able to convince ourselves that under specific additional restrictions on
Pi(i =0,1,2), q, h,1o and 91 the generalized solution of problem (4.1),(4.4)
is absolutely continuous (classical). Namely, the following assertions are
valid.

" Let
Pi € CCYO (Day; R™™) (i = 0,1,2), g€ CCM0 (Doy; R,
1 € C'((0,];R")

and h : C([0,a];R") — CL([0,b]; R") be a linear continuous operator such
that

Mo(y)=© for 0<y<b, Iy =00 (4.94)

Then the fulfilment of equality (4.84) is necessary and sufficient for problem
(4.1),(4.4) to have the unique generalized solution and for this solution to
be absolutely continuous.

" Let P; (i = 0,1,2) and q be continuous and have a contin-
uous partial derivative in the second argument, 1o be continuous, 1y twice
continuously differentiable and h : C([0,a]; R") — C?([0,b];R™) be a lin-
ear continuous operator satsfying conditions (4.94). Then the fulfilment of
equality (4.84) is necessary and sufficient for problem (4.1),(4.4) to have the
unique generalized solution and for this solution to be classical.

Remark 4.13. The restrictions imposed on P; (i = 0,1,2) and ¢ in The-
orems 4.5 and 4.5" are optimal and they cannot be weakened. As an
example, consider the problems

d*u(z,y)
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Ou(z,y)

lim === =0, u(a,y) = u(0,y),
82%2:;;) = u(z,y) —pl(y)% -,
%W =1, ulay)=u(0,y)+a
and
TAED) — ay) - ato)
?}%% =0, u(a,y) =u(0,y),

where pg : [0,b] = (0,4+00), p1 : [0,b] = R and ¢ : [0,b] — R are continuous
functions. All conditions of Theorem 4.5 for these problems are fulfilled.
Therefore each of these problems has the unique generalized solution

u(z,y) = u(z,y) =z +pi(y) and u(z,y) =q(y).

po(y)’
Moreover these solutions are absolutely continuous (classical) if and only if
po,p1 and ¢ are absolutely continuous (classical).

Similarly to Theorem 4.5 we can prove

Let
Py € CG1O (Dgy; ™M),
Mo(y) =© for 0<y<b
and ,
mesTy = b, [ (1 + I @D 0)]dy < +o0.
Then problem (4.1),(4.5) has one and only one generalized solution.
" Let
P; € C510 (Dyy; RW™) (i = 0,1, 2),
g€ CLM0 (Day; R™), ¢y € be([0,B]; R™)
and h : C([0,a]; R") — Cu ([0,b];R™) be a linear continuous operator sat-

isfying conditions (4.94). Then problem (4.1),(4.5) has one and only one
generalized solution and this solution is absolutely continuous.

" Let P; (i =0,1,2) and q be continuous and have a con-
tinuous partial derivative in the second argument, 1y be continuous, 1y
continuously differentiable and h : C([0,a]; R") — C'([0,b]; R™) be a linear
continuous operator satisfying conditions (4.94). Then problem (4.1),(4.5)
has one and only one generalized solution and this solution is classical.
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In conclusion, let us admit that the conditions of unique solvability of
problems (4.1), (4.41) and (4.1),(4.51) are sufficiently transparent because
for these problems

Mo(y) = Z2(a,y) — E

and

i) = | " 25 (5,9)P(5,9) Za (5, y)ds.

§ 5.
Consider the boundary value problem
u(z,y) _ du(z,y)
Tay —Po(x,y)u(x,y)+P1(w,y) ox +
du(z,y)
uz,0) = pol@),  h( 2D ) = (), (52)
dy

where

,PieLoo(Dab;]Rnxn) (2207172)7 qeLoo(Dab;]Rn)a
0 € Coo ([0,a];R"), 1 € Loo(Dap; R")
and h : C([0, a); R™) — Lo ([0, b]; R™) is a linear continuous operator.
Asin Section 4, by Z5 we shall mean the solution of the matrix differential
equation

aZQ(:Ea y)

e Po(x,y) Za(,y)

with the initial condition
Z2 (07 y) = E

According to Lemma 2.3, the operator h admits the representation
h(Z2(-,y)v () (y) = Mo(y)v(0) +
+/ M(s,y)v'(s)ds for v e C([0,a]; R"),
0
where
My € Loo([0,0); R® x n), M € Loo(Dap; R**™).

Analyzing the proof of Theorem 4.1, we can see that the following state-
ment is valid.
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Let

%Sgsylélf | det Mo (y)| > 0. (5.3)

Then problem (5.1),(5.2) has the unique solution u and

Ou(ay) _ Oulz,y)

um(a:7y) :; u(a:7y)7 8:1; aw )

Oun(w,y) _, Oulr,y) o4

dy dy
where uo(xz,y) = 0 and for an arbitrary m the vector function u,, is the
solution of the problem

for m — +o0,

al;zi(aa;w = ,P2(xay)%;‘,y) + PO(xay)umfl(xay) +
i) 2B 4y, 5.)
wnle,) =@, B(PIE ) =) o)

To construct u,, almost for all y € [0,b] we have to solve the system of
ordinary differential equations

azgl;; y) = PZ(xay)Z(xay) + PO(xay)umfl(xay) +
i) 2B 4y 6.1

with the boundary condition

h(z)(y) = 1 (y)- (5.8)
In view of (5.3) problem (5.7),(5.8) has the unique solution z,,(+,y) and

um(,y) = go(z) + /0 L ()t

However, if n > 1, then the solution z,,(+,y) can be effectively constructed

only in exceptional cases. Consequently, the method of constructing the

solution of problem (5.1),(5.2) described above fails in the general case.
We shall consider the case when P> and h admit the representation

Pa(z,y) = Paolx,y) + Pau(x,y)

and
h(v)(y) = ho(v)(y) — Z Hjv(s;),
where

Pao and Pai € Log(Dgp; R**™),
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€[0,a], Hi e R™*" (j=1,...,v),
and the problem

0z(z,y)
ox

has only the trivial solution almost for all y € [0, b].
In that case problem (5.1),(5.2) takes the form

= Pao(x,y)2(z,y), ho(2)(y) =0 (5.9)

o) = Puta (e p) + Pula) g+
FLPool,y) +7’21(%y)]aU(az’ D 4 (o), (5.10)

u(w,0) = eo(e), o (P 2 P 1oy y). (511)

=1

Let ug(z,y) = 0. For every natural m by u,, we denote the solution of the
problem

Pum(z,y) Ou (7,y)
“owdy 7320(33,3/)7 + Po(x,y)um—1(z,y) +
0 m— N 0 m— )
P (o) P 4y (0, 22D ), (s12)
um(z,O) = 900(:17)5
aum('ay) - aum—l(S'ay) (513)
(g )W) = L H G R 4 ),
=

Below we determine the conditions whose fulfilment guarantees the ful-
filment of conditions (5.4).
By Zy will be meant the solution of the matrix differential equation
0Zy(x,
# = PQO(za y)Z()(.’E, y)

with the initial condition
Zo(0,y) = E,

and by G(-, -, y) the Green’s matrix of problem (5.9).
By Lemma 2.3; operator hg admits the representation

ho(Zo (- y)v ())( ) = Mio(y)v(0) +
/ M (s,y)v'(s)ds for v e C([0,a]; R), (5.14)

where
Mo € Loo([(),b],]R”X”), M € Loo(Dab;Rn X n)
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Therefore
Zo(z,y)[E — Mg (y) M1 (s,y)]Z5 ' (s, for s <
Gz, s,y) = o(z, y)l o 1o (¥)Mi(s y_)} o (s,9) rs>e (5.15)
—Zo(z,y) Mg (y)Mi(s,y)Zy (s,9) for s > .
We have
Let
%sgsylgg | det Mio(y)| >0 (5.16)
and there exist a matriz function A € Loo([0,b]; R ™) such that
esssupr(A(y)) <1 (5.17)

0<y<b

and the inequality

> () Mg |+ [ 106 s,0Pa(s.0)lds < AGy) (319

=1

holds almost everywhere in Dgy. Then problem (5.10),(5.11) has the unique
solution u and condition (5.4) takes place, where ug(z,y) =0 and for every
natural m the vector function u,, is a solution of problem (5.12),(5.13).

Proof. Let ny = 2n, ny = n. For arbitrary 21 = (2{)j—g € Loo(Dap; R™),
where 2} € Loo(Dap; R™) (1 =0,1) and 2o € Loo(Dap; R™?), assume

91 (21, 22) (2, y) = o(x) +

+ /Oy Zo(w, t) Mt (1) [zV:HjZQ(S]’,t) + <p1(t)] dt +

+/0y /Oag(ar,s,t) [PU(Sat)Z?(Sat)+731(s,t)z%(3,t)+

+Pax(s,1)22(s,1) + q(s, )] ds d, (5.19)

69?(21, 22)(7,y)

O , g1(z1,2)(x,y) =

g%(21,22)($,y) =

1 (5.20)

(g ) @) s ga(en ) () = L)@

Ay
and show that problem (5.10),(5.11) is equivalent to the system of operator
equations

zi(,y) = gi(21,22) (2, y) (i =1,2). (5.21)
Indeed, let problem (5.10),(5.11) have a solution u. Put
ou(z,y) ou(z,y)
0 _ 1 _ ) _ ) .
Zl(xay) —U(Ql',y), Zl(xay) - oz ) 2’2(2}',y) 8:[/
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By Lemma 3.1 and equalities (5.19) and (5.20)
(27:)12:1 S Loo (Dab; R™ ) X Loo(Dab; ]Rn2)

is the solution of system (5.21). Taking into account (5.15) and (5.16), we
can easily show that if 2{ € Loo(Dup; R?) (i = 0,1), 21 = (2i)},, 22 €
€ Loo(Dap; R™) and (z;)?_, is a solution of system (5.21), then u(-,-) =

= 29(-,-) is a solution of problem (5.10),(5.11) and the equalities
Ou(z, Ou(z,
Z%(xay):%a Z2(£7y):%
are valid.

In view of (5.15)-(5.20), for any ¢; and ¢ € Leo(Dap; R™) (i = 1,2) the
operators g; : Loo(Dap; R™) X Loo(Dap; R?) = Loo(Dap; R%) (i = 1,2)
satisfy inequalities (1.3) and (1.21) almost everywhere in Dgp, where I =
= [0,a], go(t) = const, Ag; is a non-negative constant na X n; matrix and
Apo is the zero matrix. The validity of the theorem becomes evident by
applying Lemma 1.3. H

Let inequality (5.16) hold,

esssupr(z |Hj| |Z0(sj,y)M1_01(y)|) <1 (5.22)
o<y<b i

and there exist a matriz function A € Ly ([0, b]; R*™™) satisfying condition
(5.17) such that the inequality

d ~1
|Zo (2, 9) My W[ B = 3 1Hyl | Zo(s, )M )]
j=1
« 3 [ 116550 (s, )lds +
j=1

+ [16.5.0)Pa(s,0)lds < AG) (5.23)
0

holds almost everywhere in Dgy,. Then problem (5.10),(5.11) has the unique
solution u and condition (5.4) takes place, where ug(z,y) = 0 and for any
natural m the vector function u,, is a solution of problem (5.12),(5.13).

