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GENERAL DECAY OF A SINGULAR VISCOELASTIC
WAVE EQUATION WITH DISTRIBUTED DELAY
AND INTEGRAL CONDITION



Abstract. In this paper, we consider a singular viscoelastic wave equation with a distributed delay and
an integral condition. By introducing a suitable Lyapunov functional, under appropriate assumptions
on the relaxation function and the delay weight, we establish a general decay result in which the
exponential and polynomial decay are only special cases.
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1 Introduction
In the mathematical modeling of phenomena with partial differential equations (PDEs) and a set of
boundary conditions, sometimes it is not possible to directly measure the boundary data such as the
moment, mean, total energy or total mass, so one resorts to the integral condition

l∫
0

f(x)u(x, t) dx = g(t).

This kind of condition is called nonlocal, however, it has been adopted by many researchers, especially
with regard to stability problems of nonlocal single systems.

The motivation for our work is based on some previous findings published in the following research
papers.

In [13], Mesloub studied the solvability of the viscoelastic wave equation with frictional damping

utt −
1

x
(xux)x +

t∫
0

h(t− s)
1

x
(xux(s))x ds+ aut = f(x, t, u, ux), (x, t) ∈ (0, l)× (0,∞),

with the combination of Dirichlet and integral boundary conditions, and for some properties of the
relaxation function h. A similar problem, but with localized frictional damping, is considered in [3],
where the authors proved the existence and general decay of a global solution. While in [18], Piskin
et al. investigated the blow-up of the nonlocal singular viscoelastic system with strong damping.In
the absence of the frictional dissipation, the blow-up of solutions has been proven in [19].

Moreover, in [9], the authors only care about the linear nonlocal singular viscoelastic wave equation

utt −
1

x
(xux)x +

t∫
0

h(t− s)
1

x
(xux(s))x ds = 0, (x, t) ∈ (0, l)× (0,∞),

under certain conditions on the function h, and prove the existence of strong solutions. But the result
of general stability has been demonstrated in [2]. For a more viscoelastic problem, see [4, 5, 7, 15–17].

In this paper, we investigate a singular viscoelastic problem with internal damping and distributed
delay:

utt(x, t)−
1

x
(xux(x, t))x +

t∫
0

h(t− s)
1

x
(xux(x, s))x ds

+ aut(x, t) +

τ2∫
τ1

b(s)ut(x, t− s) ds = 0, (x, t) ∈ (0, l)× (0,∞),

u(l, t) = 0,

l∫
0

xu(x, t) dx = 0, t ∈ (0,∞),

u(x, 0) = u1(x), ut(x, 0) = u2(x), ut(x,−t) = u3(x, t), x ∈ (0, l), t ∈ ]0, τ2[ ,

(1.1)

where 0 < l < ∞, h is a positive decreasing function and u1, u2, u3 are given data. The term
τ2∫

τ1

b(s)ut(x, t− s) ds

represents the distributed delay. Its appearance in the equation causes some disturbances.
Inspired by the previous studies, more precisely by [2], the aim of this paper is to study a general

decay of solution of problem (1.1). To our knowledge, there are no works related to this issue yet.
The rest is organized as follows. In Section 2, we give some preliminaries, hypotheses and theorem

on the existence and uniqueness to justify the calculations in the next section. In Section 3, we
establish our general decay result.
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2 Preliminary results
Let L2

ρ(Q) (Q = (0, l)× (0, T )) be the Hilbert space equipped with inner product

(u, v)L2
ρ(Q) =

∫
Q

xuv dx dt

and associated norms

∥u∥L2
ρ(Q) =

∫
Q

x|u|2 dx dt.

Also, denote by H1,0
ρ (Q) and H1,1

ρ (Q) the Hilbert spaces with inner products

(u, v)H1,0
ρ (Q) = (u, v)L2

ρ(Q) + (ux, vx)L2
ρ(Q)

and
(u, v)H1,1

ρ (Q) = (u, v)L2
ρ(Q) + (ux, vx)L2

ρ(Q) + (ut, vt)L2
ρ(Q),

respectively.
As in [8], for the function h, we assume:

(H1) Let h ∈ C1(R+,R+) be a decreasing function satisfying

h(0) > 0,

∞∫
0

h(s) ds = h < 1.

