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Abstract. A nonlinear viscoelastic Kirchhoff-type equation with a logarithmic nonlinearity, disper-
sion, delay and Balakrishnan—Taylor damping terms is studied. We prove the blow-up of solutions
under a suitable hypothesis.
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1 Introduction

In the present work, we consider the following Kirchhoff equation:

|ue[Puge — M(t)Au(t) + / h(t — 0)Au(p) do — Auy(t)
0
Bl ()™ 2us(t) + Balus (¢ = D)™ 2us(t = 7) = wlul? In ul¥, W)
U(JZ,O) = UO(‘I)v ut(a:,()) = ul(x) n 0,
ug(x,t —7) = fo(z,t —7) in Q x (0,7),
u(z,t) =0 in 9Q x (0, 00)

where

M(t) = (G + GlIVul3 + 0 (Vult), Tur(t)) 12y ).

and € RY is a bounded domain with sufficiently smooth boundary 9%; v > 2, (o, (1, o, B1, k are
positive constants, 85 is a real number; p > 0 for N = 1,2, and 0 < p < N472 for N > 3, and m > 2
for N=1,2,and 2 <m < % for N > 3, h is a positive function.

Physically, the relationship between the stress and strain history in the beam inspired by Boltz-
mann theory is called viscoelastic damping term, where the kernel of the term of memory is the
function h. See [9,14-16,19,20,22,23,30].

In [3], Balakrishnan and Taylor proposed a new model of damping and called it the Balakrishnan-
Taylor damping, as it relates to the span problem and the plate equation. For more depth, there are
some papers that focused on the study of this damping [2,3,7,11,15,21,23,29, 31].

The effect of the delay often appears in many applications and practical problems and turns a lot
of systems into different problems worth studying. Recently, the stability and the asymptotic behavior
of evolution systems with time delay has been studed by many authors (see [10,14-19, 22,23, 32]).

The great importance of the logarithmic nonlinearity in physics is that they appear in several
issues and theories, including symmetry, cosmology, quantum mechanics, as well as nuclear physics.
It is also used in many applications such as optical, nuclear and even subterranean physics. Many
researchers also touched on this type of problems in different issues, where the global existence of
solutions, stability and blow-up of solutions were studied. For more information, the reader is referred
to [5,6,8,11,13,15,24,25,27].

Based on all of the above, we believe that the combination of these terms of damping (memory
term, Balakrishnan—Taylor damping, logarithmic nonlinearity, dispersion and the delay terms) in one
particular problem with the addition of the delay term (Ba|us(t — 7)™ 2us(t — 7)) constitutes a new
problem worthy of study and research, different from the above that we will try to shed light on.

Our paper is divided into several sections. In Section 2, we lay down the hypotheses, concepts and
lemmas we need. In Section 3, we state and prove the blow-up of solutions.

2 Preliminaries

To study our problem, in this section, we will need some materials.
First, we introduce the following hypotheses for 83 and h:

(A1) h:R, — R, are non-increasing C! functions satisfying

o0

ht) >0, C— /h(g) do=1>0. (2.1)

(A2)
|B2] < B (2.2)
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Let us introduce

t
=/0/ht—g|¢ ¥(o)[? do da.

As in [32], taking the new variables
y(x,p,t) = u(z,t — 7p), (x,p,t) € Qx(0,1) x Ry,

which satisfy
Tyt(x,pvt)—’_yp(xapat) :07 (2 3)
y(x,0,t) = us(z, t), '

problem (1.1) can be written as

|ut [Puge — M (¢) Au(t) + / h(t — 0)Au(p) do — Auy(t)
0

B e ()| P () + Baly(a, 1, 1) Py (a, 1,t) = ulu|"* In ful",
(@, p,t) + yp(z, p,t) =0,
w(z,0) = ug(z), wu(z,0)=wui(x) in Q,
y(z,p,0) = fo(z,—7p) in 2 x (0,1),
u(z,t) =0 in 9Q x (0, c0),

where (z,p,t) € 2 x (0,1) x (0,00). Now, we give the energy functional.

