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Abstract. This paper deals with the numerical treatment of singularly perturbed parabolic differen-
tial-difference equations. The considered equations contain a small perturbation parameter € € (0, 1]
multiplied by the highest order derivative term, and shift parameters attached with the nonderivative
terms. The solution of the equations exhibits an exponential boundary layer due to the presence of
the perturbation parameter . Classical numerical methods fail to give relevant approximate solutions
when the perturbation parameter approaches zero. We propose numerical schemes that converge
uniformly irrespective of the parameter . The numerical schemes are formulated by using the Crank
Nicolson method in temporal discretization, and the midpoint upwind non-standard finite difference
method on uniform mesh and Shishkin mesh for spatial discretization. The schemes satisfy the discrete
maximum principle and the uniform stability estimate. The uniform convergence of the schemes
is proved with the second order of convergence in the temporal direction and with the first order
of convergence in the spatial direction. Numerical test examples are considered for validating the
theoretical findings and analysis of the schemes.
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1 Introduction

We consider a singularly perturbed parabolic differential equations with deviating arguments of the
form

(94 Lesn)ule,t) = f(at), (a,0)€ D=Qx A= (0,1) x (0,7],

u(x,0) = ug(x), € Do={(x,0): z€Q=][0,1]}, (1.1)
u(z,t) = ¢(x,t), (x,t) € D = {(x,t) : (x,t) € [—0,0] x A},
ula,t) = (1), (2,6) € Dp={(@1): (e,0) € [1,1+7] x A},

where
L. snu(z,t) = —%Upp (2, 1) + al2)uy (2, ) + a(z)u(z — 6,t) + B(x)u(z, t) + w(@)u(z +n,t),

e (0 < e < 1) is the perturbation parameter and §, 7 are the shift parameters assumed to satisfy
d,n < €. The coeflicients a, «, 8, w, and the functions f, ug, ¢ and i are assumed to be sufficiently
smooth and bounded for guaranteeing unique solution. The coefficient functions «, § and w are
assumed to satisfy

a(z) + B(x) +w(x) >b* >0

for some constant b*. The existence of a unique solution of (1.1) can be established by assuming that
the data are Holder continuous and by imposing appropriate compatibility conditions at the corner
points (0,0), (1,0) and (—6,0). The required compatibility condition are stated as follows.

Let ug(z) € C?[0,1], ¢ € C*1([-4,0] x [0,T]) and ¢ € C*1([1,1 + 5] x [0,T]) by imposing the
compatibility conditions u(0) = ¢(0,0), uo(1) = (1,0) and

0¢(0,0) 9?up(0) Oug(0)

5t ¢ oz T 0) =5 = +a(0)¢o(=5,0) + S(0)uo(0) +w(0)4(6,0) = £(0,0),
ngg D _. 82;251) +a(1) 8“gf) + a(Dug(1 — &) + B(D)ue(1) + w(1)p(1 +n,0) = £(1,0),

so that the data match at the two corners (0,0) and (1,0). Let a(x), a(z), 8(z), w(x) and f(z,t)
be continuous on D, then problem (1.1) has a unique solution v € C?1(D). In the case when
the compatibility conditions are not satisfied, a unique solution may still exist, but may not be
differentiable on 9D = D — D, where D = Q x A = [0,1] x [0, 7.

Most of the standard numerical methods developed for solving regular problems do not treat
singularly perturbed problems [?]. That is, due to the smoothness, the solution deteriorates and
forms a boundary layer [?]. If one wants to solve singularly perturbed problems by using the standard
numerical methods in the collocation method, finite difference method (FDM) and finite element
method (FEM), a very large number of mesh points are required as the perturbation parameter
approaches zero. It is not practical due to limited computer storage and processing ability, even for
simple singularly perturbed ODEs [?].

There is a vast literature on the numerical solution of singularly perturbed problems. Interested
readers may refer to [?,7,7,7,7,2,7,7,2,?7,2,7,7,?] and the references therein. We focuse our review
only on numerical schemes developed for solving singularly perturbed parabolic differential equations
with deviating arguments. Rao and Chakravarthy [?] used the fitted operator FDM. Ramesh and
Kadalbajoo [?] used the upwind and midpoint upwind FDM on the Shishkin mesh. Kumar and
Kadalbajoo [?] used the B-Spline collocation method on the Shishkin mesh. Shivehare et al. [?]
used the quadratic B-Spline collocation method on an exponentially graded mesh. Gupta et al. [?]
developed a hybrid type FDM on the Shishkin meshes and applied the Richardson extrapolation
technique. Kumar [?] developed a scheme using the midpoint upwind FDM on the Shishkin mesh.
Bansal and Sharma [?] used the #-method for temporal discretization with the non-standard FDM for
the spatial discretization for the problem involving large deviating arguments. In [?,7?,?], Woldaregay
and Duressa studied uniform convergence analysis for the singularly perturbed differential-difference
equations using the fitted mesh techniques or the fitted operator methods.

The non-standard FDM has better accuracy and order of convergence than the equivalent standard
FDM on the Shishkin mesh. But the non-standard FDM loses the boundary layer resolving behavior
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(there is no sufficient number of mesh points in the boundary layer region) [?,?]. Furthermore, the
convergence analysis of the non-standard FDM was restricted to uniform mesh discretization [?,7,7].
Recently, He and Wang [?] developed a new form of non-standard FDM for stationary singularly
perturbed problems by using infinite Taylor’s series expansion. The authors conclude without proof
that their scheme works on the Shishkin mesh. Kumar et al. [?] extended the work in [?] for the
time fractional singularly perturbed parabolic problem. Motivated by the works in [?,?], we propose
a midpoint upwind non-standard FDM and prove its uniform convergence. We applied the Crank
Nicolson method for the temporal discretization and the midpoint upwind non-standard FDM on a
uniform mesh and the Shishkin mesh for the spatial discretization. Moreover, we discuss the uniform
convergence analysis of the schemes.

Notation. The norm || - || is denoted for the maximum/suprimum norm; the symbols M and N
are denoted for the number of mesh intervals in temporal and spatial discretization; C' is denotes the
positive constant independent of ¢ and N.