Proof. Let ny = 2n, no = n, Ay = Loo(Dap; R™), Ay be a set of all { €
€ Loo(Dap; R™) such that ¢(-,y) € C([0, a]; R™) almost for all y € [0,b] and
Ao = C([0, al; R™), while g; : Ay x Ay — A; (i = 1,2) be the operators given
by equalities (5.19),(5.20).

As shown above, problem (5.1),(5.2) is equivalent to the system of oper-
ator equations (5.21) due to condition (5.16).

In view of (5.15),(5.16),(5.19) and (5.20) for any (; and (; € A; (i = 1,2)
the operators g; (i = 1,2) satisfy inequalities (1.3),(1.4) almost everywhere
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in Dy, where I = [0,a], go(t) = const, Ap; is a non-negative constant
ny X mq matrix, Ags is the zero matrix,

Ay (z,y) = /Oa 1G(,5,9) P21 (s, 9)lds,  As(z,y) = |Zo(z,y) Mg (y)]

and [ : Ag — R™2 is a non-negative linear operator given by the equality
v
() =Y [Hjlv(s;)-
Jj=1

In view of (5.22), condition (1.5) takes place and in view of (5.23) we
may assume without loss of generality that equality (1.7) holds. Besides,
since condition (1.6) is also fulfilled, by virtue of Lemma 1.1 system (5.21)
has the unique solution (z;)?_; and conditions (1.8) take place. The validity

of Theorem 5.3 immediately follows from the above arguments. W

Let us give two corollaries of the above proven theorems for the periodic
boundary value problem. For the convenience we rewrite system (5.1) and
the boundary condition in the scalar form

82Ui($,y) _ - auk(xay)
“onoy ; (pom(iﬂ,y)uk(%y) +p1ik($:y)T +
) BUk(x,y) . L
+p2zk(xay)Ty) +QZ(xay) (Z - ]-7 ,TL), (524)
ou;(a, ou; (0, .
wle,0) = pule), 2D UBI L) =1, ). (529

Moreover, as above we assume that

Poiks Prik, P2ik. and ¢ € Log(Daps R) (i,k=1,... ,n),
p0i € Coo ([0,al;R), 17 € Loo([0,b;R) (i = 1,...,n).

Let there exist o, € {—1,1} (i =1,... ,n) and 6 > 0 such
that the real parts of eigenvalues of matriz S(y) = (sij(y))?jzl, where

Su(y) = €8s Sup{@p%i(%y)},
osrsa (5.26)
sij(y) = ess sup lp2:ij(z,y)|  for (i #j3i,5=1,---,n)

0<z<a

are less than —0 almost for all y € [0,b]. Then problem (5.24),(5.25) has
the unique solution (u;)7, and

Ouim (x, ou;(z,
Uim(z,y) = ui(xay)a BEE y) = a(x y)a

oy Jy

for m — 400 (i=1,...,n),
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where uo(x,y) =0(i =1,...,n) and for any natural m and i € {1,... ,n}
the function u;,, is a solution of the equation

Ui (z,y) . Ouim (x,y)
~owdy —Pzn(ﬂ?,y)T +
- Oujm—1(2,y)
+ Z(l - 5ij)p2ij($ay)T +
i=1
L OUjm—1(x,y)
+ Z (pOij(%y)Ujmq(ﬂJ,y) +P1ij($,y)T) +4qi(z,y) (5.28)

j=1

with the boundary conditions

6uim (aa y) _ 6uim (07 y)
Ay dy
Proof. From the restrictions imposed on the matrix function S it follows

that

Uim (2, 0) = @o(z), + p1i(y). (5.29)

sii(y) < =8 almost for all y € [0, b] (5.30)
and
(1 _ 5551 \"
A(y) = ((1=6) ™ (y”)i’j:1 (5.31)

satisfies condition (5.17).
Assume

Pao(@,y) = (8921 (,))
Par(z,y) = (1= 0i)p2is (2,9)); 1 (5.32)
ho(v)(y) = (vi(a) — Ui(O))?zl, Hi=0 (j=1,...,v).
Then

Mio(y) = diag (1 (¥)s - -, m(¥)),
where

~i(y) = exp (/Oap2ii(s,y)ds) -1 (@=1,...,n).
In view of (5.26) and (5.30)
1vi(¥)] > |1 — exp(sii(y)a)| > |1 —exp(—ad)] >0 (i=1,...,n), (5.33)

whence it is clear that Mg satisfies condition (5.16). According to Theorem
5.2, to complete the proof it suffices to show that inequality (5.18) holds
almost everywhere in D,;.

In view of (5.32) and (5.33) Green’s matrix of problem (5.9) has the form

g(a:,s,y) = diag(gl(xasay)a s 7gn(xasay))7
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where
v (y)exp (/ p2ii(£ay)d£) fors <z
gi(xa S, y) = sa . .
v; ' (y) exp (/ p2ii(f,y)df+/ p2ii(f,y)d€) fors >z
0 s
Therefore

S 1o ) M ) H|+/ 1G(z, 5,5)Pas (s, y)|ds =

j=1

= (=) [ oo sppai s lds)” (5.34)

t,j=1

According to (5.26) and (5.30s), for o; = 1 we have

a _ Sii
/ |9i(, 8,y)p2i5 (s, y)|ds < | 1(?/)| ] W) x
o |54 (y

< [Cew (= [ It ) (o lds +
+vi ) 545 (v) eXp - /I |P2u‘(fay)|d§) x

~—

|sii (y)]
Sij\Y
X/ exp / |p2u fa |d£ |p2u(5 y)|d5 - J( ) .
P sii(y)]
Similarly, we can show that for o; = —1, the estimate

a
sij ()
|9i(2, 5,y)P2i; (s, y)|ds <
/0 ' Y |sii(y)]
is also valid.
By virtue of this estimate, inequality (5.18) follows from equalities (5.31)
and (5.34). W

Let the conditions of Corollary 5.1 take place. Then prob-
lem (5.24), (5.25) has the unique solution (u;)?_, and condition (5.27)
holds, where uyo(z,y) = 0( = 1,...,n) and for any natural m and i €
€ {1,...,n} the function w;, is a solution of equation (5.28) with the
boundary conditions
auim(xiay) auimfl(siay)

Uim(a?,()) = 5001'(1;)7 ay = ay + Soli(y)a (535)

a.

1l—0o;

where s; = 5

12‘” a and x; =

Proof. To prove the corollary it suffices to find that if v = n,

Pao(2,y) = (Supoir(@,9)); _ys Por(z,y) = (1= S )poie(2,9)) s
ho(v)(y) = (vi(z:))izy, Hj = (6ij6ik)2k:1a
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then all conditions of Theorem 5.3 are fulfilled.
In our case

T

Zo(z,y) = diag (exp (/Om pgu(s,y)ds), ... ,exXp (/0 ann(s,y)dS)),

M, = diag (exp (/0901 pgn(s,y)ds) ye..,€XPp (/Omn

and Green’s matrix of problem (5.9) has the form

Donn (S, y)ds))

G(x,s,y) = diag(g1(x,5,9),- .- ,gn(,5,9)),

where
exp (/ p2u’(f,y)df) sign(z — ;) for (z—z;)(s—x;) >0,

0 for (xz—x;)(s—m;) >0, |s—z;] > |z — x4
0 for (z—x;)(s—m;) <0

whence in view of (5.26) and (5.30) we obtain
Mio(y) > E,

v

> H | Zo(s5,y) Mig' (y)| =
j=1

= diag (exp (/81 p211(s,y)ds),... , exXp (/

i i ann(S,y)dS)) =

= diag (exp ( — /Oa |p211(s,y)|ds),... , €Xp ( — /Oa |p2nn(s,y)|ds)) <

< diag(exp(—da),. .. ,exp(—da))

Sn

and
2ol ) Mgt WI[E = S 15 Zals5, 03 )]

> / 1165, 5,4) P (s, ) |ds + / 1G (e, 5,y)Pon (5, )| ds =
=Jo 0

T

= ((1 - 5ij)[7;1(y) exp (/%pm(S,y)ds) /0“ lgi(si,s,y)| %

<Ipais(s,lds + [ losGos,pllpas(s.las])” L 6530
0 4j=

where

7.(v) =1—exp(—/0a poi(s.)lds) (i =1,... ).
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Consequently, inequalities (5.16) and (5.22) are fulfilled. On the other
hand,

a
/ 9i(83,8,9) |p2ij (s, y)|ds =
0
Si
£l

- ‘/: exp (/ p2ii(£ay)d£) |p2ij(5,y)|d8‘ <

s“(y) “
S Fa) ‘/0 P
_ = Sij(y) i= n
_,Yl(y)|SZl(y)| ( ]'7"' ) )

(/Si p2ii(£vy)df)p2ii(.€,y)ds‘ =

S

and

/ 0i (2, 5, 1) lpaiy (5, 1) |ds <
0
Sij(y)

555(9)] /; exp (/s“ p2ii(€:y)d€)p2ii(s,y)ds‘ =

- B e ([t |

Therefore from equalities (5.31) and (5.36) there follows estimate (5.23) and,
as admitted above, A satisfies condition (5.17). W

IN

Oi

Remark 5.1. If in boundary condition (5.35) we put s; = 1_2 a and
T = 12‘”(1 for any ¢ € {1,...,n}, then the conclusion of Corollary 5.2
becomes invalid. Indeed, consider the problem

OPu(zx,y) _ Ou(z,y)

= 1 5.37
OzOy Oy +5 (5.37)
_ du(a,y) _ 0u(0,y)
u(z,0) =0, oy oy
for which all conditions of Corollary 5.2 are fulfilled. In that case n = 1 and
o1 = —1. If we assume that z; = £2 = 0 and s; = q, then (5.35) takes
the form
a m 07 a m— )
up(z,0) =0, Lum(0y) _ Jum-r(a,y) (5.38)

oy dy

For any natural m problem (5.37),(5.38) has the unique solution u,, and

aum (17, y) _ (aum—l (a’a y)
oy Oy

Since u1 (a,y) = 0, from the last equality we obtain by induction

+ 1) exp(z) — 1.

Oum (z,y)

9y = (exp((m —1a) + 1) exp(z) — 1 — +oo for m — 4o0.
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§ 6.

