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THE NEUMANN BOUNDARY VALUE PROBLEM OF
THERMO-ELECTRO-MAGNETO ELASTICITY FOR HALF SPACE



Abstract. We prove the uniqueness theorem for the Neumann boundary value problem of statics of
the thermo-electro-magneto-elasticity theory in the case of a half-space. The corresponding unique
solution is represented explicitly by means of the inverse Fourier transform under some natural res-
trictions imposed on the boundary vector function.
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ÒÄÆÉÖÌÄ. ÍÀáÄÅÀÒÓÉÅÒÝÉÓ ÛÄÌÈáÅÄÅÀÛÉ ÃÀÌÔÊÉÝÄÁÖËÉÀ ÈÄÒÌÏ-ÄËÄØÔÒÏ-ÌÀÂÍÄÔÏ ÃÒÄÊÀÃÏÁÉÓ ÈÄÏ-
ÒÉÉÓ ÍÄÉÌÀÍÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓÀÈÅÉÓ ÄÒÈÀÃÄÒÈÏÁÉÓ ÈÄÏÒÄÌÀ. ÂÀÒÊÅÄÖË ÁÖÍÄÁÒÉÅ ÛÄÆÙÖÃÅÄÁÛÉ,
ÒÏÌËÄÁÓÀÝ ÅÀÃÄÁÈ ÓÀÓÀÆÙÅÒÏ ÅÄØÔÏÒ-×ÖÍØÝÉÀÓ, ÛÄÓÀÁÀÌÉÓÉ ÍÄÉÌÀÍÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÄÒÈÀÃÄÒ-
ÈÉ ÀÌÏÍÀáÓÍÉ ßÀÒÌÏÃÂÄÍÉËÉÀ ÝáÀÃÉ ÓÀáÉÈ ÛÄÁÒÖÍÄÁÖËÉ ×ÖÒÉÄÓ ÂÀÒÃÀØÌÍÉÓ ÌÄÛÅÄÏÁÉÈ.
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1 Introduction
In the study of active material systems, there is significant interest in the coupling effects between
elastic, electric, magnetic and thermal fields.

Although natural materials rarely show full coupling between elastic, electric, magnetic and ther-
mal fields, some artificial materials do. In [16] it is reported that the fabrication of BaTiO3-CoFe2O4

composite had the magnetoelectric effect not existing in either constituent. Other examples of similar
complex coupling can be found in the references [1–7,9–11,14,17].

The mathematical model of the thermo-electro-magneto-elasticity theory is described by the non-
self-adjoint 6× 6 system of second order partial differential equations with the appropriate boundary
and initial conditions. The problem is to determine three components of the elastic displacement
vector, the electric and magnetic scalar potential functions and the temperature distribution. Other
field characteristics (e.g., mechanical stresses, electric and magnetic fields, electric displacement vector,
magnetic induction vector, heat flux vector and entropy density) can be then determined by the
gradient equations and the constitutive equations.

In the paper we prove the uniqueness theorem of solutions for Neumann boundary value problems
of statics for half-space.

Under some natural restriction on the boundary vector functions the corresponding unique solution
is represented by the inverse Fourier transform.

2 Basic equations and formulation of boundary value
problems

2.1 Field equations
Throughout the paper u = (u1, u2, u3)

⊤ denotes the displacement vector, σij is the mechanical
stress tensor, εkj = 2−1(∂kuj + ∂juk) is the strain tensor, E = (E1, E2, E3)

⊤ = − gradφ and
H = (H1,H2,H3) = − gradψ are electric and magnetic fields, respectively, D = (D1, D2, D3)

⊤ is
the electric displacement vector and B = (B1, B2, B3)

⊤ is the magnetic induction vector, φ and ψ
stand for the electric and magnetic potentials, ϑ is the temperature increment, q = (q1, q2, q3)

⊤ is the
heat flux vector, and S is the entropy density. We employ the notation ∂ = (∂1, ∂2, ∂3), ∂j = ∂/∂j ,
∂t = ∂/∂t; the superscript ( · )⊤ denotes transposition operation; the summation over the repeated
indices is meant from 1 to 3, unless stated otherwise.

