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Abstract. In this article, a Galerkin mixed finite element method is proposed to find the numerical
solutions of high order p( · )-bi-Laplace equations. The well-posedness of the problem in suitable
Lebesgue–Sobolev spaces with variable exponent owing to nonlinear monotone operator theory is
investigated. Some a priori error estimates are shown by using the Galerkin orthogonality properties
and variable exponent Lebesgue–Sobolev continues embedding.
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1 Introduction
We consider a bounded open domain Ω of Rn with a Lipschitz-continuous boundary ∂Ω. Our aim is
to prove the existence and uniqueness of a weak solution u and some a priori error estimates to the
differential p(x)-Bilaplace equation{

△
(
|△u|p(x)−2△u

)
= f in Ω,

u = Ψ, ∇u = ∇Ψ on ∂Ω,
(1.1)

where f and Ψ are the given functions in Lq( · )(Ω) and W 2,∞(Ω), respectively. Here, p( · ) : Ω → R
denotes the variable exponent which is assumed to be in L∞

+ (Ω) such that 1 < p− ≤ p(x) ≤ p+ < ∞,
where p− = inf

x∈Ω
p(x) and p+ = sup

x∈Ω

p(x) a.e. in Ω. During the last decades, the high-order PDEs with

variable exponent has undergone rapid development. From a mathematical point of view, equation
(1.1) can be considered as a natural generalization of p( · )-bi-Laplace equation

△
(
|△u|p−2△u

)
= f,

which falls within the framework of nonlinear PDEs, where the exponent p is constant. One of our
motivation for studying (1.1) comes from applications in the area of elasticity, more precisely, it can be
used in modelling of travelling waves in suspension bridges (see [6,8]). Other interesting applications
are related to improve the visual quality of damaged and noisy images if 1 < p− ≤ p+ < 2 (see,
e.g., [14] and the references therein). Note that in the case p(x) = 2, problem (1.1) becomes △2u = f
which models the deformations of a thin homogeneous plate embedded along its beam and subjected
to a distribution f of a load normal to the plate (cf. [1]). Among the most recent works concerning
the p-Laplace equation, we can review Lazer et al. [8], where the authors tried to demonstrate the
existence of periodic solutions for models of nonlinear supported bending beams and periodic flexing
in floating beam. In [5], the authors used discontinuous Galekin method to approximate a biharmonic
problem. They also gave an a priori analysis of the error in norm L2. In [11], the author has studied
a p-biharmonic problem using discontinuous Galerkin finite element Hessian. An imagery problem
caused by a p( · )-Laplace operator with 1 ≤ p( · ) ≤2 has been considered in [14]. To solve the problem,
the authors regularized the proposed PDE to be able to use a fixed point iterative method.

The paper is structured as follows. We present in Section 2 some basic notations and material
needed for our work. Section 3 is devoted to the existence and uniqueness of a weak solution to the
problem under investigation in suitable Lebesgue–Sobolev spaces with variable exponent using the
nonlinear monotone operators theory. In Section 4, the Galerkin mixed finite element method and
inf− sup condition are given. Finally, we show some a priori error estimates with the help of Ritz
projection operator and Galerkin orthogonality properties, which are presented in Section 5.

2 Preliminaries
We define the variable exponent Lebesgue space Lp( · )(Ω) as follows:

Lp( · )(Ω) =

{
u : Ω → R, u measurable and

∫
Ω

|u(x)|p(x) dx < ∞
}
.

Note that Lp( · )(Ω) equipped with the Luxembourg norm

∥u∥Lp( · )(Ω) = inf
{
γ > 0,

∫
Ω

∣∣∣u(x)
γ

∣∣∣p(x) dx ≤ 1

}

is a Banach space. Note that all definitions and properties of Lebesgue and Sobelev spaces with
variable exponent given below are taken from references [2–4,7, 12].
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Definition 2.1. Let u : Ω → R be a measurable function, then the expression

ρp( · )(u) =

∫
Ω

|u(x)|p(x) dx

is called modular of u.