In this section for the hyperbolic system

TLED — pofe hute,y) + P o) 22
Pale) P (o) (6.1
we consider the boundary value problems
uw,0) = n(e), m(P) ) = 1) (62)
tim (P20 yyue, ) = dole), A 0)W) =a(y) (63)

and establish the conditions for the stability of their solutions with respect
both to small perturbations of coefficients of the system and boundary data.
As above, unless otherwise stated, it is assumed that

Pi eLoo(Dab;]Rnxn) (7/:07172)7 qeLoo(Dab;]Rn)a
o € C([0,a;R"), 1 € L([0, B R™),
¢0 EL([O,G],R”), ¢1 EL([OabLRn)a
h : C([0,a); R") — Coo ([0,b]; R™) is a linear continuous operator and Z, is
the solution of the matrix differential equation

Z
% = 732(17, y)Z(iL‘, y)
satisfying the initial condition Z(0,y) = E.
Alongside with (6.1),(6.2), for any natural k,
consider the problem

TR — Pus s ute ) + Puso) 2ot +
+Poi(, y)%ﬁj’y) + qr(z,y), (6.4)
u(2,0) = pou (@), m(%‘y’y’)(y) = (), (6.5)

where
Pik € Loo(Dab;Rnxn) (Z - 07 172)7 qk S Loo(Dab;]Rn)a
por € C([0,al; R"), iz € L(0,B; R"),

and hy, : C([0,a]; R™) = Lo ([0, b]; R™) is a linear continuous operator.
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By Lemmas 2.1y and 2.3, for an arbitrary v € @([O,G]; R"™) we have

h(w)(5) = Ho(y)v(0) + / H (s, )0/ (s)ds, (6.6)
hi(0)(y) = Hox(y / Hi(s,9)v'(5)ds, 6.7)
where
Hy € Coo ([0,0]; R* x n) and Hop € Loo([0, b]; R**™),
H € CCY (Day; R™™) and  Hy € Log(Dap; R¥*™).
Put
Mo( / H(s 8Z2 (s, y)ds,
(6.8)
0Z5(s,
M(z,y) = H(x,9) Zo(ry) + / H(s,y>%ds
and
8Z s
Moy, (y) = Hox(y / Hy(s Qk( y)d ;
(6.9)
0Zs5k(s
My(a,) = () Zon (2 9) + / Hi(s, )%d ,
where Zs;, is the solution of the matrix differential equation
9Z(z,y)
gt g 7
9z PQk(zay) (xay)
satisfying the initial condition Z(0,y) = E.
Let
i .1
essint | det(Mo(1))] > 0, (6.10)
sup ||Pikllr., < +oo (i =1,2),
v (6.11)
ess sup [Par(s,y) — Pg(s,y)]dsH — 0 for k — 400,
(z,y)EDap 0

kgrfoollﬂk Pill =0 (i =0,1,2), kgrfoollqk qll. =0 (6.12)

and

Jm ook —gollz =0, lim [loie —eilz =0,
_ o (6.13)

lim b —hef]*° =0

k—+oc0
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Then, starting from some ko, problem (6.4), (6.5) has the unique solution

uy and
G [l — wolfz = 0.
where ug 1is the solution of problem (6.1), (6.2).
Proof. By Lemmas 2.2 and 2.33
Zy and Zy' e CO Y (Dgy; R™*M),
My € Coo ([0,0; R™™), M € CG1O (Dgp; R™™).

Let us show that

(6.14)

(6.17)

. B _ . -1 =1 _
2ok = Zol|1, =0, lim |[Z = Zy ., = 0.
Put
Z[)k(xay) = Z2k(xay) - Z2(xay)
Then
xr
Zox(,y) = / [Pak(5,y) Zor (5,5) — Pa(s,y) Za(s, )] ds =
xr 0 xr
- / Pon(5,) Zow (5, y)ds + / [Par(s,y) — Pals, )] Za(s,y)ds.
0 0
Therefore
xr
1Zow(2, )| < @ / 1 Zok(s, ) llds + e,
0
where

| )

€k = esssup
(,y)EDab

/ [Pk (5,5) — Pals,9)] Za(s, y)ds
0
a = sup||Pakl|z..,
E>1

whence by Gronwall’s lemma we have
1 Zokl| L. < erexplac).
However, according to conditions (6.11) and (6.15)

lim e, =01
k—+o00
Therefore

lim ||Z2k - ZQ“LOo =0.
k—+o00

10Here and everywhere below by ||h|| is understood the norm of operator h.

l1See the proof of Lemma 3.14.
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According to representations (6.6) and (6.7), it follows from the con-
vergence by the norm of a sequence of operators hy, (kK = 1,2,...) to the
operator h that

Jm [[Hox — Hollz, =0, lim |[|H, — Hllr, =0. (6.18)
In view of (6.8) and (6.9),
medmwzmM%HMH/fm@w—
0
—ff<s,y>]¢ak<s,y)zak<s,y>ds-+L/° H(s,y)Poi(5,9) [ Zot (5,y)
0

_Zg(s,y)]ds + /Oa H(s,y) [’ng(s,y) - PQ(S,y)]ZQ(S,y)dS,
Mk(xay) - M(xay) = Hk(xay)Zﬂc(xay) - H(ﬂ?,y)Z2($,y) +

+/a [Hk(S,y) - H(Say)]PQk(Say)ZQk(Say)dS + /a H(Say)P2k(svy) X

<Zauls0) = Zalo s + [ HGs,9) [Por(6,0) = Polo, )] 2o, )i,

Therefore
| Moy, — Mo||r., < |[Hor — Hollz., +
‘1'040(”.[.?[]@—ITZ'HLoo +||Z2k —Z2||Loo)+€[)k, (619)
My — M||r.. <||HiZor — HZ||1.., +
+Cl()(||Hk — H||Loo + ||Z2k — ZQHLOO) + Eok, (620)
where

ao = sup(al|Pax Zak|L., + allHPakllL.,)s
E>1

Eor = esssup
(z,y)€Dap

[H@m%mm—%@m%@wﬁf

Because of the fact that H € Cs"” (Dop; R”™™) and Z» eC™ (Dygp; R
and taking into account condition (6.11),

lim Eok = 0.
k—+o00

If together with this we take into consideration conditions (6.17) and (6.18),
then from (6.19) and (6.20) we get

lim ||M0k - MUHLoo = 0, lim ||Mk - MHLoo =0. (621)
k—+o00 k—+o00
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According to conditions (6.10) and (6.21), there exist a natural ko and a
positive number § such that

i > .
%sgsylgg | det(Mor(y))| > 0 for k> ko (6.22)
and
kEI—iI-loo | Myt — My ., =0. (6.23)

By Theorem 4.1 condition (6.10) guarantees the unique solvability of
problem (6.1),(6.2), while condition (6.22) ensures the unique solvability of
problem (6.4),(6.5) for an arbitrary k& > ko. Let us denote the solutions
of these problems by ug and wug. In proving Theorem 4.1 we showed that
u = ug and u = uy, satisfy, respectively, the boundary conditions

ou(0,y)
Oy

+/0“ [Qo(s,y)U(s,y) +m 1 (5)Q1(5,9)

u(z,0) = po(),

=Y(y) +

du(s,y)
Os

ds (6.24)

and

0udy) _ Yr(y) +

dy
+ [ e+t @t e as, 625

u(z,0) = pox (),

where

(@) = 14 @l
0 =5 W) = [ M2 atsas],

Qo(z,y) = =My (y) M (z,y) Z; (2, y)Po(,y),
Ql(xay) = —71($)M(;1(y)M($,y)Zgl($,y)Pl(Z',y)

(6.26)

and
el@) = 14 letu @I,
D) =My ) o160 [ M) 2 )0k
Qon(z,y) = =M (y) My (2, y) Z3, (2, y)Por (2, 1),

Qui(z,y) = —mr(x) My, (y) Mi(z,y) Zy, (2, y) P (, ).

More exactly, problem (6.1),(6.2) is equivalent to problem (6.4),(6.24) and
for any k > ko problem (6.4),(6.5) is equivalent to problem (6.4),(6.25).
By conditions (6.15)-(6.17) and (6.21)-(6.23) we have

(6.27)

e = [|My," — My M1 +
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+ |\ My My Z5 — My M Z5 |, = 0 for k— +o0
and
B=lIMg o + 1Mo MZy7 |1 < o0
If along with this we take into account conditions (6.11)-(6.13), then from
equalities (6.26) and (6.27) we find
sup |71y QuellLe, < Bsup [|Prxllr., < +oo,
k>1 k>1

1Qok — Qollr < [|My My Zy,! — My M Z3 |1,
Myt M Z5 | p [ Pok = Pollr <
< e1rllPokllr + BlPor — Pollr = 0 for k — +o0,
My Qe — Qulle < el Pielle + Bllvi (Pie — Po)lln — 0
for k = 400,
vk — ¥l < errllerrlle + BUlpie — 1l + llge — gllz) = for & — +o00.

|Pokllz +

oo |

Consequently, all conditions of Lemma 3.9 are fulfilled and by virtue of this
lemma equality (6.14) is valid. W

Based on Lemmas 3.10 and 3.11, similarly to the above reasoning, we
prove the following theorems.

Let conditions (6.10) and (6.13) hold,

sup [|Pikllr.. <+oo (1=0,1,2), supllgellr., <+oo,  (6.28)
E>1

ess sup / [Por(s,y) — PQ(s,y)]dsH =0 for k— +o0
0

(z,y)€Dap
and
. oM g . o
Jim [P =Pl =0 (=0,1,2),  lm g - glly) = 0.
Then, starting from some ko, problem (6.4),(6.5) has the unique solution uy,

and

Hm  ||Jug — ung) =0, (6.29)

k—+o00

where ug 1is the solution of problem (6.1),(6.2).