In this subsection we collect the field equations of the linear theory of thermo-electro-magneto-
elasticity for a general anisotropic case and introduce the corresponding matrix partial differential
operators [12].
Constitutive relations:

σrj = σjr = crjklεkl − elrjEl − qlrjHl − λrjϑ, r, j = 1, 2, 3,

Dj = ejklεkl + κjlEl + ajlHl + pjϑ, j = 1, 2, 3,

Bj = qjklεkl + ajlEl + µjlHl +mjϑ, j = 1, 2, 3,

S = λklεkl + pkEk +mkHk + γϑ.

Fourier Law: qj = −ηjl∂lϑ, j = 1, 2, 3.
Equations of motion: ∂jσrj +Xr = ϱ∂2t ur, r = 1, 2, 3.
Quasi-static equations for electro-magnetic fields where the rate of magnetic field is small (electric
field is curl free) and there is no electric current (magnetic field is curl free): ∂jDj = ϱe, ∂jBj = 0.
Linearised equation of the entropy balance: T0∂tS −Q = −∂jqj ,
Here ϱ is the mass density, ϱe is the electric density, crjki are the elastic constants, ejki are the piezo-
electric constants, qjki are the piezomagnetic constants, κjk are the dielectric (permittivity) constants,
µjk are the magnetic permeability constants, ajk are the coupling coefficients connecting electric and
magnetic fields, pj and mj are constants characterizing the relation between thermodynamic processes
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and electro-magnetic effects, λjk are the thermal strain constants, ηjk are the heat conductivity co-
efficients, γ = ϱcT−1

0 is the thermal constant, T0 is the initial reference temperature, c is the specific
heat per unit mass, X = (X1, X2, X3)

⊤ is a mass force density, Q is a heat source intensity. The
constants involved in these equations satisfy the symmetry conditions

crjkl = cjrkl = cklrj , eklj = ekjl, qklj = qkjl, κkj = κjk,

λkj = λjk, µkj = µjk, ηkj = ηjk, akj = ajk, r, j, k, l = 1, 2, 3.
(2.1)

From physical considerations it follows (see, e.g., [8, 13])

crjklξrjξkl ≥ c0ξklξkl, κkjξkξj ≥ c1|ξ|2, µkjξkξj ≥ c2|ξ|2, ηkjξkξj ≥ c3|ξ|2, (2.2)

for all ξkj = ξjk ∈ R and for all ξ = (ξ1, ξ2, ξ3) ∈ R3, where c0, c1, c2 and c3 are positive constants.
More careful analysis related to the positive definiteness of the potential energy and thermodynamical
laws insure positive definiteness of the matrix

Ξ =

[κkj ]3×3 [akj ]3×3 [pj ]3×1

[akj ]3×3 [µkj ]3×3 [mj ]3×1

[pj ]1×3 [mj ]1×3 γ


7×7

. (2.3)

Further we introduce the following generalised stress operator

T (∂, n) :=


[crjklnj∂l]3×3 [elrjnj∂l]3×3 [qlrjnj∂l]3×1 [−λrjnj ]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l −pjnj
[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l −mjnj

[0]1×3 0 0 ηjlnj∂l


6×6

.

Evidently, for a six vector U := (u, φ, ψ, ϑ)⊤ we have

T (∂, n)U = (σ1jnj , σ2jnj , σ3jnj ,−Djnj ,−Bjnj ,−qjnj)⊤. (2.4)

The components of the vector T U given by (2.4) have the physical sense: the first three components
correspond to the mechanical stress vector in the theory of thermo-electro-magneto-elasticity, the
forth, fifth and sixth ones are respectively the normal components of the electric displacement vector,
magnetic induction vector and heat flux vector with opposite sign.

From the above equations of dynamics, in the case of statics, we get the following equations

A(∂)U(x) = Φ(x),

where U = (u1, . . . , u6)
⊤ := (u, φ, ψ, ϑ)⊤ is the sought for vector function and Φ = (Φ1, . . . ,Φ6)

⊤ :=
(−X1,−X2,−X3,−ϱe, 0,−Q)⊤ is a given vector function; A(∂) = [Apq(∂)]6×6 is the matrix differential
operator

A(∂) =


[crjkl∂j∂l]3×3 [elrj∂j∂l]3×3 [qlrj∂j∂l]3×1 [−λrj∂j ]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l −pj∂j
[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l −mj∂j

[0]1×3 0 0 ηjl∂j∂l


6×6

.

From the symmetry conditions (2.1), inequalities (2.2) and positive definiteness of the matrix (2.3) it
follows that A(∂) is a formally non-self adjoint strongly elliptic operator.