Lemma 2.1. The energy functional E, defined by

Bt) = s Il 25+ 5 (6o [ (@) de) IVulol + 5 IVl + § 191

0

p+2

l\.')\»—l

(ho Vu)(t) + %nu( 2 - / o fuf* d + £ / (e p. DI dp, (2.5)

satisfies

E'(t) < ~Co(lu(®) 13 + ly(, 1, D17

b5 (0 ovu)(n) — L hOIVul - 7 (4 {Ivuml3}) <o, (26)

where £ > 0 satisfies

T(m—1)|B2] <& < 7(mpPy — |Ba]).

Proof. Taking the inner product of (2.4); with u; and integrating over 2, we find
(|ut|putt (t)a Ut (t))L'z(Q) - (M(t)Au(t)v Ut (t))L2(Q)
t
- (Autt(t)?ut(t))L2(Q) + (/h(t_ Q)AU(Q) dQ? ut(t)> +Bl(|ut| utaut)Lz(Q)
L2(Q)
0

- (ku\mH ln\u|,ut(t))L2(Q) —0. (27)

+ B2 (ly(z, L™yl 1,1), ut(t)) L2(9)
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A direct calculation gives

(00,00 10y = 5 2 (R OIEED), (25)
_(Autt(t)vut(t))Lz(Q) = % % (||Vut(t)||§) (2 9)

By integration by parts, we find
- (M(t) Au(t)v ut(t))L2(Q)

(6o + GIIVullg + o (Tu(t), Tur(t)) p2o) Au(d), ut(t))Lz(Q)

(Co + G| Vu|2 4o (Vu(t), Vut(t))Lg(Q)) /Vu(t) -V (t) dz
Q

(Co + G Vull3 + o (Vu(t), Vg (t ))Lz(Q T {/|Vu )2 dm}

= L o+ S Ivul) IVu0I3) + S 2 (Ivucn 3 210

So, we have

t
(/ht—QAu dgut()>
) 12(@)

h(t — Q t)) 2oy do=— [ h(t — o) Vu(z, 0)Vu(z,t)dx| do
and 1d 2y 1d ,
~Vu(z,) - Vula,t) = 5 = {|Vu 2, 0) — Vu(z, t)(1)] } -5 3 {IVula. 0P},
Then

t

— [ e = o) (Tule): Vue0) o oy o

0
t

:—/h(t—g)/[%%{|Vu(x7g)—Vu($7t)|2H dx ds

0 Q
_/h(t—g)/[Q dt{|Vu:c 1) }} dx do
0 Q
—;/th( —g)[:ft{/|Vu(x,t)—Vu(w7g)‘2dx}] do
0 Q

t

-3 [ =05 (Ve D) dede. 21)

0
We use (2.1) to obtain

t

%/h(t —0) [jt {Q/]Vu(a:,t) — Vu(z, g)}gd:EH de

0
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ol -l
- ;/th’(t— @{/Wu(x,t) — Vu(z, Q)}de] d
0 Q
:%di(hovu)( t) - ;(h'oVu)(t) (2.12)

and

(e~ o) 5 {IVu)|3}] do do
-5 ( / p(e = 0)do) (4 {I9uC13}) do
!
-5 ( / 0)de) (5 (IVaoIR}) do
!
——5+{( / @) de) U} + 5 MOV, 2.13)

By substituting (2.12) and (2.13) into (2.11), we get

t
(/ht—gAu ) do, u(t ))
) L2(@)

t

{30evu0 -5 ( [r0de) v} - 5 0o vuw + FHOIvUOIE. (214)

0

|
N =
o\“

_4d
Todt

Thus we have

_ 1
(bl 0 0) gy = g7 {5 IO = 2 [ ol . (215)
Q

Now, multiplying equation (2.4)2 by —y¢&, integrating over 2 x (0,1), and using (2.3)2, we get

1 1
d g m o g m—1
%E//Iy(l’,p,t)l dpdx = (T>//|y| Yp dpdz
Q0 Q 0

1
& /i m fi/ m_ m
= | [ g ps 0" dpde = o [ (o, 0.0/ =y, 1)) d
0 Q
¢

=S ([woras— [romas) = £ (- Iy 100). @10
Q

Q

and by Young’s inequality, we have

oo (It 1012w 10,00) < Pl P gy ppm s @an)

L2(©)
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Substituting (2.8)—(2.10) and (2.14)—(2.17) into (2.7), we find (2.5) and (2.6), where

Cozmin{ﬁl_g_wag_(m_w}' .

mT m  mT m
The local existence result for problem (2.4) is stated without providing the proof. Indeed, using

the Faedo—Galerkin method and a combination of the works [22,29,33], one can prove the theorem
below.