(H2) There exists a nonincreasing differentiable function ζ : R+ → R+ satisfying

h′(t) ≤ −ζ(t)h(t), t ≥ 0.

For the delay weight b, following [1, 6], we assume:

(H3) Let b ∈ L∞(τ1, τ2) and b ≥ 0 almost everywhere such that

τ1∫
τ1

b(s) ds < a,

which implies that there exists a positive constant c0 such that

b = a−
τ1∫

τ1

(
b(s) +

c0
2

)
ds ≥ 0. (2.1)

Remark. Inequality (2.1) is necessary to establish the exponential stability results.

Problem (1.1) can be written in the operational form

Lu = F,
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where Lu = (Lρu, L1u, L2u, L3u) and F = (0, u1, u2, u3) with

Lρu = utt(x, t)−
1

x
(xux(x, t))x +

t∫
0

h(t− s)
1

x
(xux(x, s))x ds

+ aut(x, t) +

τ2∫
τ1

b(s)ut(x, t− s) ds, (x, t) ∈ (0, l)× (0,∞),

u(l, t) = 0,

l∫
0

xu(x, t) dx = 0, t ∈ (0,∞),

L1u = u(x, 0) = u1(x), L2u = ut(x, 0) = u2(x), x ∈ (0, l),

L3u = ut(x,−t) = u3(x), x ∈ (0, l), t ∈ ]0, τ2[ ,

D(L) =
{
u ∈ L2

ρ(Q), ut, utt, ux, uxx, utx ∈ L2
ρ(Q), u(l, t) = 0,

l∫
0

xu(x, t) dx = 0

}
.

Now, we state without proof the theorem of the existence and uniqueness, which can be proven by
performing the same steps as in [9–14].

Theorem 2.1. Let u1 ∈ H1,0
ρ (0, l), u2 ∈ L2

ρ(0, l) and u3 ∈ L2
ρ(Q). Then problem (1.1) has a unique

solution
u ∈ C(0, T ;H1,0

ρ (0, l)) ∩ C1(0, T ;L2
ρ(0, l)) for some T > 0.

We define the energy of problem (1.1) by

E(t) =
1

2

l∫
0

xu2
t dx+

1

2

(
1−

t∫
0

h(s) ds

) l∫
0

xu2
x dx

+
1

2
(h ◦ ux) +

1

2

l∫
0

τ2∫
τ1

s[b(s) + c0]

1∫
0

xu2
t (t− ps) dp ds dx, (2.2)

where

(h ◦ ux)(t) =

l∫
0

t∫
0

xh(t− s)|ux(x, t)− ux(x, s)|2 dx.

Lemma 2.1. Let u be the solution of system (1.1). Then for all t ≥ 0, we have

E′(t) =
1

2
(h′ ◦ ux)(t)−

h(t)

2

l∫
0

xu2
x dx− b

l∫
0

xu2
t dx− c0

2

l∫
0

τ2∫
τ1

xu2
t (t− s) ds dx,

Proof. Multiplying the first equation in (1.1) by xut, integrating by parts over (0, l) and using the
same technique as in [4] for the memory term, we have

E′(t) =− h(t)

2

l∫
0

xu2
x dx+

1

2
(h′ ◦ ux)−

l∫
0

xut

τ2∫
τ1

b(s)u2
t (t− s) ds dx

− a

l∫
0

xu2
t dx+

l∫
0

τ2∫
τ1

s[b(s) + c0]

1∫
0

xuttut(t− ps) dp ds dx. (2.3)



6 Billal Lekdim, Mohammed Aili, Ammar Khemmoudj

It is clear that for all t ≥ 0,

utt(t− ps) = −1

s
utp(t− ps), (p, s) ∈ (0, 1)× (τ1, τ2). (2.4)

Therefore,
1∫

0

ut(t− ps)utt(t− ps) dp = − 1

2s

(
u2
t (t− s)− u2

t (t)
)
.