Let conditions (6.10) and (6.28) hold and, besides, vy and
Yok € (Coo ([07 a]; ]Rn)’ $1 and Pk € Loo([oa b]a ]Rn);

i ) = - . @
Jim [P =P =0 (=0,1,2),  lim g~ gl =0
and

L llook = ollz =0, lim o —ullz, =0, lim b —he] =0.
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Then, starting from some ko, problem (6.4),(6.5) has the unique solution uy
and

Hm  ||ug — ung) =0, (6.30)

k—+o00
where ug 1s the solution of problem (6.1),(6.2).
Remark 6.1. In Theorems 6.2 and 6.3 the condition
sup ||Pikllp., < +oo, supl|gx|l < +o0 (6.31)
k>1 E>1
are essential and cannot be neglected. As an example, consider the problems

O*u(z,y) _ Ou(z,y)

e (6.32)
U(.’E, 0) = 07 U(O,y) - U((L,y) =0 (633)
and
Pu(z,y) _ > Ou(z,y) | Ou(z,y) . . .o
“ordy = —[kcosk*(z + y)] o + oy + ksink*(z +y), (6.34)
’LL(:L‘, 0) =0, U(O,y) - u(a,y) =0, (635)

for which all conditions of Theorems 6.2 and 6.3, except (6.31), are fulfilled.
Since Mor(y) = Mo(y) = exp(ay) — 1, by Corollary 4.1 problem (6.32),
(6.33) has only the trivial solution ug(x,y) = 0 and problem (6.34), (6.35)
has the unique solution uy for any natural k. Moreover,

Ouk(z,y) sin k?(z +y)
ox = &P ( B k ) x

Yy sin k2(z +t)\ /Oug(x,t) . 49
X exp + ksink*(z + t) ) dt.
[ e () (e+1)

ot

The assumption for conditions (6.29) or (6.30) to be valid leads us to the
false equality

T

i ! (SRR D,
kBTOOk ; /0 exp (T) sin k*(s + t)dt‘ds =0,
because
Y in k? 1 2 N
k/o exp (smkk t) sin k2tdt — - coskk Y exp (sm: y) N

1 [ in k%t
+5/ exp (smk )(1 + cos 2k*t)dt = % for k — 4o0.
0
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For any natural k consider the hyperbolic system

Pulr,y) _ du(z,y)
Baray _POk(xay)u(xay) +P1($7y) ox +
uz
+Pa(o) P50 4 o) (6.36)

with the boundary conditions

im (2500, gyt ) = dor(e), helut ) ) = vre(s), (637

y—0

where

7DOlc S Loo(Dab;Rnxn)a qr € Loo(Dab;]Rn)a
1/’01@ € L([Oaa];]Rn)a 1/}1]6 € Loo([oab]a]Rn)

and hy, : C([0,a]; R") — Lo ([0,b]; R™) is a linear continuous operator.
As above, we use representations (6.6)-(6.8) and by My, and M), are
meant the matrix functions given by the equalities

Z
Mox(y) = Hor(y / Hy (s 8 2(s, y)dS,

6Z2 (57 y)

ds.
Os 5

Mi(z,y) = Hi(z,y) Za(zy) + / Hy(s,)

Let Py € Co " (Dap; RYM), Py € C M (Dgy; RM),

essinf | det(My(y))| > 0,

0<y<b
sup || Poxl|r.. < 400, sup|gellr. < +oo, (6.38)
k>1 k>1
. . 0) _ . )
kggloollpo:c Polly,” =0, kggloollq/c qll;” =0 (6.39)

and
lim |[|[Yor — %ol =0, lLm |[¢p1x — 91|z, =0,
k——400 k—+oc0

. 6.40
lim ||h —&| =0. ( )
k—+o00

Then, starting from some kg, problem (6.36),(6.37) has the unique general-
ized solution uy and

lim ||lug —uollz., =0, (6.41)
k—+o00

where ug is the generalized solution of problem (6.1),(6.3).
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Proof. As shown above, conditions (6.21)-(6.23) follow from the convergence
by the norm of the sequence of operators hy (k = 1,2,---) to h and the
restrictions imposed on det(Mj(y)), where ko is a natural number and ¢ is
a positive constant independent of k.

The unique solvability of problem (6.1),(6.3) as well as of problem (6.36),
(6.37) for any k > ko follows from Theorem 4.4. In proving this theorem it
was admitted that © = up and u = wuy, satisfy, respectively, the boundary
conditions

tim (258 _ (0, (e, ) = i (a),

y—0

w(0,y) = ¥(y) + /Oy /Oa Q(y, s, t)u(s, t)dsdt

?}ig%) (%ﬁ/’y) — 732(a;,y)u(a:,y)) = Yok (),

u(0,y) = Y (y / / Qr(y, s, t)u(s,t)dsdt,

(6.42)

and

(6.43)

ly) = Mz ()1 (y / M(z, )25 (2,4) 2 (3, 9) X
x[%() / 27 (. ale, t)dt]dz,

Qy,s,t) = =My ' (y)M(s,9)Z5 ' (5,9) Z1(5,9) Z1 (5, 8)P(s, ),
87)2(1',3/)

P(Z’,y) = ,P[)(Z',y) + Pl(xay),])2(xay) - ay

and

Biy) = My (0)hui(y) — M) / M(e,y) 75 (2,9) 7 () X
x[mm / 2 (@, ) o, )t

Qk(yvsat) = _M[; ( )Mk(S y)Z (S y)Zl( )Zfl(S,t)Pk(S,t),
8732(:177 y)

oy
More exactly, problem (6.1),(6.3) is equivalent to problem (6.1),(6.42) and

problem (6.36),(6.37) to problem (6.36),(6.43).
It follows from conditions (6.21)-(6.23) and (6.38)-(6.40) that

Pk(way) = POk(xay) + Pl(zay)P2($vy) -

sup [|Qillr., <400, lim || —¢|r, =0
E>1 k—+o00
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and

Y2 T
ess sup H/ / [Qk(y,s,t) — Q(y,s,t)]dsdt“ -0 for k— +oo.
0<y1<y2<b " Jys JoO

(z,y)GDab

Consequently, all conditions of Lemma 3.15 hold and by virtue of this
lemma equality (6.41) is valid. W

Remark 6.2. If h, =h (k=1,2,---), the operator h being such that
H e CQ™ (Dyp; R™), (6.44)
then the assumption
sup [|gk||r.., < 400 (6.45)
k>1
in Theorem 6.4 becomes unnecessary. If, however, (6.44) is violated, then

restriction (6.45) is essential and cannot be neglected. As an example,
consider the problems

u(z,y) _
Ou(z,0) . ou(s,y) ,
e 0, u(0,y) -I-/O H(s)ias ds =0 (6.47)
and
0u(z,y) _ 13 1.8
“oudy —k’sin k°z, (6.48)
Ou(z,0) “ u(s,y) , _
ol =, u(O,y)+/0 1 () " s = 0, (6.49)
where
+oo 2 ] .
H(x) = mXZ:IWsmm x.

For these problems all conditions of Theorem 6.4, except (6.44), are fulfilled.
On the other hand, problem (6.46),(6.47) has the unique solution ug(z,y) =
= 0 and problem (6.48),(6.49) has the unique solution

ug(z,y) = k3y/ H(s)sin k®sds + %(cos Pz —1)
0

for any natural k.
However,

k? / H(s)sink®sds = Qk/ sin? k% sds +
0 0

X2 [0 e
Z — / sinm®s sin k¥sds = k/ (1 — cos2k®s)ds +
m#k,m=1 m 0 0
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+o0 3 a
k
k8 _ 8 _ kS 8 ds >
+m¢,§m:1 _m2/0 [cos( m®)s — cos(k® + m®)s|ds >

>ak—i— f k_3( L + ! ) > ak —a
- 2K7 o m? k8 —mB| k% +m? ’

where
+o00 1
a = Z W
m=1
Therefore
[|lur, — uol|L., > abk —ab—2b— +oo0 for k — 400,

i.e. (6.41) is violated. W
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CHAPTER III

8§ 7.

This section deals with the problem on the existence and uniqueness in
a strip Dy, of a solution u of the linear hyperbolic system

Pulr,y) _ gu(r,)
u(s,
+Pa(e) P50 4 (o, ), (r.)

satisfying the conditions

u(z,0) = p(z), (esz)seug) (H augl;’ v H + H Bug;, y) H) < 400, (7.2)
z, b

where
Pj = (pjik) ; oy € Loo(Dy; R™™) (7 =0,1,2),
4= (g:) € Loo(D5; R?), = (i) € Coo (R, R).

For an arbitrary function z € L. (Dp;R) the following notation will be
used:

L) = (€ 00 sup [ 2(s,)ds = +o0),

z>0

I_(z2)={y€]0,b]: sup/ z(s,y)ds < +o0 and sup/ z(s,y)ds=+o0},
z>0J0 z<0J0

In(z) = {y €[0,b] : sup /x z(s,y)ds < 400},
z€RJO

+oo  fory € I (z)
x(2)(y) =40 for y € In(z) .
—00 fory € I_(2)

For an arbitrary set I C R we denote by mes I its Lebesque measure and
by I its closure.

Let there exist constants o € (0,1), 8 > 0 and essentially
bounded measurable functions a;, : [0,0] = [0, +00) (i # k;i,k=1,...,n)
such that the spectral radius of the matriz A(y) = (ai(y)); =1, where
ai;(y) =0 = 1,...,n), is less than « almost for all y € [0,b] and the
inequalities

X(p2ii ) (y) z

‘ / exp (/ ini(fay)df) x

8§
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X (|poik (s, 9)| + |prix (s, y)| + |Qi(5:y)|)d‘9‘ <B (,k=1,...,n) (7.4)
and

x(p2ii)(y) .
([ patend)mats s < anty)

T

(7.5)
(i#kik=1,...n)

hold almost everywhere in Dy. Then problem (7.1),(7.2) is solvable; more-
over, the solution is unique if and only if

mes Ip(p2i;) =0 (i=1,...,n). (7.6)

Proof. In view of (7.3), without loss of generality it can be assumed that
the inequality

1Po(z, )|l + bl|Pr(z, y)|| + P2z, 9) || < B (7.7)

is fulfilled in Dy. First we prove the solvability of the problem under con-
sideration on the basis of Lemma 1.3.
Let

oy = J 1 fory € To(paii)
Yi(y) {0 for 5 & Io(pas) (7.8)
D(y) = (Vi)

and let ¢ : [0,b] — R be an arbitrary continuous function. For any z; =
= () € Loo(Dp;R™) (j =1,2) and i € {1,...,n} we put

fi(z1,22)(w,y) = Zn:poug(w,y) [w(z) + /y Zgi(a:,t)dt] +

n
+ > paanl(w,y)zek(e,y) +2puk z,9)zi(w,y) + ai(z,), (7.9)
k=1, k#i k=1

qii(21, 22)(2,y) = @i() +

+ /y [pgii(.’lf, t)ZQi(.’E, t) + fi(Zla 2’2)(.’17, t)] dt, (710)
0

e 22) (o) = o ([ pra6.)ae) ) +

+ / exp (/x p2ii(§,y)d£) fi(z1,22)(s,y)ds (7.11)
x(p2i) (9) ’
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and
g1(z1,22)(z (gu 21, 22) (@ y))l 1 (7.12)
g2(z1, 22)(z (921 21, 22)( Z/))izl
By virtue of conditions (7.3)-(7.5) and (7.7)-(7.12) the operators ¢g; and

g2 transform the space Leo(Dp;R®) X Loo(Dp; R®) into Leo (Dp; R™) and
satisfy conditions (1.3) and (1.21), where go(t) = n3, while Ag; and Agy are
constant n X n matrices whose all elements equal to 3.

Thus, all conditions of Lemma 1.3 are satisfied and therefore system (1.1)
has the unique solution (z1, z2). Assume

u(z,y) = p(z) + /Oy 25 (, t)dt.