1.1 Bounds and properties of the solution

For the case of §,n < ¢, it is appropriate to use Taylor’s approximation for the terms with deviating

argument [?] as
2

)
w(x —6,t) ~ ul(x, t) — dug(x,t) + ( = )ugs (z,t) + O(83),
(2= 6,8) ~ u(w, ) — dua )<i> (2,1) + O(6%) )
u(z +n,t) =~ u(z,t) + nug(x,t) + (%)um(x,t) +O(n?).

Using the approximations (1.2) to (1.1), we get

(5 + L ute,t) = 52,0, (2,t)€ D

u(r,0) = up(z), x€Q, (1.3)
u(0,8) = 6(0,1), e A,
w(l,t) =(1,¢), teA,

where

Le u(z,t) = —co () uge(x,t) + p(x)uy (2, t) + b(z)u(z, t),
2

ce(x) =2 — g)oz(x) - (n—)w(x),

2
p(z) = a(z) — da(x) + nw(z) and b(x) = a(z) + B(x) + w(x).

For small values of ¢, n, (1.1) and (1.3) are asymptotically equivalent, since the difference between

the two is O(63,7%). We assume that
52 2
0<ca(a?)§€—?a—%w:c€,

where a(z) > a and w(z) > w. We also assume that p(z) > p* > 0, which implies the occurrence of
the boundary layer on the right side of the spatial domain [?,?]. The boundary layer is maintained
for sufficiently small parameters 6, # 0. For the large delay problems the interested reader may refer
to [?,7].

Lemma 1.1 ([?]). For 0 < e < 1, there exists a constant C independent of c. such that the solution
u(x,t) satisfies

|u(z,t) —ug(x)| < Ct and |u(x,t) — ¢(0,t)| < C(1 —=x), (x,t) € D.
Remark 1.1. Since the layer occurs near z = 1, there does not exist a constant C' such that

lu(z, t) — ¥(1,t)] < Cu.
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The problem obtained by setting ¢. = 0 in (1.3) is called a reduced problem and is given as

ud(x,t) + p(z)ul(z,t) + b(x)u’(z,t) = f(z,t), (x,t) € D,

u®(z,0) = ug(z), =€Q, (1.4)
u®(0,t) = ¢(0,t), te€A, '
u(1,t) #¢(1,t), teA.

In (1.4), we have u®(1,t) # ¥(1,t), t € A, that is because the reduced problem does not satisfy the
boundary condition in the layer region. For small values of c., the solution u(x,t) of (1.3) is very close
to the solution u°(z,t) of (1.4).

The solution of (1.3) can be decomposed into regular v(x,t) and singular component w(z,t) as

u(z,t) = v(z,t) + w(z,t), (z,t) € D.

The regular component satisfies the non-homogeneous problem

(3 +Lcs) (z,t) = f(z,t), (z,t) €D,

ot o v
v(x,0) = ug(z), z€€Q,
v(0,t) = u(0,t), t€A,
v(1,t) #u(l,t), teA,

and the singular component satisfies the homogeneous problem

(;+ch) (z,1) =0, (x,t) €D,

w(z,0) =0, ze€q,
w(0,t) =0, teA,
w(l,t) =u(l,t) —v(1,t), te€A.

Lemma 1.2 ([?]). Derivatives of the regular components solution satisfy the bound

ak
<C, k=0,1,2,3,4,
‘ 835’“ ’
and derivatives of the singular components solution satisfy the bound
ak —p*(1 —
‘7‘ < OcFexp (M) k=0,1,2,3,4,
oxk Ce

where p* is the lower bound of p(x).
Lemma 1.3 ([?]). Derivatives of the solution of (1.3) satisfy the bound

‘3k8l —p*(1 —x)

W\“(”C e ( o

)) 0<k<4, 0<I<2.

2 Numerical schemes

2.1 Temporal semi-discretization

Let the time domain [0,T] be divided into M — 1 equal intervals using grid points to = 0, t; = jAt,
j=1,2,...,M—1, where At =T/(M —1). Let u;41(z) denote the approximation of u(z,t;41) at the
(j + 1)th time level discretization. Using the Crank Nicolson method, we semi-discretize the problem
n (1.3) as
At a At ~
(1 + 5L )uﬁ_l(az) - el ) J(@) + Atf (@, tia1y0), G=0,1,2,..., M —1,
Uj+1(0) = ¢(0,tj+1), (2.1)
ujy1(1) = ¥(1,t541),

( At
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where
L&ujp(2) = —coufly (x) 4+ p(@)u) 4 (2) + b(@)ujg (2).

The semi-discrete scheme in (2.1) satisfies the maximum principle which is stated as follows.

Lemma 2.1 (Semi-discrete maximum principle). Let uj1 be a smooth function on Q. If
wj+1(0) > 0, wj1(1) >0 and (1 + 5L )uj+1(m) >0, 7€,

then -
ujr1(x) >0, z €.
Proof. Suppose there exists x* € [0, 1] such that

uj1(2") = minwu;qq(z) <O0.
€N

From the assumption it is clear that 2* ¢ {0,1} implies that z* € (0,1). Applying the property of
extrema values in calculus, we have v} ;(2*) =0 and u};(z*) > 0. This gives that
At
(]. + > LCAEt)’LLjJrl(lL'*) <0,

which contradicts

At
(1 + -5 Lét)ujﬂ(a;*) >0, Ve e
Therefore, we conclude that u;;1(z) > 0, z € Q. Hence the semi-discrete scheme satisfies the maxi-
mum principle. O

Lemma 2.2 (Error bound of semi-discrete scheme). The global error estimate up to the t;yq1 time
step is bounded as
HE]-‘,-1H < CQ(At)27 .7 = 1727 s aM - 17

where At is the mesh length in a temporal discretization.
Proof. Using Taylor’s series approximation for u(z,t;) and u(z,t;11) centring at t;1 /5, we obtain

2

t
u(z,tj) = u(w,tj11/2) — -5 (2, tjp1/2) + u(x,tj4172) + O((A1)?), 22)
) :

At
u($,tj+1) = u(x,th/Q) + 7 Ut(.’I},thrl/Q) + utt<$,t]’+1/2) + O((At)?’)