Using Cauchy–Schwarz and Young’s inequalities, we get

l∫
0

xut

τ1∫
τ1

b(s)ut(t− s) ds dx ≤ 1

2

( τ1∫
τ1

b(s) ds

) l∫
0

xu2
t dx+

1

2

l∫
0

τ1∫
τ1

b(s)xu2
t (t− s) ds dx.

Then relationship (2.3) becomes

E′(t) =
1

2
(h′ ◦ ux)(t)−

h(t)

2

l∫
0

xu2
x dx− b

l∫
0

xu2
t dx− c0

2

l∫
0

τ2∫
τ1

xu2
t (t− s) ds dx,

where

b =

(
a−

( τ1∫
τ1

(
b(s) +

c0
2

)
ds

))
.

Lemma 2.2 ([15], (Poincare-type inequality)). Let u be a function on H1(0, l) and u(l) = 0. Then
the following inequality holds:

l∫
0

xu2 dx ≤ 2l2
l∫

0

xu2
x dx, ∀ t ≥ 0.

3 Asymptotic Stability
In order to prove the decay of energy, we define the Lyapunov candidate function by

L(t) = E(t) + β1V1(t) + β2V2(t) + β3V3(t),

where β1, β2 and β3 are positive constants, E(t) is the energy given by (2.2) and

V1(t) =

l∫
0

xutu dx,

V2(t) = −
l∫

0

xut

t∫
0

h(t− s)(u(t)− u(s)) ds dx, (3.1)

V3(t) =

L∫
0

τ2∫
τ1

1∫
0

se−2ps[b(s) + c0]xu
2
t (t− ps) dp ds dx.

Proposition. There exist α1 and α2 such that

α1E(t) ≤ L(t) ≤ α2E(t), ∀ t ≥ 0. (3.2)

Proof. Using the Young and Poincaré inequalities, we obtain (3.2).
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Lemma 3.1. The derivative of V1(t) yields

V ′
1(t) ≤

(
1 +

a2

δ1

) l∫
0

xu2
t dx−

(
1− δ1l

2 − h+
δh

4

) l∫
0

xu2
x dx

+
1

δ
(h ◦ ux) +

1

δ1

( τ2∫
τ1

b(s) ds

) l∫
0

τ2∫
τ1

b(s)xu2
t (t− s) ds dx, (3.3)

where δ and δ1 are positive constants.

Proof. The derivative of V1(t), the system (1.1) and the integration by parts yield

V ′
1(t) =

l∫
0

xu2
t dx−

l∫
0

xu2
x dx+

l∫
0

t∫
0

h(t− s)xux(s)ux(t) ds dx

− a

l∫
0

xuut dx−
l∫

0

τ2∫
τ1

b(s)xuut(t− s) ds dx. (3.4)

By the Young and Poincaré-type inequalities, we estimate

l∫
0

t∫
0

h(t− s)xux(s)ux(t) ds dx ≤ 1

δ
(h ◦ ux) +

(
h+

δh

4

) l∫
0

xu2
x dx, (3.5)

a

l∫
0

xuut dx ≤ a2

δ1

l∫
0

xu2
t dx+

δ1l
2

2

l∫
0

xu2
x dx (3.6)

and
l∫

0

τ2∫
τ1

b(s)xuut(t− s) ds dx ≤ δ1l
2

2

l∫
0

xu2
x dx+

1

δ1

( τ2∫
τ1

b(s) ds

) l∫
0

τ1∫
τ1

b(s)xu2
t (t− s) ds dx. (3.7)

Combining (3.4)–(3.7), we obtain (3.3).