Theorem 2.1. Suppose that (2.1), (2.2) are satisfied. Then for any ug,u; € HE(Q) N L*(Q) and
fo € L3(,(0,1)), there exists a weak solution u of problem (2.4) such that

ue C(10,T[, Hy(2) ) nC* (10, T[, L*(%)),
u, € C(]0,T[,Hy(Q)) N L*(]0,T[, L*(%,(0,1))).

Lemma 2.2 ([27]). There exists a positive constant c(£2) > 0 such that

</|u|71n|u|kdx>7 < c(/u|”’ln|ukd:c+ ||vu||§>
Q Q

for any 2 < s <=, provided that [ |u|YIn|u|*dz > 0.
Q

Corollary 2.1 ([27]). There exists a positive constant c(2) > 0 such that

2
~ 4
Jll2 Sc[(/mmnwdx) n ||w|;]
Q

provided that [ |u| In|u|*dz > 0.
Q
Lemma 2.3 ([27]). There exists a positive constant c(2) > 0 such that
el < e(lully + 1 7ul)3)

for anyu € L7(Q2) and 2 < s < 7.

3 Blow-up result

In this section, we prove the blow-up result of the solution of problem (2.4).
First, we define the functional

p+2

1
== — lullpiz

H(t) = ~B(t) ==

-5 (0= [ n@de) Ivuol - 31Vl - S Ivuto)s
0

1
1 k 1 ¢
_ = \v4 o v - v k S m
92 (h © u)(t) v ”u(t)H’Y 7y Q/ |U" In |u| dx m O/ Hy($7p7 t)”mdp (31)

Theorem 3.1. Assume (2.1), (2.2) hold and suppose that E(0) < 0. Then the solution of problem
(2.4) blow-up in finite time.
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Proof. From (2.6) we have
E(t) < E(0) <0.

Therefore,
H (1) = —E'(t) 2 Co Ilu(®) 17 + Iy, 1,0)l),

hence )
H'(t) > Collue(t)|I;m = 0,

H'(t) > Colly(=, 1,1)|; = 0.
By (3.1), we have
0 < H(0) /|u|W In |u|* dz.

We set
K(t) =H" + Z% /u|ut|put dx + E/VuVut dx + % Vull3,
Q

where € > 0 will be assigned later and
2(y—1 -2
20021 a7y
Y 2y
By multiplying (2.4); by u and with a derivative of (3.4), we get

K'(t) = (1 — a)H *H'(t) +

9
el 3 + el Vel += [ ol ol do

—5(0||Vu||§ —5C1HVUH§—I—E/Vu/h(t—g)Vu(g) dodx
Q 0

J1

_551/“-“t-|ut|m_2 d$—552/u~y(x,1,t) Jy(a, 1,0)|" " da .
£ Q

J2 J3
We have

50/11 (t— o) dQ/Vu- (Vu(o) — Vu(t) dxdg+so/h(g) dol|Vul2

t
Z(/h dQ)VUb 5 (hoVu),
0

and for 41, d2 > 0,

> —edy ||ul3 —
Jo > —ebil|ul3 45 [[wllm
Ty > —eballull} — & = y(, 1, 8)||1.
404
From (3.6) we find
_ £ 2
K'(t) > (1 —a)H “H (t) + ST Juel|P55 + el Vuel3

t
1
+€/|u|’*1n|u|kdaj—EC1||Vu|%—6[(C0 - 5/h(g) dgﬂnvung
Q 0

- = (h o Vu) —&(d1 + 02)||ull3 — e —

2 45

[l —6* ly(z, 1,8)177-

(3.6)

(3.7)
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At this point, setting d1, §; so that for large x, which will be be specified later,
1 KH™(t) ) KH™(t)