2.2 Formulation of boundary value problems
Let R3 be divided by some plane into two half-spaces. Without loss of generality we can assume that
these half-spaces are

R3
1 :=

{
x | x = (x1, x2, x3) ∈ R3 and x3 > 0

}
,

R3
2 :=

{
x | x = (x1, x2, x3) ∈ R3 and x3 < 0

}
;
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n = (n1, n2, n3) = (0, 0,−1) is the outward unit normal vector with respect to R3
1; S := ∂R3

1,2.

Now we formulate the Neumann type boundary-value problems (N)± of the thermo-electro-mag-
netoelasticity theory for a half-space:

Find a solution vector U = (u, φ, ψ, ϑ)⊤ ∈ [C1(R3
1,2)]

6 ∩ [C2(R3
1,2)]

6 to the system of equations

A(∂)U = 0 in R3
1,2 (2.5)

satisfying the Neumann type boundary condition

{T (∂, n)U}± = F on S. (2.6)

The symbols { · }± denote the one-sided limits on S from R3
1 (sign “+”) and R3

2 (sign “−”).

We require that the boundary data involved in the above setting possess the following smoothness
property: F ∈

◦
C∞(R2), where

◦
C∞(R2) is the space of infinitely differentiable functions with compact

support.
Let Fx̃→ξ̃ and F−1

ξ̃→x̃
denote the direct and inverse generalized Fourier transforms in the space of

tempered distributions (the Schwartz space S ′(R2)) which for regular summable functions f and g
read as follows

Fx̃→ξ̃[f ] =

∫
R2

f(x̃) eix̃·ξ̃ dx̃,

F−1

ξ̃→x̃
[g] =

1

4π2

∫
R2

g(ξ̃) e−ix̃·ξ̃ dξ̃,

(2.7)

where x̃ = (x1, x2), ξ̃ = (ξ1, ξ2), dx̃ = dx1 dx2, x̃ · ξ̃ = x1ξ1 + x2ξ2.
Note that if f(x) = f(x1, x2, x3) = f(x̃, x3), then

Fx̃→ξ̃[∂xj
f(x)] = −iξjFx̃→ξ̃[f ] = −iξj f̂(ξ̃, x3), j = 1, 2,

and hence

Fx̃→ξ̃[∇xf(x)] =

−iξ1−iξ2
∂x3

Fx̃→ξ̃[f(x)] = P (−iξ̃, ∂x3)f̂(ξ̃, x3) (2.8)

with f̂(ξ̃, x3) = Fx̃→ξ̃[f ] and

P = P (−iξ̃, ∂x3
) = (−iξ1,−iξ2, ∂x3

)⊤. (2.9)

Applying Fourier transform (2.7) in (2.5)–(2.6) and taking into account (2.9) we arrive at the
problems:

A(P )Û(ξ̃, x3) = 0, x3 ∈ (0;+∞) or x3 ∈ (−∞; 0), (2.10){
T (∂, n)Û(ξ̃, x3)

}±
(x3→0±)

= F̂ (ξ̃). (2.11)

We see that (2.10) is the system of ordinary differential equations of second order for each ξ̃ ∈ R2.
We denote these problems by N̂±.

3 Uniqueness theorems
We start with constructing a system of linear independent solutions to system (2.10).

Let us denote by kj = kj(ξ̃), j = 1, 12, the roots of the equation

detA(−iξ) = 0 (3.1)
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with respect to ξ3, where A(−iξ) is the symbol matrix of the operator A(∂).
Note that detA(−iξ) is a homogeneous polynomial of order 12 and the equation (3.1) has no real

roots, Im kj ̸= 0, j = 1, 12. These roots are continuously dependent on the coefficients of (3.1) and
the number of roots with positive and negative imaginary parts are equal. Denote by k1, k2, . . . , k6
roots with positive imaginary parts and by k7, . . . , k12 with negative ones.

Let us construct the following matrices:

Φ(+)(ξ̃, x3) =

∫
ℓ+

A−1(−iξ) e−iξ3x3 dξ3, (3.2)

Φ(−)(ξ̃, x3) =

∫
ℓ−

A−1(−iξ) e−iξ3x3 dξ3, (3.3)

where ℓ+ (respectively, ℓ−) is a closed simple curve of positive counterclockwise orientation (respec-
tively, negative clockwise orientation) in the upper (respectively, lower) complex half-plane Re ξ3 > 0
(respectively, Re ξ3 < 0) enclosing all the roots with respect to ξ3 of the equation detA(−iξ) = 0 with
positive (respectively, negative) imaginary parts (see Fig. 1). Clearly, (3.2) and (3.3) do not depend
on the shape of ℓ+ (respectively, ℓ−).