On account of conditions (7.3)-(7.5) equalities (7.9)-(7.11) yield that u is
locally absolutely continuous,

Pu(z,y) _ Oz(z,y) _
axay — Oz — 'PO(Z',y)U(Z',y) + 731 (xay)zl (xay) +

+’P2(33,y)22(3373/) + q(xay)a

ou(z,y) /y Oz (z,t)

+ [ Pota e, ) + Prta o) +
+Ps(z,t)22(x, t) + q(z,t)]dt = z1(x,y)
and

Ou(0,y)

oy c(y)y(y)- (7.13)

Consequently, u is the solution of problem (7.1),(7.2). On the other hand,
if mes Iy(p2i;) > 0 for any i € {1,...,n}, then in view of equalities (7.8)
and (7.13) and an arbitrary choice of ¢ it is evident that the problem under
consideration has an infinite dimensional set of solutions.

To complete the proof we have to show that (7.1),(7.2) is uniquely solv-
able when (7.6) is fulfilled.

In view of (7.6) we get from (7.8) and (7.11) that

T

92i(21, 22) (2, y) = / exp (/szpw(f,y)df)fi(zl,Z2)(s,y)ds

7.14
x(p2ii)(y) ( )

(i=1,...,n).

As proved above system (1.1) has the unique solution (29, 29); moreover,
u®(z,y) ) + f (x,t)dt is the solution of problem (7.1),(7.2). Let u
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be an arbitrary solution of this problem. Assume

_ Ou(z,y) _ Ou(a,y)
z1(z,y) = "oz z(7,y) = E
Then
esssup (sup||z2(z,y)|]) < 400, (7.15)
ye0,b]  z€R
and for any zo; € R (i =1,...,n) we have

z1(z,y) = g1(21, 22) (%, ),

22i(,y) = exp (/x pzii(ﬁ,y)df)m(arm,y) +

Poi (7.16)
+/ exp (/ p2u(£ay)d£)fl(zla22)(Say)ds (Z = 17"'7”)'
Toi s
On the other hand, in view of (7.6), we have
T
lim inf / p2ii(&,y)dE = —o0 for z €R (7.17)
inﬁX(p%i)(y) To;i

almost for every y € [0,b]. By virtue of conditions (7.14),(7.15) and (7.17) it
follows from (7.16) that (21, 22) is a solution of system (1.1). Thus z;(x,y) =
= 29(z,y) (i = 1,2) and, consequently,

du(z,y) _ o ou(z,y) _ o
O :Zl(xay)a ay = 22(:[;73/)'

Then with regard to (7.2) we get
u(z,y) =u’(z,y). W

The following theorem can be proved similarly to Theorem 7.1.

!

Let P; (j = 0,1,2) and g be continuous and boun-
ded, ¢ be continuously differentiable and bounded together with its deriva-
tive and for every i € {1,...,n} either Iy (pai;) = [0,b] or I_(p2i;) = [0,b].
Moreover,let the integrals

Xi 0
| exp ([ pusste.n)de) (o s,)] + lpran(o,] +
0 s
+(1 =0 |p2ir (5, )| + |ai(s,9)])ds (K =1,...,n) (7.18)
where x; = +o0 and x; = —oo for Iy (pai;) = [0,b] and I_(p2i;) = [0,b],
respectively, converge uniformly with respect to y € [0,b]. Let, besides, there

exist a constant 3 > 0 and continuous functions a;, : [0,0] — [0,+00)
(i # k; i,k =1,...,n) such that the spectral radius of the matriz A(y) =
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= (air(y))} =1, where a;i(y) =0 (i = 1,...,n), is less than unity for every
y € [0,b] and the inequalities

‘ /:i exp (/: P2ii(f,y)df) (Ipoir (s, y)| + |prir (s,y)| + (19)
Hai(s,))ds| < B (k=1,...,m)

and

Xi z
‘/ exp (/ pzii(f,y)df) Ip2ik (s, y)|ds| < aix(y)
(t#k; i,k=1,...,n)
hold in Dy. Then problem (7.1),(7.2) has the unique classical solution.

(7.20)

Remark 7.1. If for any ¢ € {1,...,n} integral (7.18) does not converge
uniformly, then problem (7.1),(7.2) may have no classical solutions. Indeed
in Cyoe (Dp; R) the problem

R L
u(z,0) =0, (ewisl)seug)b (‘ aug; v) ‘ + ‘aug;’y) D < +oo  (7.21)

has the unique solution

b
u(a:,y):i—‘y—i

which is not classical despite the fact that all conditions of Theorem 7.1’
except those of the uniform convergence of integral (7.18) which in this case

takes the form
+0o0 b3 b3
exp ‘y - = ‘y — = ds,
/0 ( 2 )
are fulfilled.

Remark 7.2. The conditions of Theorem 7.1’ ensure the uniqueness only
of a classical but not of an absolutely continuous solution. In fact, let
p2 @ [0,b] = [0,400) be a continuous function with a nowhere dense set of
zeros of positive measure. It is clear that

Io(p2) = {y € 0,0] : p2(y) = 0},
I (p2) = [0,0\Io(p2), I+(p2)=10,b].

For an arbitrary continuous c: [0,b] — R the function

/ )e(t)p(t)dt,
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where

Y(y) =

1 fory € Io(p2)
0 foryé€ Ii(p)

belongs to @oc (Dp; R) and this function is a solution of the equation
%u(z,y Ou(z,y
TAEL) — () 2120,
0xdy Oy
satisfying condition (7.21). On the other hand, problem (7.22),(7.21), for

which all conditions of Theorem 7.1’ hold, has the unique classical solution
uo(z,y) =0.

(7.22)

Let there exist constants a > 0, a € (0,1), Bo > 0 and
essentially bounded measurable functions a;, : [0,b] = Ry (i # k, i,k =
=1,...,n),0; :[0,b] = {—1,1} and ~y; : [0,b] = [0, +00) (i =1,...,n) such
that the spectral radius of the matriz A(y) = (air(y))} x—1, where a;i(y) =0

7
)

(t=1,...,n), is less than « almost for all y € [0,b] and the inequalities
r+a
5i) [ €0 < uy) (i =1,...om), (7.23)
z+a

/ (Ipoie (5, 9)] + Iprie(s, 9)] + lai (s, 9)])ds <

ngO'Yi(y) (iak: 17"'7”) (724)

and

T

‘ / eXp(/szP%i(f,y)df) Ip2ik (s,y)|ds| <

z—oi(y)a
< aik(y)(l — exp(—%(y))) (i#k; i,k=1,...,n) (7.25)

hold almost everywhere in Dy. Then problem (7.1),(7.2) is solvable, and for
the uniqueness of a solution it is sufficient that

mes{y € [0,0] : i(y) =0}=0 (i=1,...,n). (7.26)
Proof. Put
B = ||Pallr., < +oo, B =foexp(a),
={yel0,0]:vy) =0}, I ={yel0,0]:7y) >0, oi(y) = —1},
I7 ={y €[0,8] : vi(y) >0, oi(y) =1}, (i=1,....n).
Then by virtue of (7.23),
0,0 =7 UL UL, Li(pii) DI, I-(p2ii) D I;
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and
I D Io(pais) (i=1,...,n). (7.27)
If y € I?, then in view of (7.24) without loss of generality we may assume
that
poik(x,y) = prik(x,y) = qi(z,y) =0 for z €R, ke {1,...,n}.

Therefore it is obvious that inequalities (7.4) and (7.5) are fulfilled in Rx I?
for every i € {1,...,n}.

If y € I", then x(p2i;)(y) = +00 and in view of inequalities (7.23)—(7.25)
we have

+00 T
[ oo ([ paste ) (i)l + e (s, 9)] + as(s.) ) ds =
+oo r+la

:Zexp(—i / P (6,9)d€ ) %
m=1 =lat(i-1)a

z+ma z+ma

x / exp ( / pm(ﬁ,y)df) (Ipoir (s, 9)| + Iprir(s, v)| +

z+(m—1)a s
“+o00
+ai(s,y)])ds < Boyi(y) exp(apr) > exp(—myi(y)) =

= Bv(y) (exp(ri(y) —1) ' <B (k=1,...,n)

and

/I+Oo exp (/Sz p2ii(£, y)df) |p2ik (5, y)|ds —

z+(m—1)a

+o0
= eXp( / pzu(f,y)df) X
m=1 s
z+ma z+(m—1)a
X / exp ( / ini(fay)df) p2ik (s, y)|ds <
z+(m—1)a s

+o0
< air(y)(1 = exp(=vi(®)) D exp(=(m — 1)7i(y)) = ain(y)
(k #1; 1, l;: 1,...,n).

Therefore, inequalities (7.4) and (7.5) are fulfilled in R x I;". Similarly, we
can prove that these inequalities are also fulfilled in R x I;” (i =1,...,n).

As for (7.6), these equalities are fulfilled by virtue of (7.27) if (7.26) holds.
The validity of Corollary 7.1 becomes evident by applying Theorem 7.1. H
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" Let P; (j = 0,1,2) and q be continuous and bounded,
@ be continuously differentiable and bounded together with its derivative.
Let, besides, there exist constants a > 0, By > 0, € > 0, 0, € {-1,1}
(1 =1,...,n) and continuous functions y; : [0,b] — [0,4+00) (i =1,...,n)
and a;x, : [0,0] — [0,+00) such that the set of zeros of ~y; is nowhere dense
in Dy (i =1,...,n), the spectral radius of the matriz A(y) = (ai(y))}] p=1,
where a;(y) =0 (i = 1,...,n), is less than unity for every y € [0,b] and
the inequalities

z+a

o / poii(6,9)dE < —(y) (i=1,....n), (7.28)
r+a

/ (|p0ik(3>y)| + prik (8, 9)| + (L — dire) [p2ir (5, ¥)| + |Qi(573/)|)d5 <

<Bovi*(y) G=1,...,n) (7.29)

and

T

‘ / eXP(/jmii(g’y)df)|p2ik(s,y)|ds <

<air(y) (1 —exp(—=vi(y))) ((#k i,k=1,...,n) (7.30)

holds in Dy. Then problem (7.1),(7.2) has one and only one classical solu-
tion.