From the approximation in (2.2), we obtain

u(x7tj+1) - u(x, tj)
At

= w(,t541/2) + O((A)?).
Using the approximation in (1.3), we obtain

U(x7tj+1) - u(x,tj)

At
= Cellar (2,141 /2) — P(2)ua (@, 4 1/2) — b(@)u(w, ty1/2) + f(2, tj41/2) + O((AL)?),
where (,ti41) + u(z,t;) F@,tie) + flat)
u(z,t; +ulx,t; x,t; + f(z,t;
u(w,tji1/2) = L 5 2= and f(x,tj412) = i 5 =

Since the local pointwise error
ejr1(x) = (@, tjr1) — w1 ()



Numerical Treatment of Singularly Perturbed Parabolic Differential Difference Equations 7

satisfies the semi-discrete differential operator, we get

(1 + % LcAgt)ej-&-l(x) = O((At)%),  €j+1(0) = 0 = ej41(1).

By applying the maximum principle, we obtain
lesall < Cr(AYE. (2.3)

Using the local error estimate in (2.3) up to the (j 4+ 1)th time steps, we obtain the global error
estimate at (j 4+ 1)th time step as

|Ej1| < Co(AY)?, j=1,2,....,M —1. O

2.2 Spatial discretization via midpoint upwind non-standard FDM
on uniform mesh

In this subsection, we approximate the spatial derivatives by using the midpoint upwind non-standard
FDM on a uniform mesh. Moreover, we prove the uniform convergence of the scheme.

For the problem in (2.1), to construct an exact finite difference scheme, we follow the techniques
developed by Mickens in [?]. We consider a constant coefficient sub-equations of (2.1),

—ceuj () + pujy () + b7uja () =0,

—CEU;‘/+1(I) —|—p*u;+1(:c) =V,

where p(z) > p* and b(z) > b*. Thus (2.4) has two independent solutions, namely, exp(A1z) and

exp(Aaz), where
N S LR T

’ —2c.

We consider uniform grid points {z; = 2o +ih}¥,, 20 =0, 25y =1, h = %, where N is the number of

mesh intervals. The objective is to calculate a difference equation that has the same general solution
as the differential equation in (2.1) at the mesh point x;. The solution is given by

Ui7j+1 = A1 exp()q:ci) + AQ eXp(/\zdfi).
Using the theory of difference equations for the second order linear difference equations, we get
Ui—1,j+1 exp(Mzi—1)  exp(Aewi—1)

Uijt1 exp(Mz)  exp(Aaz;) | =0.

Uity1,541 exp(M1zit1)  exp(Aazit1)
Substituting the values of A; 2, we obtain

* *

*)2 + 4e b* h
(p) € ZC )Ui-‘rl,j"rl :0
e

2c.

h h
exp (‘gc )Ui—l,j+1 — 2cosh ( )Ui,j+1 + exp ( -
€

which is an exact difference scheme for (2.5). Simplifying, we obtain

Ui—1,j+1 —2U; jo1 + Uig1,541 U1 —Uis1 541
—Ce +p

- =0.
e (exp(22) — 1) h

The denominator function for the second derivative term discretization is obtained as

v = hcf (exp (hp ) — 1).
p Ce




8 Mesfin Mekuria Woldaregay, Gemechis File Duressa

Using Taylor’s series representation of exp (%), we find that

2 (o () ) e (1 (LY ) o)

* Ce Ce 20\ ¢, 3\ ¢

We adopt 72 for the variable coefficient problem written as

S hee (exp (hp(xl)) — 1). (2.6)

p(x:) Ce

Using the denominator function +? in (2.6) and applying the midpoint upwind finite difference dis-
cretization, the proposed mid-point upwind non-standard finite difference scheme becomes

At At
(1 t5 L?;ﬁ%) Uij+1 = (1 - = L?ﬁ%) Uij+Atf(zi_1/2,tj41/2),

2
1=1,2,...,N—1, (2.7)
Uo,j+1 = ¢(0,t41),
Un,j+1 =91, t41),
where
U1 g — 2Uij + Ui 1, Uijor — Ui 1y
LA Ui = —cc =220 77.;“ S @i ) — I h S 4 b(im1y2)Us s
Uit1,; —2Ui; + Ui Uij — Ui,
LS Uig = —ce == sz F o p(@ioays) = 0@ ) Uiy

The notation p(x;_1/2), b(x;—-1/2) and f(z;_1/2,t;) stands for

p(x;) +p(wi—1)  bla;) + b(xi—1) and f(wi,ty) + f(xio1,t))
2 ’ 2 2 ’

respectively.

2.2.1 Stability analysis on a uniform mesh

Here, we want to show that the discrete scheme in (2.7) satisfies the maximum principle, uniform
stability estimates and uniform convergence.

Lemma 2.3 (Discrete maximum principle). Let U; j 11 be any mesh function satisfying Uy j41 > 0,

UN7J‘+1 Z 0. Then
At
(1+7th“ )Um«+1 >0, i=1,2,...,N —1,

Ce,um

implies that
Uij+1 20, Vi=0,1,...,N.

Proof. Suppose there exist k € {0,1,..., N} such that
Uk,j+1 = OgISnN Ui7j+1.
Suppose that Uy ;11 < 0 which implies k£ # 0, N. So, we have
Uk+17j+1 — Uk,j+1 >0 and Uk}j+1 — Uk71’j+1 < 0.
So, we obtain

A
(1+—tL’?'At )U,m+1 <0 for k=1,2,3,...,N —1.

2 Ce,um

Thus the supposition U; j41 < 0 for ¢ = 0,1,..., N is wrong. Hence we obtain U; j41 > 0, Vi =
0,1,...,N. O
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Using the discrete maximum principle, we have to prove that the discrete scheme in (2.7) satisfies
the uniform stability result.

Lemma 2.4. The solution U; j11 of the discrete scheme in (2.7) satisfies the bound

11+ &t LhAE U; )

Ce,um

Ui j+1] < 1 Ay

+ max {|$(0, tj41)|, [¥(1, ti1)|}-

Proof. Let
(1 + 5 LE50) Uil

Ce,um

1+%b*

+ max {[$(0, t541)], [ (1, t541)]}

and define barrier functions 93, , by ﬂfj 41 = Q£ U; j11. At the boundary points, we have

i,7+1
193:”1 =Q=xUpj+1 >0, ﬁﬁ,jﬂ =Q=+Upn,jt1 > 0.

