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Abstract. The aim of this work is to establish some new integral inequalities for 0 < p < 1 under
weaker condition than monotonicity via Hardy—Steklov-type operators.
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1 Introduction

It is well-known that for Lebesgue spaces L, with 0 < p < 1, the Hardy inequality is not satisfied for
arbitrary non-negative measurable functions, but is satisfied for monotone functions (see [2]). In 2007,
the Hardy type inequality was obtained under a still weaker condition than monotonicity (see [3]).
Namely, the following statements were proved.

Lemma 1.1. Let 0 <p < 1, ¢; > 0 and f be a non-negative measurable function on (0,00) such that

for all x > 0,
< C;(/f”(y)y”‘ldy) " (1.1)
0
Then
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where
o = Czlﬂ(l—p)'

The classical Hardy operators are defined as follows:
(Hf)(a / Fl)dy. (Haf)(x / e

Theorem 1.1 ([3]). Let 0<p <1, a<1-— % and ¢1 > 0. If f is non-negative measurable function
on (0,00) and satisfies (1.1) for all x > 0, then

Jae D@, 00y < eall2 F@) 100 (13)
where
1-p 1 _% 1
c3=0c] (1—osz) p .
The constant cs is sharp (the best possible).

Remark 1.1. If f is a non-increasing function on (0,00), then (1.1) is satisfied with ¢; = p%. For
such functions inequality (1.3) takes the form

o D@y t000 < (17(1 == )l S, 00 (1.4)

The factor (p(1 — a — %))7% is sharp. Inequality (1.4) was proved earlier (for more details, see [2]).

The well-known Hardy—Steklov operator is defined as

b(z)

@@ =3 [ fwd
a(x)

with the boundary functions a(x), b(z) satisfying the following conditions:
(1) a(x), b(x) are differentiable and strictly increasing functions on [0, co],

(2) 0 <a(z) <blx) <oofor 0 <z < 00, al0)=>0(0)=0and a(co) = b(oo) = o0,



4 Abdelaziz Gherdaoui, Abdelkader Senouci, Bouharket Benaissa

where f is a non-negative Lebesgue measurable function on (0, c0).
The objective of this work is to extend the results of [3] to Hardy—Steklov type operators T, To
and T3 defined as follows:
b(x)
1

@ipe = [ fw)ay
0
with boundary function b(x) satisfying the following conditions:

(1) b(x) is differentiable and strictly increasing function on (0, 0o},

(2) 0 <b(z) < oo for 0 <z < oo and b(oo) = o0;
The) = [ 1w
(z)

with boundary function a(x) satisfying the following conditions:
(1) a(x) is differentiable and strictly increasing function on [0, co),
(2) 0 <a(z) < oo for 0 <z < oo and a(0) =0;
b(z)
Taha) = [ f)dy,
a(z)
where
(1) a(x), b(x) are differentiable and strictly increasing functions on (0, 00),

(2) 0 <a(z) <b(z) < oo for 0 <z < oco.

2 Main results

Throughout the paper, we assume that the function f is a non-negative Lebesgue measurable function
on (0, 00).

Theorem 2.1. Let0<p<1l, a<l-— % and % + 5 = 1. If f is a non-negative measurable function
on (0,00) and satisfies (1.1) for all x > 0, then

Hxa(Tlf)(x)HL,,(o,oo) < 64‘

1
Y

27 (071 (@) f(@)

where .
cy = c%fp((l —a)p—1) 7.

Proof. Choose t = b(x), hence & = b=1(t), where b=1(t) is the reciprocal function of b(t). Applying

(1.2) and Fubini’s Theorem, we get
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Since av < 1 — % and b~1(00) = oo, we have

o

/(bfl(t))/(b—l(t))(afl)p dt = m [bfl(y)](oﬁl)zprl7
consequently,
“ C]f(l_p) ani p p—1lp—1 a—1)p+1 ,
@O0 = (2557) [ [ 70w 0 )

3=
=

= "(1-ap-1)"

|

We get the desired inequality. O

(f(y)yl‘;(b1(y))a_1+;)pdy}

Remark 2.1. If f is a non-increasing function on (0, 00), we obtain the following inequality:

|2 (T F) @), o < (#)5 ﬁ(bn)wﬁ(x)f(:c)’

Lp(0,00)
Choosing b(x) = Sz in Theorem 2.1, where 8 > 0, we have the following
Corollary 1. Let f satisfy the assumptions of Theorem 2.1 and

Bz
$i0@) = [ f)dy for w0

0
then )
oS3 @ g 0,y < (5)" 7 ealle™ @000
Remark 2.2. Taking g =1 in the above corollary, we get Theorem 1.1.
For the next results we need the following

Lemma 2.1. Let 0 < p < 1. Suppose that a non-negative function f satisfies the condition: there is
a positive constant cs such that for all x > 0,

o0 1

1@< 2( [ rowa) (2.1)

x

(/Oof(y) dy)p < ¢ 71‘1”(@/)1/7"1 dy, (2.2)

then

where
ce = 6157(1717).

Proof. Note that .
fa) = (7 (@)a?) " 7 ()a? .
Using (2.1), we have

al fP(x) < cf ( 7f”(y)y”‘1 dy>,
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therefore,

(e f7(2))7 L < el p(/fp - 1dy> _1.