Lemma 3.2. The time derivative of V2(t) yields

V ′
2(t) =−

[( t∫
0

h(s) ds

)
− δ3ha

2

2

] l∫
0

xu2
t dx− (h′ ◦ ux) +

δ2h

2

l∫
0

xu2
x

+
[
h+

h+ 1

δ2
+

(h+ 1)l2

δ3

]
(h ◦ ux) +

δ3
2

( τ2∫
τ1

b(s) ds

) l∫
0

τ2∫
τ1

b(s)xu2
t (t− s) ds dx, (3.8)

where δ2 and δ3 are positive constants.

Proof. Differentiation of (3.1), system (1.1) and integration by parts give

V ′
2(t) =−

t∫
0

h(s) ds

l∫
0

xu2
t dx− (h′ ◦ ux)−

l∫
0

xux

t∫
0

h(t− s)(ux(t)− ux(s)) ds dx

+

l∫
0

t∫
0

h(t− s)xux(s) ds

t∫
0

h(t− s)(ux(t)− ux(s)) ds dx
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+ a

l∫
0

xut

t∫
0

h(t− s)(u(t)− u(s)) ds dx

+

l∫
0

τ2∫
τ1

b(s)xut(t− s) ds

t∫
0

h(t− s)(u(t)− u(s)) ds dx. (3.9)

Using the Young and Poincare-type inequalities, we obtain
l∫

0

xux

t∫
0

h(t− s)(ux(t)− ux(s)) ds dx ≤ 1

δ2
(h ◦ ux) +

δ2h

4

l∫
0

xu2
x dx, (3.10)

l∫
0

t∫
0

h(t− s)xux(s) ds

t∫
0

h(t− s)(ux(t)− ux(s)) ds dx ≤
(
h+

h

δ2

)
(h ◦ ux) +

δ2h

4

l∫
0

xu2
x dx, (3.11)

a

l∫
0

xut

t∫
0

h(t− s)x(u(t)− u(s)) ds dx ≤ l2

δ3
(h ◦ ux) +

δ3ha
2

2

l∫
0

xu2
t dx (3.12)

and
l∫

0

τ2∫
τ1

b(s)xut(t− s) ds

t∫
0

h(t− s)(u(t)− u(s)) ds dx

≤ hl2

δ3
(h ◦ ux) +

δ3
2

( τ2∫
τ1

b(s) ds

) l∫
0

τ2∫
τ1

b(s)xu2
t (t− s) ds dx. (3.13)

Substituting (3.10)–(3.13) into (3.9), we get (3.8).

Lemma 3.3. The time derivative of V3(t) yields

V ′
3(t) =− e−2τ2

L∫
0

τ2∫
τ1

[b(s) + c0]xu
2
t (t− s) ds dx+

τ2∫
τ1

[b(s) + c0] ds

L∫
0

xu2
t dx

− 2

L∫
0

τ2∫
τ1

1∫
0

se−2ps[b(s) + c0]xu
2
t (t− ps) dp ds dx. (3.14)

Proof. By deriving V3(t), using identity (2.4) and integrating by parts, we have

V ′
3(t) = 2

L∫
0

τ2∫
τ1

1∫
0

se−2ps[b(s) + c0]xututt(t− ps) dp ds dx

= −
L∫

0

x

τ2∫
τ1

[b(s) + c0]

1∫
0

e−2ps(u2
t )p(t− ps) dp ds dx

= −
L∫

0

τ2∫
τ1

e−2s[b(s) + c0]xu
2
t (t− s) ds dx+

τ2∫
τ1

[b(s) + c0] ds

L∫
0

xu2
t dx

− 2

L∫
0

τ2∫
τ1

1∫
0

se−2ps[b(s) + c0]xu
2
t (t− ps) dp ds dx.