On the discretized spatial domain z;, 0 < ¢ < N, we obtain

( At N )ﬁi

Ce,um i,j+1

At (Q FUit141 —2(Q £ Uij11) + Q£ Ui—l,j+1>
2 Vi

+ U; +U;_1;
(Q J+1 hQ 17]+1)+b(ml 1/2) (QiU”H)

=Q+xUijp —ce

+p(xl 1/2)
At Lh At

At 1+ Ce,um Ui,l
= (1 + ? b($i—1/2))<|( 1 T Zt b*) j+1” + max{\¢(0,tj+1)|, |¢(1,tj+1)|}>
2

At
+ (1 + = LAt )Ui7j+1 >0, since b(ﬁﬁi_l/g) > b".

2 Ce,um

—N .
Using the maximum principle in Lemma 2.3, we obtain 192 j+1 =20, Va; € Q. Hence the required
bound is satisfied. O
2.2.2 Convergence analysis on a uniform mesh

Now, we have to prove uniform convergence of the discrete scheme in (2.7). Let us denote the forward
and backward finite differences operators in the spatial variable as

Zi+1(®i) — zj+1(wi-1)
h b

D* 25 (1) = Zj+1(Tit1) — zj41(20)
J 1)

W ;o D7 zjpa() =

respectively, and the second order finite difference operator as

_ Dt zj1(x;) — D™ 2zj11(;)
D¥D ™z () = T
Lemma 2.5 ([?]). For a fited mesh N and m =1,2,3,... ase — 0, there hold

7p*x4

K3 . —

) =0 and lim max c¢_"exp (
Ce ce—01<i<N—1

—p*(1 — x1)> —0,

: —m
lim max c_ " exp ( .
(3

cem01<i<N—1
where x; =ih, h=N"1,Vi=1,2,...,N — 1.

Theorem 2.1. The spatial discretization by using the midpoint upwind non-standard FDM satisfies
the truncation error bound

exp(_p*(l —xi)/cg))-

|Lh ot Uj+1(xi) — Ui’jJ’,l)‘ S Ch(l + ml_ax 3
€

Ce,um
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Proof. Considering the difference between the exact and the approximate solutions in discrete opera-
tors, we obtain

|LAt (Ujsa(2:) — Usjy1)|
d*> DfD;h?

< C‘ — 65(@ - T)Ua‘ﬂ(fﬂi)

(%22 - D:D;)UjJrl(mi)

+ ‘p(xi—l/z)(% - D;)Uﬁrl(xi)

2
< CCE + CCE <£ — 1)D;D;Uj+1($i)

K2

d2

Let us define b
p=p(zi) —, p€(0,00)

€
Then, using the expression for ~y;, we obtain

| = paon| = = | = @) 25
ce| — = 1| = pl@)h|—F5— — =| = p(z; ; :
Yi exp(p) =1 p P
where ()1
exp(p) —1—p
Qp) = SXP =120
)= explp) - 1)
which satisfies the bound .
lim Qp) = 5, lim Q(p) =0. (2.9)
Therefore, Q(p) is bounded for all p € (0,00). So, we can write Q(p) < Ca, p € (0,00), where Cs is a

positive constant. Hence from (2.8) and (2.9) the estimate c.| ’}72 —1| < Ch follows. So, the truncation

%
error bound becomes

d* d>
LAt (Ui () = Ui j)| < Ccahz‘@ Ujrr(wi)| + Ch‘@ Ujsa(zi)|- (2.10)

Using the bound of Lemma 1.2 in (2.10), we obtain
|LZE’,AJm(Uj+1($i) = Uijt1)]

=< Cceh2’1 +otexp (M)‘ + Ch‘l + 2 exp (M)‘

Ce Ce

¢+ e exp (M)‘ +C’h‘1—|—c§2exp (M)’

< Ch?

—p*(1 — ;
< C’h<1 + max ¢ ® exp (M», since c.? > 2. O
7

Ce €
Theorem 2.2. The error due to the spatial discretization of the midpoint upwind non-standard FDM
satisfies the bound
Uj+1(zi) = Ui ja| < Ch.

Proof. Using the results of Lemma 2.5, we obtain

|Lhat (Ujsa(2:) — Ui j41)| < Ch.

Ce,um

By applying the discrete maximum principle, the error bound is given as
Uj+1(zi) = Ui ja| < Ch. H

Theorem 2.3. Let u and U be the exact and computed solution of problem in (1.3), then the discrete
scheme in (2.7) satisfies the error bound

lu = Ul < CINT! + (A1)?).

Proof. Using the error bound for the temporal and spatial discretization given in Lemma 2.2 and
Theorem 2.2, we obtain the required bound. O
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2.3 Spatial discretization via midpoint upwind non-standard FDM
on Shishkin mesh

In this subsection, we approximate the spatial derivatives by using the midpoint upwind non-standard
FDM on Shishkin mesh. Moreover, we prove the uniform convergence of the scheme.

Let {z;}}¥, be the discretized domain of the spatial variable, where N is the number of grid points
in the domain being an even positive integer. For each ¢ > 1, we define h; = x; — x;_1. Since the
considered problem exhibits the right boundary layer, we set a mesh transition parameter 7 which
divides the domain [0, 1] into the outer layer region €y = [0,1 — 7] and inner (boundary) layer region
Qo = [1 — 7,1]. The mesh transition parameter 7 is defined as

. 1 oc.

7 = min { 5 o

where N is the number of mesh points in spatial discretization and o denotes a constant that represents

the order of the scheme and b* is the lower bound of b(z). Now, we set a uniform mesh N/2 in €

with mesh spacing H = % and, similarly, a uniform mesh N /2 is placed in 5 with the mesh
spacing h = QWT . So, the mesh point x; is given as

1nN}, (2.11)

W=7, for i=0,1,2,..., Y,
z; = N 2 (2.12)
1 +27(' N) for i= XN N
-7+ —=(i——= ri=—,...,NV.
N 2 9

Here, we introduce a numerical method that is constructed by using the denominator function of
the non-standard FDM on a piecewise uniform Shishkin mesh. We use the mesh transition parameter
defined in (2.11) and the piecewise uniform mesh defined in (2.12). It is known that the fitted mesh
methods have a layer resolving behavior (which means that N/2 mesh points are computed in the
boundary layer region). This is the drawback of the non-standard FDM on a uniform mesh. The
proposed scheme uses the denominator function in (2.6) together with the fitted mesh technique. The
non-standard FDM is traditionally applied on uniform meshes, while using it on a fitted mesh requires
the following modifications:

= g (o (hpc(x)) ~1) = oo (e (h%p(x)) -1) (2.13)

Note that v; & h; + O(h?) and ;41 = hip1 + O(h?,,) are the denominator functions for the first
derivative backward and forward difference approximations, respectively.