Figure 1.

With the help of the Cauchy integral theorem for analytic functions, we conclude that the entries of
the matrix Φ(+)(ξ̃, x3) = [Φ

(+)
kj (ξ̃, x3)]6×6 are increasing exponentially as x3 → +∞ and are decreasing

exponentially as x3 → −∞ (since −iξ3x3 = −i(ξ′3 + iξ′′3 )x3 = −iξ′3x3 + ξ′′3x3).
Analogously, the entries of the matrix Φ(−)(ξ̃, x3) = [Φ

(−)
kj (ξ̃, x3)]6×6 are increasing exponentially

as x3 → −∞ and vanish exponentially as x3 → +∞.
Due to Lemma 3.1 in [15] the columns of Φ(±)(ξ̃, x3) are linearly independent solutions to sys-

tem (2.10).

Theorem 3.1. The boundary value problems N̂± (2.10)–(2.11) have only one solution in the space
of functions vanishing at infinity.
Proof. If x3 ∈ (0;+∞), then we look for a solution of the Neumann problem in the following form

Û(ξ̃, x3) = Φ(−)(ξ̃, x3)C, x3 > 0,

where C = (C1, . . . , C6) is unknown vector depending only on ξ̃.
From (2.11) we have

T (−iξ, n)Φ(−)(ξ̃, 0)C = F̂ (ξ̃)

and since det[T (−iξ, n)Φ(−)(ξ̃, 0)] ̸= 0, |ξ̃| ̸= 0, due to Lemma 3.1 in [15], we obtain

C =
[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
F̂ (ξ̃).
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Therefore the unique solution of N̂+ has the following form

Û(ξ̃, x3) = Φ(−)(ξ̃, x3)
[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
F̂ (ξ̃), x3 > 0. (3.4)

Similarly, if x3 ∈ (−∞; 0), then the unique solution of N̂− has the form

Û(ξ̃, x3) = Φ(+)(ξ̃, x3)
[
T (−iξ, n)Φ(+)(ξ̃, 0)

]−1
F̂ (ξ̃), x3 < 0. (3.5)

The theorem is proved.

Lemma 3.2. There hold the following relations

[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
=

[
[O(1)]5×5 [O(|ξ̃|−1)]5×1

[0]1×5 O(1)

]
6×6

. (3.6)

Proof. Note that

T (−iξ, n) :=


[crjklnj(−iξl)]3×3 [elrjnj(−iξl)]3×3 [qlrjnj(−iξl)]3×1 [−λrjnj ]3×1

[−ejklnj(−iξl)]1×3 κjlnj(−iξl) ajlnj(−iξl) −pjnj
[−qjklnj(−iξl)]1×3 ajlnj(−iξl) µjlnj(−iξl) −mjnj

[0]1×3 0 0 ηjlnj(−iξl)


6×6

.

It is clear (see Theorem 3.1) that

det T (−iξ, n) ̸= 0, |ξ| ̸= 0,

and

T (−iξ, n) =

[
[O(|ξ|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ|)

]
6×6

. (3.7)

It can easily be checked that det T (−iξ, n) = O(|ξ|6) and there exist constants c∗1 > 0 and c∗2 > 0 such
that

c∗1|ξ|6 ≤ | det T (−iξ, n)| ≤ c∗2|ξ|6. (3.8)

If Tc(−iξ, n) is the corresponding matrix of cofactors, then

[T (−iξ, n)]−1 =
1

det T (−iξ, n)
Tc(−iξ, n).

Taking into account (3.7) and (3.8) we can write

[T (−iξ, n)]−1 =
1

det T (−iξ, n)

[
[O(|ξ|5)]5×5 [O(|ξ|4)]5×1

[0]1×5 O(|ξ|5)

]
6×6

.

For arbitrary |ξ̃| ̸= 0 we obtain

[T (−iξ, n)]−1 =

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

. (3.9)

Note that (see Lemma 3.3 in [15])

[
Φ(−)(ξ̃, 0)

]−1
=

[
[O(|ξ̃|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ̃|)

]
6×6

. (3.10)
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Taking into account (3.9) and (3.10) we derive the following relations[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
=

[
Φ(−)(ξ̃, 0)

]−1
[T (−iξ, n)]−1

=

[
[O(|ξ̃|)]5×5 [O(1)]5×1

[0]1×5 O(|ξ̃|)

]
6×6

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

=

[
[O(1)]5×5 [O(|ξ̃|−1)]5×1

[0]1×5 O(1)

]
6×6

.