Definition 2.2. For some p ∈ L∞
+ (Ω) and m ∈ N− {0}, we introduce the exponent variable Sobolev

space
Wm,p( · )(Ω) =

{
u ∈ Lp( · )(Ω); Dαu ∈ Lp( · )(Ω), ∀α ∈ Nn and |α| ≤ m

}
equipped with the norm

∥u∥m,p( · ) =
∑

|α|≤m

∥Dαu∥Lp( · )(Ω).

Remark 2.1.

(1) Let p, q and r ∈ L∞
+ (Ω), u ∈ Lp( · )(Ω), v ∈ Lq( · )(Ω) such that

1

p(x)
+

1

q(x)
=

1

r(x)
.

Then
∥uv∥Lr( · )(Ω) ≤

( 1

(pr )
− +

1

( qr )
−

)
∥u∥Lp( · )(Ω)∥v∥Lq( · )(Ω).

(2) Suppose that p(x) ≤ q(x) a.e. in Ω. Then

Lq( · )(Ω) ↪→ Lp( · )(Ω).

(3)
∥u∥Lp( · )(Ω) = k ⇐⇒ ρp( · )

(u
k

)
= 1.

(4) (
∥un − u∥Lp( · )(Ω) −→

n→∞
0
)
⇐⇒

(
ρp( · )(un − u) −→

n→∞
0
)
.

(5) Let p, q ∈ L∞
+ (Ω) and m ∈ N∗ with p(x) ≤ q(x) a.e. in Ω. Then

Wm,q( · )(Ω) ↪→ Wm,p( · )(Ω).

Definition 2.3 (see [2, Definition 4.1.1, p. 98]). A function β : Ω → R is locally log-Hölder continuous
on Ω if ∃C > 0 such that

|β(x)− β(y)| ≤ C

log(e+ 1
|x−y| )

, ∀x, y ∈ Ω.

If
|β(x)− β∞| ≤ C

log(e+ |x|)
for some β∞ ≥ 1, c > 0 and all x ∈ Ω, then we say that β satisfies the log-Hölder decay condition (at
infinity). We denote by P log(Ω) the class of variable exponents which are log-Hölder continuous, i.e.,
which satisfy the local log-Hölder continuity condition and the log-Hölder decay condition.

Definition 2.4 (see [2, Definition 11.2.1]). Let p ∈ P log(Ω). We also define

W
2,p( · )
0 (Ω) := C∞

0 (Ω)
W 2,p( · )(Ω)

Similarly, we define

W
2,p( · )
Ψ (Ω) = Ψ +W

2,p( · )
0 (Ω) =

{
ϕ ∈ W 2,p( · )(Ω);ϕ\∂Ω = Ψ and ∇ϕ\∂Ω = ∇Ψ

}
.
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Remark 2.2.

(i) Note that if p− > 1, then the spaces W 2,p( · )(Ω) and W
2,p( · )
0 (Ω) are separable and reflexive

Banach spaces.

(ii) (Poincaré inequality) Let p ∈ L∞(Ω) with p− ≥ 1, there exists C(Ω, p( · )) such that

∥u∥p( · ) ≤ C∥∇u∥p( · ), ∀u ∈ W
1,p( · )
0 (Ω)

3 Existence and uniqueness of the weak solution
to p( · )-Bi-Laplacien with variable exponent

Definition 3.1. A function u is a weak solution of problem (1.1) if it satisfies∫
Ω

(
|△u|p(x)−2△u

)
△v dx =

∫
Ω

fv dx, ∀ v ∈ W
2,p( · )
0 (Ω).

Theorem 3.1. For f ∈ Lq( · )(Ω), problem (1.1) admits a unique weak solution u in W
2,p( · )
Ψ (Ω).

Proof. We prove the theorem in W
2,p( · )
0 (Ω) because if u ∈ W

2,p( · )
Ψ (Ω), then u−Ψ ∈ W

2,p( · )
0 (Ω) and

we can take u−Ψ instead of u. We apply the monotone operators theory and prove that

△2
p(x) := △

(
|△u|p(x)−2△u

)
: W

2,p( · )
0 (Ω) → (W

2,p( · )
0 (Ω))∗ (3.1)

is a hemicontinuous, coercive and monotone operator.
Let us define the functional A on W

2,p( · )
0 (Ω) by

A(u) =

∫
Ω

1

p(x)
|△u|p(x) dx.