Using the mid-point upwind finite difference discretization with the denominator functions in
(2.13), the proposed discrete scheme on Shishkin mesh is given as

At At
(1 t5 Lifé%) Uij+1 = (1 -5 Léfé%) Uij+ Atf(wi_1/2,tj41/2),
1=1,2,...,N —1, (2.14)
Uo,j+1 = ¢(0,t511),
Un,j+1=v(1,t541),

where

LAN [ = e (Uz‘+1,j+1 —Uijr1 Uijy — UH.,J'H)
Ce,SM ] - £

Yit1(hi + hit1) Yi(hi + hit1)
Uij+1 = Ui—1j41
h;

+ p(i—1/2) +b(@i-1/2)Uij+1.

2.3.1 Stability analysis on Shishkin mesh

We assume that

. 1 oce
7 = min

5o 1nN}.
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Now, we assign to each of the subintervals [0,1— 7] and [1 — 7, 1] with N /2 the number of equidistant
grid points. Let H be the mesh width in the subinterval [0,1—7] and h be the mesh width in [1 -7, 1].
These mesh widths satisfy

ocCe

N t'<H<2N ' h<N!and h—b—N_llnN.

Lemma 2.6 (Discrete maximum principle.). Let U; j11 be any mesh function satisfying Uy ;11 > 0,
UN7j+1 Z 0. Then
At o ar N -
(1+ 5L Sm)UM+1 >0, i=1,2,...,N — 1,

implies that U; j41 >0, Vi=0,1,...,N.

Proof. The proof is similar to that of Lemma 2.3. O

Lemma 2.7. The solution U; j11 of the discrete scheme in (2.14) satisfies the bound

11+ & LAYV Us jal

Ce,5M

At 7%
1+7tb

Ui jy1] < + max {|$(0,;41)], [¥(1, tj41)|}

Proof. Let
(L + 5 LE) Uil

Q= Ay A max {100, )l ()}
2

and define the barrier functions 9., , by 19?7]. 41 = QU j11. At the boundary points, we have

3,7+1
9o 1 =Q+Uojp1 >0, Iy, =Q+Un 1 >0.

On the discretized spatial domain z;, 0 < ¢ < N, we obtain

At
(1 4+ 2tpann )ﬂ}jﬂ

2 Ce,5M

QUi —c At (Q Uit — (Q@xUijr1) QFUijp —(Q=E Uifl,j+1)>
= i, )

Yit1(hi + hit1) ¥i(hi + hit1)
+ U; +U;_1; At
i) B : (Q G+1 hQ 1,]+1) + b 1/2) (Q+U; 1)
At 101+ &L LN Uiy |
= (14 5 blwicy2) o IR ma {]6(0, )], (1, ty40) [}
2 b + &b

Ce,5M

At
+ (1 + = L2 N)Umqu >0, since b(w;_1/) > b".

—N
Using the maximum principle in Lemma 2.6, we obtain ﬁfj 41 >0, Vr; € Q. Hence the required
bound is satisfied. O

For the mesh function U;14(x;) at the grid points x; we denote the approximation of the first and
second derivative as
Uij+1 = Uim1 41

Dy Ujya (i) = -

and

2 (Ui+1,j+1 - Ui,j+1 B Ui,j+1 - Ui—l,j+1>

D+D U T;
(DE DIV () = e (R -
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2.3.2 Uniform convergence on Shishkin mesh

Decomposition of the discrete solution: Here, we decompose the numerical solution U; ;41 into
regular and singular components in a way similar to the continuous case:

Uijt1 = Vij+1 + Wijp,

where the regular part satisfies the non-homogeneous equation

At At
(1 + - LCAtsjyn) Vij+1 = (1 - Lééé%) Vi +Atf(xi—1/2,tj41/2),

2 2
Vit1(0) = v;41(0),
Vit (1) = v+ (1),

and the singular component satisfies the homogeneous equation

At
(1 t5 Lifé%)wi,jﬂ = (1 -5 Léf;%) Wi,
Wit1(0) = w;41(0),

Wijt1(1) = wi41(1).
The error in the numerical solution can also be decomposed as
Uij+1 = Ujra(@i) = Vijer — Viga (@) + Wi — Wit (@)

First, let us consider the case 7 = 1/2, which is a uniform mesh case, say the mesh size is h. The
truncation error becomes

d _
+ ‘P(%‘flm) (@ - D, )Uj+1(93i)

d? _
Cs(@ - (D:Dz )’Y)UjJrl(x’i)

|L2 N U (m:) = Ui j)| =

)

since

Uit1j+1 — 2U; j41 +Uiz1 4

e (exp(2L2T) — 1)

(D3 Dy )3 Ujs1 (i) =
From the truncation error in a uniform mesh, we obtain

d2
+CN71‘7 Uj+1(‘ri) S CNil.

| d*
|LAt7N (Ujs1(zi) = Ui j+1)| < CeeN 2‘@ Uji1(z;) dz2

Ce,5M

Using the discrete maximum principle, we obtain
Ujs1(zi) = Uja| < ONTL

For the case
oce

b*

we estimate the error in the regular and singular solution separately. Here,

T= In N,

oCe

b*

InN <0.5

implies that ¢! < ClnN.
Theorem 2.4. The error in the regular component satisfy the estimate

Vij+1 — Vig1(zi)| < CN~L
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Proof. On an outer layer region [0,1 — 7], it is clear that the mesh is uniform, i.e., h; = h;11 = H,
1=1,2,...,N/2. So, the truncation error in the regular component is given as

Lt (Viga () = Vi)
d + d _
- (d 5 — (Dz Dy )y )VjJrl(xi) +p($i—1/2)(% - D$)‘/}+1(.Ti)

_ d?
< Cec.N 2’@‘/341(5)“"01\7 ‘dz Vit1(6)
<Cc.N24CN'<CNL

, since N"!< H<2N" !