Remark 3.3. For arbitrary x3 > 0 (see [15])

Φ(−)(ξ̃, x3) =

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

and due to (3.6)

Φ(−)(ξ̃, x3)
[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
=

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

. (3.11)

Similarly, for arbitrary x3 < 0

Φ(+)(ξ̃, x3)
[
T (−iξ, n)Φ(+)(ξ̃, 0)

]−1
=

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
6×6

. (3.12)

Theorem 3.4. The Neumann boundary value problems (2.5)–(2.6) have at most one solution U =

(u, φ, ψ, ϑ)⊤ in the space [C1(R3
1,2)]

6 ∩ [C2(R3
1,2)]

6 provided

ϑ(x) = O(|x|−1), (3.13)
∂αŨ(x) = O

(
|x|−1−|α| ln |x|

)
as |x| → ∞ (3.14)

for arbitrary multi-index α = (α1, α2, α3). Here Ũ = (u, φ, ψ)⊤.

Proof. Let U (1) = (u(1), φ(1), ψ(1), ϑ(1))⊤ and U (2) = (u(2), φ(2), ψ(2), ϑ(2)) be two solutions of the
problem under consideration with properties indicated in the theorem for R3

1. It is evident that the
difference

V = (u′, φ′, ψ′, ϑ′) = U (1) − U (2)

solves the corresponding homogeneous problem.
Therefore for the temperature function we get the separated homogeneous Neumann problem

[A(∂)V ]6 = ηjl∂j∂lϑ
′ = 0 in R3

1, (3.15)
{ηjlnj∂lϑ′}+ = 0 on S. (3.16)

By Green’s formula (see (2.83) in [12]) for B+(0;R) := {(x1, x2, x3) | x21 + x22 + x23 ≤ R2 and
x3 > 0} and (3.15)–(3.16) we have∫

B+(0;R)

ηjl∂lϑ
′∂jϑ

′ dx =

∫
∂B+(0;R)

{ηjlnj∂lϑ′}+{ϑ′}+ dS =

∫
Σ+(0;R)

{ηjlnj∂lϑ′}+{ϑ′}+ dΣ. (3.17)

Here Σ+(0;R) is the upper half sphere.
Taking the limit as R→ ∞ in (3.17) according to (3.13)–(3.14) we get∫

R3
1

ηjl∂lϑ
′∂jϑ

′ dx = 0.
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Due to (2.2) ϑ′ = const and from (3.13) we conclude that ϑ′ = 0.
Therefore the five dimensional vector Ṽ = (u′, φ′, ψ′)⊤ constructed by the first five components of

the solution vector V , solves the following homogeneous boundary value problem

Ã(∂)Ṽ = 0 in R3
1,

{T̃ (∂, n)Ṽ }+ = 0 on S,
(3.18)

where Ã(∂) is the 5×5 differential operator of statics of the electro-magneto-elasticity theory without
taking into account thermal effects (see [12]):

Ã(∂) = [Ãpq(∂)]5×5 :=

 [crjkl∂j∂l]3×3 [elrj∂j∂l]3×1 [qlrj∂j∂l]3×1

[−ejkl∂j∂l]1×3 κjl∂j∂l ajl∂j∂l

[−qjkl∂j∂l]1×3 ajl∂j∂l µjl∂j∂l


5×5

and T̃ (∂, n) is the corresponding 5× 5 generalized stress operator

T̃ (∂, n) = [T̃pq(∂, n)]5×5 :=

 [crjklnj∂l]3×3 [elrjnj∂l]3×1 [qlrjnj∂l]3×1

[−ejklnj∂l]1×3 κjlnj∂l ajlnj∂l

[−qjklnj∂l]1×3 ajlnj∂l µjlnj∂l


5×5

.