Proof. In view of (7.28),

Ui(/oz ini(fay)df) signz < —(% + I)W(y) + 2ap (731)

where
Br= sup [Pz, y)l|
(z,y)€Dy
Taking into account the fact that the set of zeros of «; is nowhere dense in
[0,b] (i =1,...,n), we obtain from (7.31) that

j+(p2ii) = [O,b] for g; = —]., j, (ini) = [O,b] for g; = 1. (732)

Let us show that for every ¢ € {1,...,n} integrals (7.18) converge uni-

formly with respect to y € [0,b]. In view of (7.32) we have x; = +o00 and

xi = —oo for o; = —1 and o; = 1, respectively. First we consider the case
when o; = —1. By (7.29) and (7.31) for any z > 0 and y € [0,b] we have

/;OO exp (/Opm(fay)df) (Ipoir (s, ¥)| + |prir (s, y)| +

S
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(L= 8ir) [p2ire (5, 9)| + lai(5, y)]) ds =

r+ma

+o0 0
= Z / exp ( - / p2ii(f,y)df) (Ipoir (s, 9)| + |p1ir (s, )| +
m=1 +(m—1)a ’
+(1 = 6ir) 2 (s, 9)| + i (s, y)])ds <
+o0

< Boexp(aB)r Fw) Y exp (= (5 +m)ry)) =

m=1

= o exp(af)n} () (exp(i(y) = 1) " exp (= Z7(w) <
S ﬂO exp(aﬁl)vf(y) €xXp ( - gVZ(y)) S 521;75 (k = ]-7 cee 7n)7

where 82 = [y exp(afy —¢)(ae)®. Consequently, for o; = —1 integrals (7.18)
converge uniformly. Analogously we can prove that integrals (7.18) converge
uniformly for o; = 1 as well.

Similarly to the prove of Corollary 7.1, we can show that conditions
(7.28)-(7.30) imply conditions (7.19) and (7.20).

Applying now Theorem 7.1, the validity of Corollary 7.1" becomes obvi-
ous. W

Let the inequalities

oi(yY)p2ii(w,y) <l (i=1,...,n),

. . 7.33
|p2ik (2, 9)| <l (P #k; i,k=1,...,n), (7.33)
where o; : [0,0] - {—1,1} (i = 1,...,n) are measurable functions and l;,
(i,k =1,...,n) are constants such that the real parts of eigenvalues of the

matriz (lix)}—, are negative. Then problem (7.1),(7.2) has one and only
one solution.

Proof. Since l;; (i # k; i,k =1,...,n) are non-negative and eigenvalues of
the matrix (li;)}',—, are negative, we have

Li<0 (i=1,....n) (7.34)
and the spectral radius of the matrix (aik)zk:p where

liw . .
ai; =0 (i=1,...,n), aik:ﬁ (i#k; i,k=1,...,n),
(23

is less than unity.
In view of (7.3),(7.33) and (7.34), inequalities (7.23) and (7.24) hold
almost everywhere in Dy, where a = 1, v;(y) = |lLii],

Bo = (IPollzee + IPillze + llallzo) /il
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Besides,

T

‘ / eXp(/szpm’i(fay)df)|p2ik(s,y)|ds‘ <

z—0i(y)

< ik

/x exp (ai(y)(s — x)|lii|)ds‘ =

z—0i(y)

l; . .
= ﬁ(l — exp(—|lii|)) (i#k; i,k=1,...,n),
i.e. inequalities (7.25) also hold. Now applying Corollary 7.1, the unique
solvability of problem (7.1),(7.2) becomes obvious. W

Based on Corollary 7.1’, similarly to Corollary 7.2, we prove the validity
of

" Let Pj (j =0,1,2) and q be continuous and bounded, ¢
be continuously differentiable and bounded together with its derivative and
the inequalities

oip2ii(z,y) <l (i=1,...,n),
2k (z, )| <l (i #k; i, k=1,...,n),
hold in Dy, where o; € {—1,1} and l;;, (i,k = 1,...) are constants and

the real parts of eigenvalues of matriz (lik)?,k:l are negative. Then problem
(7.1),(7.2) has one and only one solution and this solution is classical.

§ 8.
In this section for the system
Ou(z,y) Ou(z,y)
Tay = 'PO(Z',y)U(Z',y) + Pl(xay)T +
ou(x,
Pale) P (o) (s1)

the conditions of the existence and uniqueness of a solution (generalized,
absolutely continuous and classical) defined in the strip D, and satisfying
one of the following two boundary conditions

u(z,0) = ¢(z), ul@+a,y)=u(z,y) (8.2)
and

im (P850 o e, ) = 6@, (et ay) = uay) (83)
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are established. Besides, we investigate the problem of relation between
problem (8.1),(8.2) and the problem of bounded solutions

u(z,0) = p(z), esssup (Hau X)) H Hau z,9) H) (8.4)

z y) €Dy

Throughout the remainder of this section it is assumed that a is a positive

number, P; = (pjik)Zk:I :Dy —» R™™ (j =0,1,2) and ¢ = (¢;); :

Dy — R™ are measurable and essentially bounded, ¢ : R — R” is absolutely
continuous and v : R — R” is locally summable,

Pi(z +a,y) = Pi(z,y) (i =0,1,2), q(z+a,y) =q(z,y),
p(r+a) = p(x), Y(@+a)=p(a)

Moreover, use is made of the notation

(8.5)

No(y) = Z2(a,y) — E,
N(y) = / 25 (5,9) [Po(5,) + P (5,9)Pa(s, )] Za(s, y)ds.

Let u be a solution of problem (8.1),(8.2). Then its restriction on Dgp
satisfies the boundary conditions

du(a,y) _ du(0,y)
oy Oy
Assume now that u is a solution of problem (8.1),(8.6). Then in view of the

periodicity of ¢ we shall have u(a,y) = u(0,y). Let @ be the extension of u
in Dy satisfying the condition

U(.’E, 0) = (P(w),

. (8.6)

u(x + a,y) =u(z,y).

In view of (8.5) it is evident that @ is a solution of problem (8.1),(8.2).
Consequently, problems (8.1),(8.2) and (8.1),(8.6) are equivalent when (8.5)
holds. But (8.1),(8.6) is the special case of problem (4.1),(4.2) for h(v)(y) =
=wv(a) —v(0) and ¢;(y) = 0. Now from representations (4.7) and (4.10) it
is clear that Hy = 0O, H(z,y) = E,

MO(y) :No(y), M(w,y):ZQ(a,y)

Therefore Theorem 4.1 and Corollaries 4.1 and 4.1’ yield the following as-
sertions.

Let the vector and the matriz functions Z;lq, Z;LP(), (1+
llebll) x Zy 1Py be No-summable in Dyy. Then problem (8.1),(8.2) is solvable
and the non-singularity of Ny almost everywhere in [0,b] is necessary and
sufficient for the solution to be unique. If Ny is singular in the set with a
positive measure, then the homogeneous problem corresponding to (8.1), (8.2)
has an infinite dimensional set of solutions.
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If Ny is non-singular almost everywhere in [0,b] and

//HN DI (IPo(z, )]l +

+(@ + ' @ IDNPL ()| + lla(z, )l dzdy < +oo,

then problem (8.1),(8.2) has one and only one solution.
" IfP; (i =0,1,2) and q are continuous, o is continuously

differentiable and Ny is non-singular in [0,b], then problem (8.1),(8.2) has
the unique solution and this solution is classical.

Assume
B y)=/ Pa(s,y)ds
0

and when By(y) is nonsingular
T

B(y) = [ |5
(v) = max /0

+/: By (y) /saPz(f,y)dEPz(s,y)‘dS]-

For k = 2 and m = 1 the following assertions follow from Corollaries 4.2
and 4.2'.

Hy) / Po(€.y)dEPs(s, )| ds +
0

Let the inequalities

det(Bo(y)) #0, r(B(y)) <1 (8.7)

hold almost everywhere in [0,b] and
/ 1(E = Be») 185" ()]|dy < +oo.

. Then problem (8.1),(8.2) has one and only one solution.

" IfP; (i =0,1,2) and q are continuous, @ is continuously
differentiable and inequalities (8.7) hold in [0,b], then problem (8.1),(8.2)
has one and only one solution and this solution is classical.

The conditions for the unique solvability of problem (8.1),(8.2) are given
also in [2,4,7,42], where the periodic boundary value problem is investigsted
for quasilinear hyperbolic equations and systems with continuous right sides.

For example, L.Cesari [7] proved the solvability of problem (8.1),(8.2)
under the assumptions that det(No(0)) # 0, b is sufficiently small and

2a||P2(z,0)|] <1 for z €R. (8.8)

It is obvious that this result follows from Corollary 8.1'; moreover, condition
(8.8) is unnecessary.



125

A K.Aziz and S.L.Brodsky [2] considered a system with a small parameter
e>0
62
o) — < [Paa,yyula, )+ P (a.1)
and proved the unique solvability of problem (8.1),(8.2) for sufficiently small
b and € assuming that

Ou(z,y)
Oz

Bu(aa;, ) +q(z, y)]

+P2 (il',‘, y)

det (/EPQ(S,O)dS) £0.

This result also follows from Corollary 8.1'.

A K.Aziz and A.M.Meyers [4] considered problem for n = 1 and proved
its unique solvability under assumptions that P; has a continuous partial
derivative in the first argument,

Po(z,y) #0 for (z,y) € Dy (8.9)
and
1 exp(l*a) — 1
l[l* + I*(exp(l.a) — 1)] <1 (8.10)
where

l* = min |P2($7y)|a l* = max |P2($7y)|7

(z,y)EDy (z,y)EDy
P (z,y)
= m Po(z, P (x, y) — _
(z,yfgpbl o(z,y) + Pi(z,y)Pa(z,y) o |

But, in view of Corollary 8.1', for n = 1 it is sufficient to have instead of
condition (8.9) a more weaker condition

/ Pa(s,y)ds 0 for 0<y <bh.
0

oP ;
5. bo exist, they are un-

As for condition (8.10) and the requirement for
necessary.

B.P.Tkach [42] proved the unique solvability of problem (8.1),(8.2) under
the assumptions that

det(Bo(y)) #0, r(B(y)) <1 for 0<y<b,

where
2

— o a,_ 1 2
B = S1B: ' W[ max [Pa(ey)l]”

This result is the special case of Corollary 8.2 because

B(y) <B(y) for 0<y<bh

The following assertions follow from Theorems 4.2, 4.2, 4.5 and 4.5'.
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Let the restrictions of P; (i =0,1,2) and q on Dy belong,
respectively, to cGhY (Dap; R™*™) and cGHY (Dap; R™) (P; (i = 0,1,2)
and q be continuous and have a continuous partial derivative in the second
argument), po be absolutely continuous (continuously differentiable) and

No(y) = O, det(N(y)) #0 for 0<y<b.

Then problem (8.1),(8.2) is uniquely solvable (and its solution is classical)
if and only if

/Oa Z5(5,0)[Po(s,0)p(s) + P1(s,0)¢(s) + q(s,0)]ds = 0.

Let the restriction of Py on Dy, belong to
(ngl,[)) (Dab; Rnxn)7

No(y) =0, det(N(y)) #0 almost everywhere in [0, b]

and
/ ||N y)|ldy < +oo.

Then problem (8.1),(8.3) has one and only one generalized solution if and
only if

/Oﬂ Z>(s,0)p(s)ds = 0. (8.11)

" Let the restriction of P; (z =0,1,2) and g on Dy belong,
respectively, to Cig ™" (Dap; R*™™) and coto (Dap; R™) (P; (i = 0,1,2)
and q be continuous and have a continuous partial derivative in the second
argument, ¥ be continuous) and

No(y) = O, det(N(y)) #0 for 0<y<b.