In the layer region [1 — 7, 1], the mesh is uniform, i.e., h; = hjy1 = h, i = N/2+1,...,N —1. So,
the truncation error is given as

|L25N (Vi () = Vi)
d? d
Cs(g — (DfD;), )Vj+1($z‘) +P(xi71/2)(@ - D;)Vjﬂ(l‘i)

_ | d?
< Cc.N 2‘% Vj+1(€)‘ +CN 1‘ 2z Vir1(€)
<Cc.N?+CN'<CN.

, since h < N1

Using the discrete maximum principle, we obtain
Vis1(z:) = Vigya| <ONTE O
Theorem 2.5. The error in the singular component satisfies the bound
(Wigs1 = Wi (zi)] < CN“H(InN)2.

Proof. On an outer layer region [0,1—7], we have h; = h;y1 = H,i=1,2,...,N/2. So, the truncation
error becomes

LU (Wi (2:) = W)
e N d . _
— e (505 = (DED) ) Wisa(ai) + plwicrya) (7 = D7 ) Wi (@)

d2
—l—CN_l‘F Wii1(z;)|, since H <2N~!

< CCEN_2‘@ Witi(z:)

<o (et (U)o 2 (£4=20)

Ce

—p*(1 — 2
<C(N72¢23+ N'es?) exp (M>7

Ce

—p*(1 — {z;
SC(N72C;3 +Nflc;2)N*1, since exp (M) <CN™!,

Ce
SCN_Q(lnN)Z, since cE_1 <CInN.

In the layer region [1 — 7, 1], the mesh is also uniform, i.e., h; = hjy1 = h,i=N/2+1,...,N — 1.
Hence we have
L (Wi (i) = Wi )|
d2

cE(E — (DF D), ) Wi ) 4 plaiaya) (e

| &2
+CN 1‘@ Wit ()

< 0n it (S w0 (e (SH))

Ce

- D;)Wjﬂ(xi)

, since h < N7}

S OCEN72 ‘ @ Wj+1(l‘i)
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—p*(1 — 2y
SO(N726;3+N716;2)6XP( P*( $)>7

Ce
—p*(1 — s
<CN~'¢I?, since maxexp (M) <1,
3 Ce

<CN7'(InN)?, since ¢! < CInN.

Thus
|LEEN (Wita(z) — Wij41)| < max {CN~?(InN)?,CN "' (In N)?}.

Ce,sM

Using the discrete maximum principle, we obtain
(Wit (@) = Wiga| < CNTH(InN)>2. B

Theorem 2.6. The error due to the spatial discretization of the computed solution satisfies the
estimate
Ujs1(:) = U ja| < ON"HInN)2.

Proof. Combining the error estimate in the regular and singular components in Theorems 2.4 and 2.5,
we get the result. O

Theorem 2.7. Let u and U be the solutions of (1.3) and (2.14), respectively, then the discrete scheme
satisfies the uniform error estimate

lu—U| < C(N"HInN)? + (At)?).

Proof. Using the error bound for the temporal and spatial discretization in Lemma 2.2 and Theo-
rem 2.6, we obtain the required bound. O

3 Numerical results and discussion

We consider numerical examples to illustrate the theoretical findings of the developed scheme.
Example 3.1. We consider the problem

Ou 2 0?u 2 ou s
5 € a2 +(2—2°) 2 +2u(x — 0,t) + (x — 3)u(z, t) + u(x +n,t) = 10t“ exp(—t)z(1 — x)

with T' = 3, subject to the initial condition u(z,0) = 0, 2 € [0, 1], and the interval-boundary conditions
¢(x,t) =0, =6 <z <0,9(l,t)=0o0nt € [0,3].

Example 3.2. We consider the problem

2
O 2 T T (2 aPule — 80) + (1 + 2l ) + exp()ule £, ) = 50(a(1 — )’

with T' = 2, subject to the initial condition u(z,0) = 0, 2 € [0, 1], and the interval-boundary conditions
¢z, t) =0, -0 <z <0,9%(1,t)=0o0nt e [0,2].

In the considered examples, the exact solution to the problems is not known So, we use the double
mesh procedure to calculate the maximum pointwise absolute error. Let U ]’ denote the computed
solution of the problem for N, M number of mesh points in x and ¢ dlrectlon respectively, and let

UQjV 2M- denote the computed solution on a double number of mesh points 2N, 2M by including the
midpoints

$‘+1+x~ t‘+1+t‘
Tiy1/2 = % and tj1q1/0 = %

into the mesh points. The maximum pointwise absolute error is given by

N,M

N,M 2N,2M
Error_; o — U |

—max|U
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Table 1: Example 7?7, maximum absolute error of the scheme on uniform mesh for § = 0.6¢, n = 0.5¢.

€ N=2° 26 27 28 29

1 M = 60 120 240 480 960
26 1.9732¢-03 9.5545e-04 4.7020e-04 2.3328¢-04 1.1617e-04
2-8 1.9579¢-03 9.4782¢-04 4.6640e-04 2.3137¢-04 1.1523e-04
210 1.9541¢-03 9.4594¢-04 4.6546¢-04 2.3090e-04 1.1499¢-04
212 1.9532¢-03 9.4547¢-04 4.6523e-04 2.3078e-04 1.1495¢-04
214 1.9529¢-03 9.4535¢-04 4.6517e-04 2.3075¢e-04 1.1493e-04
216 1.9529¢-03 9.4532¢-04 4.6515e-04 2.3075e-04 1.1491e-04
218 1.9529¢-03 9.4532¢-04 4.6515e-04 2.3075e-04 1.1491e-04
2-20 1.9529¢-03 9.4532¢-04 4.6515¢-04 2.3075e-04 1.1491e-04
ErrorV:M 1.9529¢-03 9.4532¢-04 4.6515e-04 2.3075e-04 1.1491e-04
rate™N-M 1.0467 1.0231 1.0114 1.0058 1.0048

The e-uniform error is calculated as

N

N,M
Error™M = max Error_’; ‘
- ,

6.1 &

The rate of convergence of the scheme is calculated by using the formula

ErrorY;M
teNM g T E0m
raté s, = 1082 Errop2N2M
€,0,m
and the e- uniform rate of convergence is calculated as
N,M