We have

(A′(u), v) =
d

dt
{A(u+ tv)}t=0 =

d

dt

{∫
Ω

1

p(x)
|△(u+ tv)|p(x) dx

}
t=0

=

{∫
Ω

1

p(x)
△v · p(x)|△(u+ tv)|p(x)−1 dx

}
t=0

=

∫
Ω

(
|△u|p(x)−2△u

)
△v dx

=

∫
Ω

△(|△u|p(x)−2△u)v dx =
(
△2

p(x)u, v
)
, ∀ v ∈ W

2,p( · )
0 (Ω) (3.2)

which implies that A( · ) is differentiable in Gateau sense and A′ = △2
p(x). Therefore, △2

p(x) is a
hemicontinuous operator.

On the other hand, using Hölder’s inequality, we get

sup
∥v∥

W
2,p( · )
0 (Ω)

≤1

∣∣(△2
p(x)u, v)

∣∣ = sup
∥v∥

W
2,p( · )
0 (Ω)

≤1

∣∣∣∣ ∫
Ω

△
(
|△u|p(x)−2△u

)
v dx

∣∣∣∣
≤ sup

∥v∥
W

2,p( · )
0 (Ω)

≤1

∫
Ω

|△u|p(x)−1|△v| dx ≤ C
p(x)
q(x) ≤ C

p+

q− . (3.3)

This proves that △2
p( · ) is bounded on W

2,p( · )
0 (Ω). Next, from the inequality (see [10])

|b|p( · ) ≥ |a|p( · ) + p|a|p( · )−2a(b− a) +
|b− a|p( · )

2p( · )−1 − 1
for p ≥ 2 and a, b ∈ Rn
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it follows that

(
△2

p(x)(u)−△2
p(x)(v), u− v

)
=

∫
Ω

(
|△u|p(x)−2△u− |△v|p(x)−2△v

)
△(u− v) dx

=

∫
Ω

|△u|p(x)−2△u(△u−△v) dx−
∫
Ω

|△v|p(x)−2△v(△u−△v) dx

≥ 2

p(x)(2p(x)−1 − 1)

∫
Ω

|△u−△v|p(x) dx ≥ 2

p+(2p+−1 − 1)

∫
Ω

|△u−△v|p(x) dx. (3.4)

Now, using Calderon–Zygmund and Poincaré inequalities, we find that the norm ∥ · ∥
W

2,p( · )
0 (Ω)

is
equivalent to the semi-norm ∥△( · )∥Lp( · )(Ω) over the space W

2,p( · )
0 (Ω).

This allows us to write(
△2

p(x)(u)−△2
p(x)(v), u− v

)
≥ C(p+)∥u− v∥p(x)

W
2,p( · )
0 (Ω)

,

from which we conclude the monotonicity of △2
p(x). Similarly,

(△2
p(x)(u), u) ≥ C(p+)∥u∥p(x)

W
2,p( · )
0 (Ω)

.

This proves the coercivity of △2
p(x). Finally, by Hölder’s inequality, we have

|(f, v)| =
∣∣∣∣ ∫
Ω

fv dx

∣∣∣∣ ≤ C∥f∥q(x)∥v∥p(x).

Taking into account that Lq+(Ω) ↪→ Lq(x)(Ω) and W
2,p( · )
0 (Ω) ↪→ Lq(x)(Ω), we arrive at

|(f, v)| ≤ C∥f∥Lq+ (Ω)∥v∥W 2,p( · )
0 (Ω)

.

Hence f ∈ (W
2,p( · )
0 (Ω))∗. This achieves the proof.

4 Galerkin mixed formulation
Set X := W

2,p( · )
Ψ (Ω) and M := W

2,p( · )
0 (Ω). Let us introduce a new variable

ϕ = |△u|p(x)−2△u.

This allows us to write problem (1.1) as follows:{
−△u = |ϕ|q(x)−2ϕ,

−△ϕ = f.
(4.1)

The weak formulation associated to (4.1) is: Find (u, ϕ) ∈ X × Lq( · ) satisfying{
a(ϕ, v) + c(u, v) = 0 ∀ v ∈ X,

c(ϕ, µ) = lM (µ) ∀µ ∈ M,
(4.2)

where
a(ϕ, v) :=

∫
Ω

|ϕ|q(x)−2ϕv dx, c(ϕ, µ) :=

∫
Ω

−△ϕµdx, lM (µ) :=

∫
Ω

fµ dx.