Then the fulfilment of condition (8.11) is necessary and sufficient for prob-
lem (8.1), (8.3) to have the unique generalized solution which is absolutely
continuous (classical).

For Py(z,y) = © the result similar to Theorem 8.3 was obtained by
S.V.Zestkov [51].

In Theorem 8.3' the requirement for N to be non-singular in [0,b] is
optimal and cannot be weakened. The following corollary concerning to the
problem

*ulz,y) ou(z,y)

Tay —PO(zay)u(zay) +P1($7y) o +l]($,y), (812)
. Ou(z,y) _
lim =2 =0, (e + a,y) = u(z,) (813)

verifies this assertion.
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Let the restriction of Py in Dy, belong to @(;1’0) (Das;
R™*™) (Py be continuous and have a continuous partial derivative in the
second argument). Then for an arbitrary Py and q whose restrictions in
Doy belong repectively, to @;1’0) (Dap; R**™) and @(}51,0) (Dap; R™) (are con-
tinuous and have a continuous partial derivative in the second argument),
problem (8.12), (8.13) has the unique generalized solution and this solution
is absolutely continuous (classical) if and only if

det (/apo(s,y)ds) #0 for 0<y<b.
0

This corollary follows from Corollary 4.10 and Theorem 8.3'.
Now consider the problem of relation between problems (8.1),(8.2) and
(8.1),(8.4).

Let o' be essentially bounded and almost for every y €
€ [0,9]

Yi(y) = /Oapgii(s,y)ds #0 (i=1,...,n). (8.14)

Let, besides, there exist constants a. € (0,1),80 > 0 and essentially bounded
measurable functions a;, : [0,0] = Ry (i # k, i,k =1,...,n), such that
the spectral radius of the matriz A(y) = (ai(y))} =1, where a;(y) = 0
(t=1,...,n), is less than « almost for all y € [0,b] and the inequalities

/0 " (oie (e, + Iprie(s, )] + 1as(s, )] ds < folros(w)|

(i,k=1,...,n)

(8.15)

and

/zzw exp (/sz p2ii(§,y)d§) |poin (3, y)|ds <

< aik(y)(l — exp(—%i(y))) (i#k; i,k=1,...,n) (8.16)

hold almost everywhere in Dgy. Then problems (8.1),(8.2) and (8.1),(8.4)
are uniquely solvable and their solutions coincide.

Proof. In view of (8.5), conditions (8.14)-(8.16) yield conditions (7.23)-
(7.26), where

(i=1,...,n).

Yi(y) = i), oily) = {_1 for v0:(y) > 0

1 for 'YOi(y) <0

Therefore, by virtue of Corollary 7.1 problem (8.1),(8.4) has the unique
solution ug. Consider the vector function

ﬂ(xay) = UO(a: + aay)‘
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According to (8.5), u is also a solution of problem (8.1),(8.4) and in view
of the unique solvability of the latter, we have u(x,y) = uo(z,y). Conse-
quently, ug is a solution of problem (8.1),(8.2). Theorem will be proved if
we show that an arbitrary solution u of problem (8.1),(8.2) is also a solution
of problem (8.1),(8.4), i.e. u satisfies the condition

ess sup
(z,y)EDy

(S Rl IR

By virtue of Lemma 3.1 and the essential boundedness of ¢, we have

ess sup
(z,y)€Dy

@H < +o0. (8.17)

Consequently, it remains to show that

ess sup MH < 400. (8.18)

(z,y)GDb
Put

Ou(z,y)
6y = (Zi(xay))?zla
au(xa y) _ n
Po(xay)u(xay) +,P1(Z',y) oz +q($,y) - (qu(xay))izl

Then
On the other hand, in view of conditions (8.5),(8.15),(8.17) and the essential
boundedness of 7; (i = 1,...,n), there exists a constant 8 such that the
inequalities

x+ta
/ ldoi (s, )]s < AL = exp(=oi(y)] (i =L,....n)  (821)

hold almost everywhere in Dgp. In view of (8.14) from (8.19) and (8.20), we
have

n

zi(z,y) = [exp(—0i(y) — 1] 7 Y (1 0a) x

k=1

[ e ([ vt v mnto, vyt vyds +

+[exp(—0i() 1] " / e ( / " pais(€,U)E ) gos (5, )ds (522
(i=1,...,n).
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If we assume
— n — n
2(y) = (max |zi(z,y)));_,, 7= B(exp(allpsiill.) iy

then with regard to (8.16) and (8.21), from (8.22) we find
zZ(y) < A(y)z(y) +71,
whence in view of the condition
r(Ay)) <a<1

and the essential boundedness of A it follows that
_1_
z(y) < [E-AWy)] 1
and

esssup ||Z(y)|| < +oo.
0<y<b

Consequently, condition (8.18) holds. W

The following assertions follow from Theorem 8.4 and Corollary 7.1'.
" Let Pj and g be continuous, ¢ be continuously differen-
tiable and

m(y)E/ pois(s,y)ds £0 for 0<y<b (i=1,...,n).
0

Let, besides, there exist continuous functions a;, : [0,0] = Ry (i # k, i,k =
=1,...,n), such that the spectral radius of the matriz A(y) = (aik(y))} =1,
where a;(y) =0 (i = 1,...,n), is less than unity for every y € [0,b] and
inequalities (8.16) hold in Dy. Then problems (8.1),(8.2) and (8.1),(8.4)
are uniquely solvable and they have one and the same solution which is
classical.

Let the inequalities

oi(y)p2ii(z,y) <li (1=1,...,n),
2k (z,y)| <l (i #k; i, k=1,...,n),
where o; : [0,b] — {-1,1} (¢ = 1,...,n) are measurable functions and
Lit (i,k =1,...,n) constants such that the real parts of eigenvalues of the

matriz (lik)}—, are negative. Then problems (8.1),(8.2) and (8.1),(8.4) are
uniquely solvable and their solutions coincide.

" LetP; (j =0,1,2) and q be continuous, ¢ be continuously
differentiable and the inequalities
oip2ii(z,y) <l (i=1,...,n),
ik (z, )| <l (i #k; i, k=1,...,n),

hold in Dy, where o; € {—1,1} and Ly, (i,k =1,...) are constants and the
real parts of eigenvalues of matriz (lik)Zkzl are negative. Then problems
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(8.1),(8.2) and (8.1),(8.4) are uniquely solvable and they have one and the
same solution which is classical.

§ 0.

In this section we investigate the problem of almost-periodicity in the
first argument of a solution of the problem

u(z,y) du(z,y)
Ou(z,y)
Y
Ou(z Ou(z
u(z,0) = p(x), esssup (H .9) H H .9) H) < 4o00. (9.2)

(I y GDb

In addition, it is assumed everywhere that
Pj = (pjik):'lkzl € LOO(Db’]Rnxn) (.7 = 07 172)7
q=(g)121 € Loo(Dy; R™), 0 = (1)1 € Coo (R;R™).

The concepts of almost-periodicity and S-almost-periodicity in the first
argument of a matrix function of two variables which are introduced below,
are the modification of Bohr’s and Stepanov’s concepts of almost-periodicity
of a function of one variable ([30], Ch.1,§1 and Ch.5,§2).

A continuous matrix function Z : D, — R™*" is called
almost- periodic in the first argument if for an arbitrary ¢ > 0 there exists
[ > 0 such that an arbitrary segment [zg, €9 +[] contains at least one number
7 for which the inequality

sup |[Z(z +71,y) — Z(z,y)|| <e
(CL‘7y)EDb

takes place.

A locally summable matrix function Z : Dy — R™*" is
called S-almost-periodic in the first argument if for an arbitrary e > 0 there
exists [ > 0 such that an arbitrary segment [zg, o + ] contains at least one
number 7 for which the inequality

b z+1
swp [ [ 126+ mot) = (s, st < <
z€ERJO Ja

takes place.
For any locally summable matrix function Z : D, — R™*™ we put

|1Z]ls = sup/ / [|Z(s,t)||dsdt.
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A sequence of locally summable matrix functions Zj, : Dy — R™*" (k =
=1,2,...) is called S-convergent to Z if

lim ||Zy — Z||s = 0.
k—+o00

A continuous (locally summable) matrix function Z: D, —
— R™*™ ig called normal (S-normal) if for any sequence of real numbers
(Ak);2S the sequence of matrix functions (Z)}25, where Zi(z,y) = Z(z +
+Ak, ) contains uniformly convergent (S-convergent) subsequence.

A continuous (locally summable) matriz function Z : Dy —
— R™*™ s almost-periodic (S-almost-periodic) in the first argument if and
only if it is normal (S-normal).

This lemma is an analogue of Bochner’s well-known theorem ([30], The-
orem 5.4.2) for matrix functions of two variables and can be proved in the
same way as Bochner’s theorem.

Let P; € Loo(Dp; R™™) (i = 0,1,2) and there exists a
sequence of real numbers (\,); > such that

lim ||sz _fi”S - 0,
k—+o00
where
Pik(ﬂl’,y) = ,Pl(x + /\kay) (Z =0,1,2; k= 1,2,.. )

Then we shall say that the triple of matrix functions (P, P;,P2) belong to
the class H(Py, P1,P2).

Let P; (i = 0,1,2) be S-almost-periodic in the first argu-
ment and for any (Po, P1,P2) € H(Py,P1,P2) the homogeneous problem

ng(ig;/y) = Polz,y)u(z,y) +51(a2,y)% +f2(x,y)%a;y), (9.3)
u(z,0) = esssup (Hau z,9) H Hau z,y) H) < 400 (9.4)

z y) €Dy

have only the trivial solution. Then for any almost-periodic p : R — R" and
S-almost-periodic in the first argument q : Dy — R™ a solution of problem
(9.1),(9.2), if it exists, is almost-periodic in the first argument.