4Cy0, 2 7 4Cydy 2
due to (3.2) from (3.7) we get

S
K'(t) > [(1—a) —en]H“H'(t) + luellp 45 + el Va3 — 5 (hoVu) —ei[[Vullz

€
p+1

t
1 2 c3H (1) 2 - k
(o5 [ o) de)Ivull ~ (5 )l ¢ [ taful* .
0 Q

where c3 = ¢1 + ¢s.
Now, for 0 < a < 1, from (3.1),

1 _
o [t de = ca [ fup infult do + 82 i+ 0 - @)
Q Q

t

1—a l—a 1-a

+J(2)(<0— [ re d@)w|§+ﬂ(2>|wt||§+s%) |Vl
0

MY (0 V) + k(1 - a)uly + 228 5/||yx oI

Substituting in (3.8), we get

K'(t)>{(1—a)—es}H *H'(t) + sa/ [ul" In u|® dz

W) | Ly e f 1000
14+ ——=7||V
ve{ Ty o el 4 {1 T Il

+a{7“2‘”) (co - /th(m dg) - (co - ;/th@) dg)}llwllé
0 0

rea{ D s+ {0 2D - o v —e(cBH O

Fek(1— a)ul} +e3(1L — () + T / Iy, p,8)I5: do.

According to (3.3), Corollary 2.1 and Young’s inequality, we get

H (1) Jul3 < ( / |u|71nu|’“d:c) ull
a+% « 4
< c[</|u|71n|u|kdac> + </|u|71n|u|kdx> ||Vu||2”}
Q Q
<Q

(av+2)
2

c[(/|u|7 1n|u|kdm> +
Q
ay

2<ay+2<vy and 2<
5 —

k e 2
|u["In |ul" dz + [IVull

By (3.5), we have

<.

(3.9)
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Hence Lemma 2.2 gives

He (1) ]2 < ( JRn ||Vu||%).
Q

Combining (3.9) and (3.10), we get

K'(t)>{(1—a)—es}H *H'(t) + E(a - 23;/{) / lul" In |ul* da
o)

(1 —a) 1 } p+2 { V(I*CL)} 2
14+ ———=IV
re{ T o el + {1 B vl

+e{ 5 (o jh(g) &) - (G- ;/th@ ) = s bl
0 0

+s§1{w — 1}|Vul4 +E{M - %}(hoVu)

+eb(1 = a)ful} +er(1 - i) + T g )
0

At this stage, we take a > 0 small enough so that

7(1 —a)

A= 5

—1>0,

and assume

3 7(1*G)_1 2)\

2 _ 1
/h(g)d@< a0=a) 1 2\ +1’°
) 2 2

which gives

p= {2 )~(fraa) (52} o

then we choose k so large that

Finally, we fix k, a and appoint € small enough so that
X=([1—-a)—ex>0

and

K(0) > 0.

Thus, for some 1 > 0, estimate (3.9) becomes

K%UZH{H@)HWNﬁ3+HVW§+IVM@+(hOVM+HUM

m
m

(3.10)

dp.

1
HIvalls+ [0l do+ [ |u71n|u|’“dx}. (3.11)
0 Q
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Next, using Holder’s and Young’s inequalities, we have

1
T—a _0 K
[ udapucds] < QT ) (312)
Q
where % + % =1.
We take p = (p+2)(1 — «) to get
0 p+2
= S ’y.
l-a (1-a)p+2)-1

Further, for s = % , estimate (3.12) gives

‘ /u|ut|put dx
Q

1
11—«

2
< cflully + 73]

Then Lemma 2.3 yields

1
1—a

2
< clllully + el 3 + 7wl

’ /u|ut|put dx
Q

Similarly, we have
1
11—«

_0_ K
< c[IVully + Va3,

‘/VuVut dzr
Q

where % + % =1.
We take 6 = 4(1 — a) to get

B 1 <2,
l-a 41-a) -1~
1
e
‘/VuVut dx < c{IVull3 + [Vuel3}
o)

Hence

1
I—a

o —a € o
K= (t) = (Hl + P ulug[Pug do + E/VuVut de +¢ 1 ||Vu||§>
Q Q

h + ‘ /VuVut dx
Q

1
T—

a li
i ww)

< C(H(t) + ’ /u\ut\put dx
Q
< (B + lully + luel 533 + IVl + [Vullf + 1V 3)
< c(Hos) -l + Nl 243+ 19ul3 + [ Vallf + Ve 3
1
o0+ [ e O do+ [ 1 taful* o). (3.13)
0 Q
From (3.11) and (3.13), we have

K'(t) > TKT== (1), (3.14)
where I > 0, this depends only on 1 and c.
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By integration of (3.14), we obtain

1

K15 (0) — T 25t

KT (t) >

Hence K(t) blows-up in time

1—
T<T =—_-_2% 0
TakT1-2(0)
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