Galerkin Method Applied to p( · )-Bi-Laplace Equation with Variable Exponent 7

Proposition 4.1 (inf-sup condition). There exists γ > 0 such that

inf
µ∈M

sup
u∈W

2,p( · )
0 (Ω)

c(u, µ)

∥u∥X∥µ∥M
≥ γ.

Proof. We apply Proposition 2.4 from [11, p. 60]. Our aim is to show that ∀µ ∈ M , there exists
uµ ∈ X such that

c(uµ, µ) = ∥µ∥p( · )M and ∥uµ∥X ≤ 1

γ
∥µ∥M .

It suffices to find a mapping µ −→ uµ from W
2,p( · )
0 (Ω) to W

2,p( · )
Ψ (Ω) such that

(∇uµ,∇µ) = ∥△uµ∥p( · )p( · ) and ∥uµ∥X ≤ 1

γ
∥µ∥M .

We can see that with a choice of uµ = |△µ|p(x)−2△µ we arrive at the desired result.

5 Discretization
We consider a triangulation Υh made of triangles T whose edges are denoted by e. We assume that
the intersection of two different elements is either empty, or a vertex, or a whole edge e, and we also
assume that this triangulation is regular in Ciarlet sense, i.e.,

∃σ > 0;
hT

ρT
≤ σ, ∀T ∈ Υh,

where hT is the diameter of T and ρT is the diameter of its largest inscribed bull. We define h =
max
T∈Υh

hT . The jump operator for function v across an edge/face at the point x is given by

[v(x)]e =

{
lim

α→0+
v(x+ αηe)− v(x+ αηe) if e ∈ ζinth ,

v(x) if e ∈ ζh − ζinth ,

where ζinth is the set of interior edges/faces. Let us define the broken Laplace operator

(△hv)\T := △(v\T ), ∀T ∈ Υh.

For h > 0, we introduce the following spaces:

Xh =
{
φ ∈ C0(Ω); φ\T ∈ P k(T ), ∀T ∈ Υh

}
,

Xh
Ψ =

{
φ ∈ Xh; φ\∂Ω = ΠΨ

}
and the Ritz projection operator Π defined as follows:∫

Ω

∇(Πv)∇φdx =

∫
Ω

∇v∇φdx, ∀φ ∈ Xh ∩H1
0 (Ω).

Lemma 5.1. Let u ∈ Wm+1,q( · )(Ω), then for m ≥ 2, we have

∥u−Πu∥Lq( · )(Ω) + ∥h(∇u−∇(Πu))∥Lq( · )(Ω)

+
( ∑

T∈Υ

∥h2(△u−△(Πu))∥q(x)
Lq( · )(T )

) 1
q(x) ≤ Chm+1|u|m+1,q( · ).

Proof. See [10].
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The discrete formulation of (4.2) is to seek a solution (uh, ϕh) ∈ Xh
Ψ ×Xh such that

a(ϕh, v) + ch(uh, v) = 0,

ch(ϕh, µ) =

∫
Ω

fµ, ∀ (v, µ) ∈ Xh ×Xh
0 ,

(5.1)

where ch is given by

ch(ϕh, µ) =
∑

T∈Υh

∫
T

∇ϕh∇µdx−
∫
∂Ω

∇Ψ · ηµ dx =

∫
Ω

∇ϕh∇µdx−
∫
∂Ω

∇Ψ · ηµ dx. (5.2)

Substituting (5.2) into (5.1), the discrete problem consists in finding (uh, ϕh) ∈ Xh
Ψ×Xh satisfying

for (v, µ) ∈ Xh ×Xh
0∫

Ω

|ϕh|q(x)−2ϕhv dx+

∫
Ω

∇uh∇v dx =

∫
∂Ω

∇Ψ · ηv dx
∫
Ω

∇ϕh∇µdx =

∫
Ω

fµ dx.

Denote eφ = ϕ− ϕh and eu = u− uh. Now, we are able to announce the following error estimate
theorem.