Proof. Let for an almost-periodic ¢ : R — R™ and S-almost-periodic in the
first argument ¢ : Dy — R” problem (9.1),(9.2) have a solution . According
to Lemma 9.1, to prove the theorem it suffices to show that « is normal.
Assume on the contrary that u is not normal. Then by Lemma 9.1 there
exist sequences of real numbers (A;){], of natural numbers (k;);-% and
(1) and a positive number § such that the sequences of matrix and

vector functions

(,sz)z;xi (7’:071’2)7 (qk)Z:O? (95)
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and

(0r)323 (9.6)
where
Plk(zay)zpl(w+Akay) (1207172)7
a(@,y) = a@ + Ak, y) o) = o( + i)
are, respectively, S-convergent and uniformly convergent and

sup ||u(x+)‘kny)_u(a:+Ajny)||>5 (121727)7
(z7y)€Db

from which the existence of sequences z; € [0,a] and y, € [0,b] (I = 1,2,...)
such that

lw(@r + Ay yn) —ulz + Xyl >0 (1=1,2,...) (9.7)

becomes evident.
Assume

w(z,y) =u(x+z+ Ay, y) —ulz + 2+ Ny, ),
P = Sokl(x +xl) — @5 (a: +xl)7
fil(a';ay) = ,Pl(a: +z + Aklay) (Z = 07 172)
and

G(z,y) = [Po(z + 21 + Ay, y) — Polz + 20 + N, y)u(z + 2 + Njy, y) +
ou(z +z; + Aj,,y)

+[731(a:+a:l+/\k,,y)—771(z+a:l+/\j,,y)] o +
0 Xi,
+[Po(@ + 21 + My, y) — Prlz + 2+ Njy, )] u(a:+a(;ly+ 2t y)+
+q(z + 1 + My y) — g(z + T+ Njy,Y). (9-8)
Then, in view of (9.1) and (9.2), for any natural [ we have
82“[(:177 y) - =y aul (17, y)
“ozdy Po,(z, y)u(z,y) +P11($,Q)T +
— ouy(z, _
P o) 5 1 g o), 9.9)
w(z,0) =g (x) (9.10)
and
aul (.’17, y) aul (.’17, y)
sup |lui(z,y)|| <, esssup + <7, (9.11)
(Z,y)EDb (Z,y)EDb (H 8:1: H H ay H)
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where «y is a positive constant independent of [. On the other hand, in view
of (9.7)

(0, 9)]| >0 (1=1,2,...). (9.12)

Because of the S-convergence of sequences (9.5) and the uniform conver-
gence of sequence (9.6) we have

2
[@lls <7 1Pk = Pijills + llag, — azlls = 0 for I — +o0  (9.13)
=0

and

lim @;(z) =0 uniformly in R (9.14)
=400
Taking into account Lemma 9.1 and an essential boundedness of P; (i =
= 0,1,2), without loss of generality we may assume that the sequences
(Pu)iLy (i = 0,1,2) are S-convergent to some matrix functions P; €
€ Loo(Dyp; R**™) (1 =0,1,2), i.e.

lim ||Py — Pills = 0. (9.15)
l—+o0

On the other hand, by virtue of the Arzela-Ascoli lemma and conditions

(9.11), again we may assume without loss of generality that the sequence

(ul)?flo is uniformly convergent in the rectangle D, for an arbitrary a € R.
Put

l~l>1~anoo w(z,y). (9.16)

From (9.11),(9.12) and (9.14) it is clear that ug : D, — R™ is Lipschitz

continuous,

UO(xay) =

uo(z,0) =0, esssup (H Ouo(x,y) H + H Buoa(z,y) H) <5 (9.17)

(CL‘7y)EDb ax
and
[max, |0 (0, y)[| > 0. (9.18)

Besides, for an arbitrary a € R we have

im T ou(s,y) ds — ’ Mds lim ! Mdt =
I—-+00 Jo 0s 0 s | oo 0 ot
y
= / Wdt uniformly in Dgp. (9.19)
0

It follows from (9.9) and (9.10) that

wlea) =2ie) = 010+ u@)+ [ [ [Puls it +
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_ Ouy(s,t) — Oy (s, t
+Pu(s,t) “’(;z ) Po(s,t) “’a(i’ )+qz(s,t)]dsdt. (9.20)

However, in view of conditions (9.15),(9.16) and (9.19) and Lemma 3.13

T y T y__

lliin / / Poz(s,t)ul(s,t)dsdt:/ / Po(s,t)uo(s,t)dsdt,
—>+00

lim// aulStddt //P auOSt)ddt,
[—+o00

1im//7>2 aulStddt //7?2 )ddt
=400

uniformly in Dg.
If, alongside with the latter three equalities, we take into account condi-
tions (9.13) and (9.14), then from (9.20) we obtain

uo(7,y) = uo(0,y) +

/ / [_0 (5, t)uo(s,t) + P1(s, )Buoa(ss 3] fg(s,t)W]dsdt.

From this and condition (9.17) it follows that wuo is a solution of prob-
lem (9.3),(9.4). But, according to the conditions of the theorem, problem
(9.3),(9.4) has only the trivial solution. Consequently, ug(z,y) = 0. But
this contadicts inequality (9.18). The obtained contradiction proves the
theorem. W

The theorem proved above is an analogue of J.Favard’s well-known the-
orem [15] for system (9.1).

Let ¢ be almost-periodic, P; (i = 0,1,2) and q be S-almost-
periodic in the first argument and there exist constants o € (0,1), 8 > 0 and
essentially bounded measurable functions a;, : [0,b] — [0,+00) (1 # k;i,k =
1,...,n), a; : [0,b] = (0,400) and o; : [0,0] = {-1,1} (i = 1,...,n)
such that the spectral radius of the matriz (ai(y))})—,, where a;i(y) = 0
(i=1,...,n), is less than « almost for all y € [0,b] and the inequalities

oi(Y)p2uii(z,y) < —ai(y) ((=1,...,n), (9.21)
Xi (y) x
‘ / exp (/ pw(ﬁ,y)df) (|p0ik(57y)| + [prix (s, y)| +

(9.22)

and

Xi(y) z
| / exp ( / Paid(€0)dE ) Ipaie (s, )lds| < an(y) g 5o
(i#k;i,k=1,...,n)



135

take place almost everywhere in Dy, where x;(y) = +oo for o;(y) = —1 and
Xi(y) = —oo for o;(y) = 1, respectively. Then problem (9.1),(9.2) has the
unique solution and this solution is almost-periodic in the first argument.

Proof. Let Ip(p2i;) and x(p2s;) (1 = 1,...,n) be, respectively, the sets and
the functions appearing in Theorem 7.1. Because the function a; (i =
=1,...,n) is positive, from inequalities (9.21) we have

X(p2:i)(y) = xi(y), mesIo(pa2i;) = 0.

Therefore inequalities (7.4) and (7.5) follow from equalities (9.22) and (9.23).
Consequently, all conditions of Theorem 7.1 hold, which guarantees the
unique solvability of problem (9.1),(9.2). It remains to show that the solu-
tion of the problem is almost-periodic in the first argument. By virtue of
Theorems 7.1 and 9.1 it suffices to show that if

fj(.’]j,y) = (ﬁjik(way))zkzl (.7 = 07152)

and
(50751752) € H(P077)177)2)

then the inequalities

xi(y) T
[ e ([ matecnde) (Folol + Brals.nas| <5 g o0
(i,k=1,...,n)

and

[ e ([ o) maatoite| ontn) g
(it#k; i,k=1,...,n)

hold almost everywhere in Dy. According to the definition of the class H
there exists a sequence of real numbers (\;)"% such that

b z+1
_ Bjik (5:1) — pjin(s + i, 0)|dsdt| = 0
et 1§m%<>§n [iléﬁ/o /w [Pjix (5 8) = pjin(s + Ar, t)lds

S (9.27)

for l = +o0.

By (9.21)

/yt /: oi(T)p2:i (§ + Ny, T)dédT < —(s — ) /yt a; (t)dt

for 0<y<t<db, z<s (i=1,...,n),
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whence, in view of (9.27), we have that

//aZ T)Dq;ii (&, T)dEdT < (s—a:)/ a;(T)dr

for 0<y<t<b z<s (i=1,...,n).

It is clear from these estimates that inequalities (9.24) hold almost every-
where in Dy. Inequalities (9.25) and (9.26) can be proved similarly. We
shall give here the proof of inequality (9.26) only. For any natural m we
put

_m for o;(y) = —1
Xim (1) = {—m for o;(y) =1

z+Xim (Y)

‘ / exp (/S“ p2ii(§ + /\l,y)df) |p2ik (s + )\z,y)|ds‘ -

T

T+ +Xim (Y) T4+
- ‘ / exp( / ini(fay)df) |p2ik(8,y)|d3‘ <
T+ s
z+x: (y) 4N
< ‘ / exp( / P2ii(f,y)df) |p2ik(5,y)|ds‘ < ax(y)
PADY 2
(i #k;ik=1,...,n).
Therefore
 THxim(Y) N
‘/ / exp (/ Tbii(fﬂ')df) |ﬁ2ik(5a7')|d.9d7" <
y s
z+xim (¥)

< /yt‘ / exp (/szp2ii(f+/\la7-)d£) Ip2ir (s + A, 7)| X

T

X exp (/:[52“(5, ) — paii(€ + N, T)]dg) ds‘dT n

' z+Xim (¥)

s marten) = paats + d e ([t ) aslar <

y
T

z+Xim (Y)

< /ytexp(\ [ ot r) = e Ml e (r)ar +
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i T+Xim (Y)

+exp(00m)/ | / [Bosi (5,7) — pain(s + M, 7)lds|dr  (9.28)

y
T

for 0<y<t (i#k;i,k=1,...,n),

where
Co = fg%Xn ||p2u'||Lm-
But,
I+Xim(y)
exp (‘ / |ﬁ2u‘(f,7)—pzii(f+/\l,T)|dSD <
-T+Xim(y)
<1+ ‘ / Do (&, 7) — paii (€ + )\m,T)|dS‘ exp(2com)
x
and

¢ T+Xim (Y)

‘ / Dot (8, T) — P2ir (s + Ai, T)|ds‘dr < me;.
y

According to the above arguments from (9.28) we obatin

T+Xim (Y)

/yt ‘ / exp (/w ﬁgii(g,y)df) |1_)2ik(s,7')|ds‘d7- <

s
T
t
< / aik (T)dT + m(1 + ||aik]|L..) exp(2com)e;
y
for 0<y<t<b (i#k;i,k=1,...,n).

Passing in these inequalities to the limit first for [ — +o0o and then for
m — +o00, on account of (9.27), we find

z4x:(y)

/yt\ [ e /jﬁgii(fﬂ)df)|ﬁ2ik(8,7)|ds‘d7S /ytaikmdr

T

for 0<y<t<b (i#k;i,k=1,...,n).

from which it is clear that inequalities (9.26) hold almost everywhere in
Dy. W

Similarly to Corollary 7.2 we prove
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Let o be almost-periodic and P; (i = 0,1,2) and q be
S-almost- periodic in the first argqument. Let, besides, inequalities

Ul(y)phz(xay) S l“ (7’ = 17' . '7n)7
|p2ik(w,y)| <lw (G#k i,k=1,...,n)

hold almost everywhere in Dy, where o; : [0,0] = {—1,1} (i =1,...,n) are
measurable functions and Ly, (i,k = 1,...,n) are constants such that the
real parts of eigenvalues of the matriz (lik)?,kd are negative. Then problem
(9.1),(9.2) has the unique solution and this solution is almost-periodic in the
first argument.
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