Using the decay property of e−2s, we obtain (3.14).
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Theorem 3.1. Assume that (H1) and (H2) hold. Then there exist two positive constants α and C
such that

E(t) ≤ Ce
−α

t∫
0

ζ(s) ds
, t ≥ 0. (3.15)

Proof. Taking into account Lemmas 2.1, 3.1, 3.2 and 3.3, the derivative of L(t) for all t ≥ t0 > 0, we
obtain

L′(t) =−
[
b+ h0β2 −

δ3ha
2

2
β2 −

(
1 +

a2

δ1

)
β1 −

τ2∫
τ1

[b(s) + c0] dsβ3

] l∫
0

xu2
t dx

− 1 + 2e−2τ2β3

2
c0

l∫
0

τ2∫
τ1

xu2
t (t− s) ds dx

−
[
e−2τ2β3 −

(β1

δ1
+

δ3β2

2

)( τ2∫
τ1

b(s) ds

)] τ2∫
τ1

b(s)xu2
t (t− s) ds

−
[(

1− δ1l
2 − h+

δh

4

)
β1 −

δ2h

2
β2

] l∫
0

xu2
x

− 2β3

L∫
0

τ2∫
τ1

1∫
0

se−2ps[b(s) + c0]xu
2
t (t− ps) dp ds dx

+
[β1

δ
+
(
h+

h+ 1

δ2
+

(h+ 1)l2

δ3

)
β2

]
(h ◦ ux) +

(1
2
− β2

)
(h′ ◦ ux), (3.16)

where

h0 =

t0∫
0

h(s) ds.

Now, it’s time to set the parameters βi and δi, i = 1, 2, 3, so that all coefficients in (3.16) are strictly
negative. Then there exist two positive constants c1 and c2 such that

L′(t) ≤ −c1E(t) +
c2
2
(h ◦ wxx), ∀ t ≥ t0. (3.17)

Multiplying (3.17) by ζ(t) and taking into account assumption (H2) and Lemma 2.1, we have

ζ(t)L′(t) ≤ −c1ζ(t)E(t) +
c2
2
ζ(t)(h ◦ wxx) ≤ −c1ζ(t)E(t)− c2E

′(t), ∀t ≥ t0,

which implies that for all t ≥ t0,{
ζ(t)L(t) + c2E(t)

}′ ≤ −c1ζ(t)E(t) + ζ ′(t)L(t).

Having L(t) = ζ(t)L(t) + c2E(t), we find that

d1E(t) ≤ L(t) ≤ d1E(t), d1, d2 > 0,

and exploiting the nonincreasing property of ζ(t) and (3.2), we get

L′(t) ≤ −αL(t), ∀ t ≥ t0, (3.18)

where α is a positive constant.
Integrating the differential inequality (3.18) over (t0, t) and considering the fact that L(t) ∼ E(t),

we get

E(t) ≤ L(t0)
d1

e
−α

t∫
t0

ζ(s) ds

, ∀ t ≥ t0.
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It remains to estimate E(t) on [0, t]. To do this, we take the decay property of the functions E(t),
L(t), ζ(t) and e−t, and find that

E(t) ≤


L(t0)
d1

e−αt0e
−α

t∫
0

ζ(s) ds
, ∀ t ≥ t0,

E(0)e−αt0e
−α

t∫
0

ζ(s) ds
, ∀ t < t0.

Consequently, (3.15) is established, where

C = max
{L(t0)

d1
, E(0)

}
e−αt0

}
.

Example. Note that there is always a large class of relaxation functions satisfying (H1) and (H2),
our result (3.15) gives more general decay rate results. For example:

Exponential decay. Let
h(t) = re−(1+t)θ , 0 < θ ≤ 1,

where r > 0 to be chosen properly, then

ζ(t) = θ(1 + t)θ−1.

From (3.15), we get
E(t) ≤ C1e

−d(1+t)θ ,

where C1 and d are positives constants.

Polynomial decay. Let
h(t) =

r

(1 + t)η
, η > 1,

then
ζ(t) =

η

1 + t
.

From (3.15), we get
E(t) ≤ C2

(1 + t)ηκ
,

where C2 and κ are positives constants.

Logarithmic decay. Let
h(t) =

r

[ln(1 + t)]η
, η > 1,

then
ζ(t) =

η

(1 + t) ln(1 + t)
.

From (3.15), we get
E(t) ≤ C3

ln(1 + t)ηκ
,

where C3 and κ are positives constants.

For more examples of other types of relaxation functions, consult [16,17].
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