Theorem 5.1. There exists a constant C such that for m ≥ 2, we have

∥eφ∥Lq− (Ω) + ∥eu∥p
−−1

W 2,p−
h (Ω)

≤ C
(
h

q(x)
2 (m+1)|ϕ|

q( · )
2

m+1,q( · ) + hm+1|ϕ|m+1,q( · ) + hm−1|u|m+1,p( · ) + hm−1|u|m+1,p( · )

)
,

where (u, ϕ) ∈ W
m+1,p( · )
Ψ (Ω)×Wm+1,q( · )(Ω) is the exact solution of (4.2) and (uh, ϕh) ∈ Xh

Ψ ×Xh

is the approximate solution of (5.1).

Proof. It is clear that

∥u− uh∥W 2,p( · )
h (Ω)

≤ ∥uh −Πu∥
W

2,p( · )
h (Ω)

+ ∥Πu− u∥
W

2,p( · )
h (Ω)

. (5.3)

Using the discrete form of inf-sup condition and Galerkin orthogonality properties, we get

∥uh −Πu∥
W

2,p( · )
h (Ω)

≤ sup
µ∈Xh

0 (Ω),µ ̸=0

ch(u−Πuh, µ)

∥µ∥
L

q( · )
h (Ω)

= sup
µ∈Xh

0 (Ω),µ ̸=0

a(ϕh, µ)− a(ϕh, µ)

∥µ∥
L

q( · )
h (Ω)

.

In view of the properties of a( · , · ) (see [1, Proposition 3.1]) we can write

sup
µ∈Xh

0 (Ω),µ ̸=0

a(ϕh, µ)− a(ϕh, µ)

∥µ∥
L

q( · )
h (Ω)

≤ C

( ∫
Ω

∣∣|ϕ|p(x)−2ϕ− |ϕh|p(x)−2ϕh

∣∣ |ϕ− ϕh| dx
) 1

p(x) ∥µ∥Lq( · )(Ω)

∥µ∥
L

q( · )
h (Ω)

≤ C

(∫
Ω

∣∣|ϕ|p(x)−2ϕ− |ϕh|p(x)−2ϕh

∣∣ |ϕ− ϕh| dx
) 1

p(x)

and∫
Ω

∣∣|ϕ|p(x)−2ϕ− |ϕh|p(x)−2ϕh

∣∣ |ϕ− ϕh| dx

≤ C

(∫
Ω

∣∣|ϕ|p(x)−2ϕ− |ϕh|p(x)−2ϕh

∣∣ |ϕ− ϕh| dx
) 1

p(x)

∥ϕ− ϕh∥Lq( · )(Ω). (5.4)
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By the ε-Young inequality, we obtain that the right-hand side of (5.4) is estimated by

Cq(x)

q(x)εq(x)
∥ϕ− ϕh∥q(x)Lq( · )(Ω)

+
εp(x)

p(x)

∫
Ω

∣∣|ϕ|p(x)−2ϕ− |ϕh|p(x)−2ϕh

∣∣ dx. (5.5)

Choosing ε such that ϵp(x)

p(x) ≺ 1 (for example, we can choose ε = (p(x)3 )
1

p(x) ), we find that∫
Ω

∣∣|ϕ|p(x)−2ϕ− |ϕh|p(x)−2ϕh

∣∣ |ϕ− ϕh| dx ≤ C∥ϕ− ϕh∥q(x)Lq( · )(Ω)
.

So, we get
∥uh −Πu∥

W
2,p( · )
h (Ω)

≤ C∥ϕ− ϕh∥
q(x)
p(x)

Lq( · )(Ω)
≤ C∥ϕ− ϕh∥

2
q(x)−1

2

Lq( · )(Ω)
. (5.6)

On the other hand, a simple calculation gives

a(ϕ,ϕ− ϕh)− a(ϕh, ϕ− ϕh) = a(ϕ,ϕ− v)− a(ϕh, ϕ− v) + a(ϕ, v − ϕh)− a(ϕh, v − ϕh). (5.7)

Subtracting (5.1) from (4.2), we get{
a(ϕ, v)− a(ϕh, v) + ch(u− uh, v) = 0, ∀ v ∈ Xh,

ch(ϕ− ϕh, µ) = 0, ∀µ ∈ Xh
0 .