NM g Error

rate 62 Error2N.2M *

The solution of the problems considered in Examples 7?7 and 7?7 exhibits a boundary layer on the
right side of the spatial domain. As one observes in Figures ??(a—d), as the perturbation parameter e
gets small, the boundary layer formation is visible. In Figures ??(a) and ??(a), we have the computed
solution of Examples ?? and 7?7 by using midpoint upwind non-standard FDM on a uniform mesh
at ¢ = 2719 and T = 3. In these figures, we observe that there is no computed solution in the
boundary layer region, this is the main drawback of the non-standard FDM on a uniform mesh and,
in general, the fitted operator methods. In figures ??(b) and ??(b), we observe the computed solution
of Examples ?? and ?? by using the scheme on a Shishkin mesh at ¢ = 27'% and 7' = 3. In these
figures, one can observe a sufficient number of mesh points and computed solutions in the boundary
layer region. This assures that the scheme on the Shishkin mesh has the layer resolving property. In
Figure 7?7, the computed solution and the absolute error of the proposed scheme on the Shishkin mesh
at € = 2720 and N = 28, M = 120 are depicted. In these figures, one can observe that the absolute
error is dominant in the boundary layer region, in direct agreement with the result we proved in the
convergence analysis.

In Tables 7?7 and 77?7, the maximum pointwise absolute error, e-uniform error and the e-uniform
rate of convergence of Examples 77 and 7?7 are given by using the scheme on a uniform mesh. In
Tables 7?7 and ??, the maximum pointwise absolute error, e-uniform error and the e-uniform rate of
convergence of the scheme on the Shishkin mesh are given. The numerical results in Tables 7?7, 77,
?? and ?? show that the developed schemes are uniformly convergent (converge independent of the
perturbation parameter as the perturbation parameter gets small) with linear convergence. In Tables
?? and 7?7, the maximum absolute error of the scheme on the Shishkin mesh for different values of
delay and advance parameter is given. In Tables 77 and 7?7, one can observe the comparison of the
scheme on the Shishkin mesh with the results of the papers [?,7?,?]. So, we confirm that the scheme
on the Shishkin mesh gives a more accurate result than some schemes available in the literature.
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Table 2: Example 77, maximum absolute error of the scheme on Shishkin mesh for § = 0.6¢, n = 0.5¢.

€ N= 2° 26 27 28 29

1 M = 60 120 240 480 960
26 4.1988¢-03 1.9687¢-03 9.5357e-04 4.6940e-04 2.3283e-04
2-8 4.1723¢-03 1.9556e-03 9.4715e-04 4.6621e-04 2.3128¢-04
210 4.1650e-03 1.9520e-03 9.4533e-04 4.6530e-04 2.3083e-04
9-12 4.1631e-03 1.9510e-03 9.4487¢-04 4.6507e-04 2.3071e-04
214 4.1626¢-03 1.9508¢-03 9.4475¢-04 4.6501e-04 2.3068e-04
216 4.1625¢-03 1.9508¢-03 9.4472¢-04 4.6500e-04 2.3068e-04
218 4.1625¢-03 1.9508¢-03 9.4471e-04 4.6499e-04 2.3067e-04
2-20 4.1625¢-03 1.9508¢-03 9.4471e-04 4.6499e-04 2.3067e-04
ErrorN-M 4.1625¢-03 1.9508¢-03 9.4471e-04 4.6499¢-04 2.3067e-04
rateN-M 1.0934 1.0461 1.0227 1.0114 1.0054

Table 3: Example 77, maximum absolute error of the non-standard FDM on Shishkin mesh for
different values of ¢ and 7 for e = 2710,

N=2° 26 27 28 29

M = 60 120 240 480 960
6 J,n=0.5¢
0 4.1607e-03 1.9498e-03 9.4425e-04 4.6476e-04 2.3059¢-04
0.1 4.1614e-03 1.9502e-03 9.4443e-04 4.6485e-04 2.3063e-04
0.3 4.1628e-03 1.9509e-03 9.4479¢-04 4.6503e-04 2.3085e-04
0.5¢ 4.1643e-03 1.9516e-03 9.4515e-04 4.6521e-04 2.3092e-04
0.7¢ 4.1657e-03 1.9523e-03 9.4551e-04 4.6539¢-04 2.3411e-04
n 1,6 =0.6¢
0 4.1668e-03 1.9529¢-03 9.4578e-04 4.6553e-04 2.3097e-04
0.1 4.1664e-03 1.9527e-03 9.4569e-04 4.6548e-04 2.3089¢-04
0.3 4.1657e-03 1.9523e-03 9.4551e-04 4.6539e-04 2.3080e-04
0.5¢ 4.1650e-03 1.9520e-03 9.4533e-04 4.6530e-04 2.3072e-04
0.7¢ 4.1643e-03 1.9516e-03 9.4515e-04 4.6521e-04 2.3065e-04

Table 4: Example ?? e-uniform error and e-uniform rate of convergence of the proposed scheme in
(2.14) and result in [?,7,7?].

Schemes N =32 64 128 256 512
1 M = 60 120 240 480 960

Proposed scheme in (2.7) 1.9529e-03 9.4532¢-04 4.6515e-04 2.3075e-04 1.1491e-04

1.0467 1.0231 1.0114 1.0058 1.0048
Proposed scheme in (2.14) 4.1625e-03 1.9508e-03 9.4471e-04 4.6499e-04 2.3067e-04

1.0934 1.0461 1.0227 1.0114 1.0054
Upwind scheme on 1.6716e-02 9.2021e-03 4.9863e-03 2.6885e-03 1.4245e-03
Shishkin in [?] 0.8612 0.8840 0.8912 0.9163 0.9178
Fitted operator in [?] 6.0781e-03 3.3107e-03 1.7254e-03 8.8049e-04 4.4473e-04

0.8765 0.9402 0.9705 0.9854 0.9927
B-Spline coloc. 7.5020e-03 4.4966e-03 2.4450e-03 1.2728e-03 6.4909e-04

on Shishkin in [?] 0.7384 0.8791 0.9418 0.9715 0.9859
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Table 5: Example 7?7, maximum absolute error of the scheme on uniform mesh for § = 0.6¢, n = 0.5¢.