Multiplying by fP(z)zP~! and putting 0 < t < x, we get

L_q
o< / P dy) e

consequently,

o0

0o 1.7 ®©
[1@a < ( [rawra) [ e
= cé_p<
cép</fp(x):cpl da:)p. O
t

Theorem 2.2. Let0<p<1l, a>1-— 5 and c1 > 0. If f is a non-negative measurable function on
(0,00) and satisfies (2.1) for all x > 0, then

-1

3=

w\g

fP(x)xP~t da

\8

2 (x)zP dx)

27 (a7 ()7 S (@)

||IQ(T2f)(fE)HLP(0,oo) seor Ly(0,00)

where .
-

cr=ct P((a—1)p+1)

Proof. Put t = a(x), then z = a~1(t), where a~1(t) is the reciprocal function of a(t). Applying
inequality (2.2) and Fubini’s Theorem, we get

||IQ(T2f)(I)||LP(0,OO) = (/( e (/f ) (t)),dt>;
(0/ N 1)p</fp Y 1dy)( L)) dt)
;(/fp v 1(/ RO, ””dt)d )

Since o > 1 — % and a~1(0) = 0, we have

3=

=

/ @ ) @ )t = s f)p )] T
0

consequently,

[ @@, 0,00 < (mcfl)pﬂ)’l’ < [ @it gy dy)
0
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Choosing a(x) = Az in Theorem 2.2, where A > 0, we obtain the following

Corollary 2. Let f satisfy the assumptions of Theorem 2.2 and

o0

(Szf)(ﬂf):%/f(y)dy for © > 0.

Az

Then the inequality

1

o 1 CT o
e (2N @, 000 < (5) 7 el @) 000
holds.

Remark 2.3. Taking A = 1, we get
||$Q(H2f)($)||LP(O’OO) < C7||xaf(x)||Lp(07oo)-

Now, we have obtained the analogue of Theorem 1.1 for Hs which is the dual of Hardy averaging
operator Hj.

For the next theorem we need the following lemmas.

Lemma 2.2. Let 0 < p < 1, cg > 0 and a(z), b(x) be under the conditions of operator Ts such that

for almost all x > 0,
b(x)

= ( | f”(y)ypldyf- (23)
a(x)

Then
b(z) » b(x)
( / e dy) <" / )y dy. (24)
a(x) a(x)
Proof. The proof is similar to that of Lemma 2.1. O

Lemma 2.3. Let0<p <1l and 0 < B < A, then

AP — BP < (A — B)P. (2.5)
Proof. 1t is well known that for 0 < B< Aand 0 < p < 1,

(A+B)P < AP 4 BP.

Replacing A by A — B, we get
AP < (A— B)? + BP. O

For more details, see [1].

Theorem 2.3. Let0<p<1l, a>1-— % and c¢; > 0. If f is a non-negative measurable function on
(0,00) and satisfies (2.3) for all x > 0, then

<09<’

Ha:O‘(T3f)(x)||LP(O,OO)

1

2 (b7 ()" (@)

e

27 (a7 (@) (@)

Lp(0a°°)> ’

L,(0,00) B ‘

where

D=

co=cg P((a—1)p+1) 7.
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Proof. Taking into account (2.4), we get
b(z) ) b(x)
la* @R @) oy = / o / Fdy) do <" / ([ ) i
of 0 al(z)
Since a(z) <y < b(x), we have b~ (y) <z < a=*(y). Apply Fubini’s Theorem, we get
oo b(z) oo a™'(y)
/x(a”p< / fp(y)y”ldy> da = /f”(y)zf’l( / plom dx) dy.
0 a(z) 0 b1 (y)

In combination with oo > 1 — % and 0 < a(z) < b(z) < oo, this yields

a™ ' (y)
1
(a—1)p - - —1 (a—1)p+1 _ (p—1 (a—1)p+1
Ol = e (07 ) (b~ (v) )
b=1(y)
Consequently,
« P
[ (T5.f) (= HL (0,00)
Cp(l ») r —1 1 1 1 1 1
< ([ o () = ) )
0
p(1—p)
I S o N [ [ s o
—(al)pﬂ(\x (@ (@) f(m)\%(w oo @) ).

Using (2.5), we deduce

l2* (T 1) @7, .00

P1p) RNt 7 (Y (2N 7 ’
<atmprt (B eer el -l oo e, )
hence
Hx“(Taf)(x)HLp(o,oo)
<es P((a—1)p+ 1)7% <’ x#(afl(x))aiif(x)‘ Lp(0.00) ’ Iﬁ(bil(x))aiif(x)’ L (Oﬁoo))' -

Setting a(z) = Az and b(z) = Bz, where 0 < A < § < oo, in Theorem 2.3 above, leads to the
following

Corollary 3. Let f satisfies the assumptions of Theorem 2.3 and

(S5f)(z /f Ydy for x >0,

then 1o 1
||x“(53f)(I)HL,,(o,oo)§C8<(A) pl‘(ﬁ) )Hzaf i, 000

Remark 2.4. Taking A = % and 8 = 1, we obtain the analogous result for the Pachepatte type
operator P:

||$Q(Pf)($)||Lp(o,oo) < 88(2a_F - 1)||xaf HL (0,00)°

where

(Pf)(z /f )dy for x> 0.
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