This allows us to rewrite (5.7) as follows:

a(ϕ,ϕ− ϕh)− a(ϕh, ϕ− ϕh) = a(ϕ,ϕ− v)− a(ϕh, ϕ− v) + ch(u− uh, ϕh − v) = J1 + J2,

where
J1 = a(ϕ,ϕ− v)− a(ϕh, ϕ− v) and J2 = ch(u− uh, ϕh − v).

Now, using the properties of a( · , · ) (see [1, Proposition 3.1]) once more, the ε-Young inequality
shows that

C1

2

∥ϕ− ϕh∥2Lq( · )(Ω)

∥ϕ∥2−q(x)

Lq( · )(Ω)
+ ∥ϕh∥2−q(x)

Lq( · )(Ω)

+
C2

2

∫
Ω

∣∣|ϕ|q(x)−2ϕ− |ϕh|q(x)−2ϕh

∣∣ |ϕ− ϕh| dx

≤ a(ϕ,ϕ− ϕh)− a(ϕh, ϕ− ϕh) = J1 + J2 (5.8)

and

J1 ≤ C3

(∫
Ω

∣∣|ϕ|q(x)−2ϕ− |ϕh|q(x)−2ϕh

∣∣ |ϕ− ϕh| dx
) 1

p(x)

∥ϕ− v∥Lq( · )(Ω)

≤ C
q(x)
3

εq(x)q(x)
∥ϕ− v∥q(x)

Lq( · )(Ω)
+

εp(x)

p(x)

∫
Ω

∣∣|ϕ|q(x)−2ϕ− |ϕh|q(x)−2ϕh

∣∣ |ϕ− ϕh| dx,

where C1, C2 and C3 are the same constants as in Proposition 3.1 of [13]. If we choose ε such that
ϵp(x)

p(x) = C2

2 , we arrive at

J1 ≤ C(q−, q+)∥ϕ− v∥q(x)
Lq( · )(Ω)

+
C

2

∫
Ω

∣∣|ϕ|q(x)−2ϕ− |ϕh|q(x)−2ϕh

∣∣ |ϕ− ϕh| dx. (5.9)

Moreover,
J2 = ch(u− uh, ϕh − v) = ch(u−Πu, ϕh − v), (5.10)

in view of
ch(µ, ϕh − v) = 0, ∀µ ∈ Xh

0 .
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The continuity of ch implies that

J2 = ch(u−Πu, ϕh − v) ≤ C∥u−Πu∥
W

2,p(x)
h (Ω)

∥ϕh − v∥Lq( · )(Ω)

≤ Cε2

2
∥ϕh − v∥2Lq( · )(Ω) +

C

2ε2
∥u−Πu∥2

W
2,p(x)
h (Ω)

≤ C

2ε2
∥u−Πu∥2

W
2,p(x)
h (Ω)

+
Cε2

2

(
∥ϕh − ϕ∥Lq( · )(Ω) + ∥ϕ− v∥Lq( · )(Ω)

)2
≤ C

2ε2
∥u−Πu∥2

W
2,p(x)
h (Ω)

+
Cε2

2

(
∥ϕh − ϕ∥2Lq( · )(Ω) + ∥ϕ− v∥2Lq( · )(Ω) + 2∥ϕh − ϕ∥Lq( · )(Ω)∥ϕ− v∥Lq( · )(Ω)

)
≤ C

2ε2
∥u−Πu∥2

W
2,p(x)
h (Ω)

+ Cε2
(
∥ϕh − ϕ∥2Lq( · )(Ω) + ∥ϕ− v∥2Lq( · )(Ω)

)
. (5.11)

Gathering estimates (5.9)–(5.11), substituting in (5.8) and taking ε sufficiently small, we obtain

∥ϕh − ϕ∥2Lq( · )(Ω) ≤ C∥ϕ− v∥q(x)
Lq( · )(Ω)

+ C∥u−Πu∥2
W

2,p(x)
h (Ω)

+ C∥ϕ− v∥2Lq( · )(Ω). (5.12)

Using the properties of Π, we obtain the estimate of eφ. Now, substituting (5.12) into (5.6), taking
into account (5.3), Lemma 5.1 and the continuous embedding of Lq( · )(Ω) into Lq−(Ω), we arrive at
the desired estimate for eu. Thus the proof is completed.
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