N=2° 26 27 28 29

g

1 M = 60 120 240 480 960
2-6 2.4592¢-03 1.3224¢-03 6.8778¢-04 3.5109¢-04 1.7737e-04
2-8 2.4594¢-03 1.3213e-03 6.8716e-04 3.5089e-04 1.7732¢-04
2-10 2.4613¢-03 1.3210e-03 6.8704e-04 3.5084e-04 1.7730e-04
212 2.4617¢-03 1.3209¢-03 6.8702e-04 3.5083e-04 1.7730e-04
9-14 2.4619¢-03 1.3209¢-03 6.8701e-04 3.5083e-04 1.7730e-04
916 2.4619¢-03 1.3209¢-03 6.8701e-04 3.5083e-04 1.7730e-04
218 2.4619¢-03 1.3209e-03 6.8701e-04 3.5083e-04 1.7730e-04
2-20 2.4619¢-03 1.3209¢-03 6.8701e-04 3.5083e-04 1.7730e-04
ErrorN-M 2.4619¢-03 1.3209¢-03 6.8701e-04 3.5083e-04 1.7730e-04
rate’N-M 0.8983 0.9431 0.9696 0.9846 0.9946

Table 6: Example 7?7, maximum absolute error of the scheme on Shishkin mesh for § = 0.6¢, n = 0.5¢.

€ N =2° 26 27 28 29

1 M =60 120 240 480 960
2-6 4.7649¢-03 2.5722¢-03 1.3516¢-03 6.9475¢-04 3.5244¢-04
2-8 4.7612¢-03 2.5725¢-03 1.3525e-03 6.9552¢-04 3.5296¢-04
2-10 4.7589¢-03 2.5718¢-03 1.3523e-03 6.9548¢-04 3.5295¢-04
212 4.7582¢-03 2.5716e-03 1.3523e-03 6.9546e-04 3.5294e-04
2-14 4.7581e-03 2.5715e-03 1.3522e-03 6.9545e-04 3.5294e-04
216 4.7580e-03 2.5715¢-03 1.3522¢-03 6.9545¢-04 3.5294e-04
218 4.7580e-03 2.5715¢-03 1.3522¢-03 6.9545¢-04 3.5294e-04
2-20 4.7580e-03 2.5715¢-03 1.3522e-03 6.9545¢-04 3.5294e-04
ErrorN-M 4.7580e-03 2.5715e-03 1.3522¢-03 6.9545e-04 3.5294e-04
rate™N-M 0.8878 0.9273 0.9593 0.9785 0.9889

Table 7: Example 77, maximum absolute error of the scheme on Shishkin mesh for different values §
and 7 with e = 2710,

N =2° 26 27 28 29

M =60 120 240 480 960
5 1,m=0.5¢
0 4.7557¢-03 2.5705¢-03 1.3518¢-03 6.9520e-04 3.5282e-04
0.1e 4.7562¢-03 2.5707¢-03 1.3519¢-03 6.9525¢-04 3.5287¢-04
0.3¢ 4.7573e-03 2.5711e-03 1.3520e-03 6.9534e-04 3.5295e-04
0.5¢ 4.7584e-03 2.5716e-03 1.3522e-03 6.9543¢-04 3.5307e-04
0.7¢ 4.7594e-03 2.5720e-03 1.3524e-03 6.9553e-04 3.5315e-04
n 1,0 = 0.6
0 4.7612¢-03 2.5728¢-03 1.3528¢-03 6.9572¢-04 3.5307e-04
0.1le 4.7607e-03 2.5726e-03 1.3527¢-03 6.9567¢-04 3.5302¢-04
0.3¢ 4.7598¢-03 2.5722¢-03 1.3525e-03 6.9558¢-04 3.5294e-04
0.5¢ 4.7589¢-03 2.5718¢-03 1.3523e-03 6.9548¢-04 3.5284e-04

0.7¢ 4.7580e-03 2.5714e-03 1.3521e-03 6.9539¢-04 3.5275e-04
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Table 8: Example 7?7, e-uniform error and e-uniform rate of convergence of the proposed scheme in
(2.14) and result in [?].

Schemes N =64 128 256 512 1024

{ M =16 32 64 128 256

Proposed scheme in (2.14) 3.6745e-03 1.1291e-03 5.6471e-04 3.1147e-04 1.6474e-04
1.0724 0.9996 0.9593 0.91890 -

Result in [?] 7.4860e-03 4.6192e-03 2.6516e-03 1.4278 e-03 7.4242e-04
0.6965 0.8008 0.8931 0.9435 -

0.1r

0.081

0.041

0.021

L L L L L L L L L
0 01 0z 0.3 0.4 0.5 06 07 0.8 0.9 0.2 0.4 0.6 0.8

(a) (b)

Figure 1: Example ??, the layer resolving property for e = 2719 on (a) the scheme in (2.7), (b) the
scheme in (2.14), at T =3 and N = 27.
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Figure 2: Example ??, the layer resolving property for e = 271%: on (a) the scheme in (2.7), (b) the
scheme in (2.14), at T =3 and N = 27.

4 Conclusion

Numerical schemes are developed for solving singularly perturbed parabolic differential equations
having deviating arguments on the spatial variable. The solution to the considered problem ex-
hibits a boundary layer. The developed schemes use the Crank Nicolson method in temporal semi-
discretization and midpoint upwind non-standard FDM for spatial discretization on a uniform mesh
and a Shishkin mesh. The uniform stability of the schemes is investigated by using the barrier func-
tion and the maximum principle for the solution bound. The parameter uniform convergence of the
schemes is proved. The applicability of the schemes is investigated by considering test examples. The
effects of the perturbation parameter and the shift parameters on the solution are shown using figures
and tables. The developed schemes are uniformly convergent with a linear order of convergence. The
schemes give accurate and stable numerical results. In the future works, we extend these schemes for
solving higher dimensional singularly perturbed problems.
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Figure 3: 3D view of solution of Example ?? with layer formation, on (a) ¢ = 2°, (b) e = 272, (c)
e=2"1and (d) e =272
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Figure 4: Example ??, on (a) computed solution, (b) absolute error of the scheme (2.14) for ¢ = 2719,
N =28, M = 120.
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