Using the limiting procedure as above in the corresponding Green’s identity for vectors satisfying
decay conditions (3.14) we obtain∫

R3
1

[
Ã(∂)Ṽ · Ṽ + Ẽ(Ṽ , Ṽ )

]
dx = lim

R→∞

∫
Σ+(0;R)

[T̃ Ṽ ]+ · [Ṽ ]+ dΣ, (3.19)

where Ẽ(Ṽ , Ṽ ) has the following form:

Ẽ(Ṽ , Ṽ ) = crjkl∂lu
′
k∂ju

′
r + κjl∂lφ

′∂jφ
′ + ajl(∂lφ

′∂jψ
′ + ∂jψ

′∂lφ
′) + µjl∂lψ

′∂jψ
′. (3.20)

If Ṽ is a solution of (3.18) satisfying (3.14), then from (3.19) we have∫
R3

1

Ẽ(Ṽ , Ṽ ) dx = 0. (3.21)

From (3.18), (3.20) and (3.21) along with (2.2) we get

u′(x) = a× x+ b, φ′(x) = b4, ψ′ = b5,

where a = (a2, a2, a3) and b = (b1, b2, b3) are arbitrary constant vectors and b4, b5 are arbitrary
constants. Now, in view of (3.14) we arrive at the equalities u′(x) = 0, φ′(x) = 0, ψ′(x) = 0 for all
x ∈ R3

1, consequently, U (1) = U (2) in R3
1.

The proof is similar for the domain R3
2.

Theorem 3.5. Let F ∈
◦
C∞(R2) and for arbitrary multi-index β = (β1, β2)∫

R2

F (x̃)x̃β dx̃ = 0, |β| = 0, 1, 2.

Then the Neumann boundary value problems (2.5)–(2.6) possess unique solutions which can be repre-
sented in the following form

U(x) = F−1

ξ̃→x̃

[
Φ(−)(ξ̃, x3)

[
T (−iξ, n)Φ(−)(ξ̃, 0)

]−1
F̂ (ξ̃)

]
, x3 > 0, (3.22)

or

U(x) = F−1

ξ̃→x̃

[
Φ(+)(ξ̃, x3)

[
T (−iξ, n)Φ(+)(ξ̃, 0)

]−1
F̂ (ξ̃)

]
, x3 < 0. (3.23)
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Proof. It suffices to show that the vector functions (3.22) and (3.23) satisfy the conditions (3.13)–
(3.14). This will be done if we prove that the following relations hold for all x ∈ R3:

xjF−1

ξ̃→x̃
[Û(ξ̃, x3)] = O(1), j = 1, 2, 3, (3.24)

and
x2jF−1

ξ̃→x̃
[Û(ξ̃, x3)] = O(1), j = 1, 2, 3, (3.25)

where Û(ξ̃, x3) is defined by (3.4) or (3.5).
Under the restriction on F we conclude that F̂ ∈ S(R2) and F̂ (ξ̃) = O(|ξ̃|3) as |ξ̃| → 0, where S

is the space of rapidly decreasing functions. Therefore in view of (3.11)–(3.12) we have

∂Û(ξ̃, x3)

∂ξj
= O(1), |ξ̃| → 0,

∂Û(ξ̃, x3)

∂ξj
= O(|ξ̃|−k), |ξ̃| → ∞, k ≥ 2,

(3.26)

uniformly for all x ∈ R3.
For j = 1 or j = 2, we find

xj

∫
R2

Û(ξ̃, x3) e
−iξ̃·x̃ dξ̃ = i

∫
R2

Û(ξ̃, x3)
∂e−iξ̃·x̃

∂ξj
dξ̃ = i lim

R→∞

∫
K(0;R)

Û(ξ̃, x3)
∂e−iξ̃·x̃

∂ξj
dξ̃

= −i lim
R→∞

( ∫
K(0;R)

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃ −

∫
∂K(0;R)

Û(ξ̃, x3) e
−iξ̃·x̃ ξj

R
ds

)

= −i lim
R→∞

∫
K(0;R)

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃ = −i

∫
R2

∂Û(ξ̃, x3)

∂ξj
e−iξ̃·x̃ dξ̃, (3.27)

where K(0, R) is the circle of radius R centered at the origin.
It is clear that the relations (3.26) and (3.27) imply (3.24). The condition (3.25) can be proved

similarly if we note that

∂2Û(ξ̃, x3)

∂ξ2j
= O

(
|ξ̃|−1

)
, |ξ̃| → 0,

∂2Û(ξ̃, x3)

∂ξ2j
= O(|ξ̃|−k−1), |ξ̃| → ∞, k ≥ 2,

uniformly for all x ∈ R3.
For arbitrary x3 > 0 we can write

x3F−1

ξ̃→x̃
[Û(ξ̃, x3)] = x3

∫
R2

(∫
ℓ−

A−1(−iξ) e−iξ3x3 dξ3

)
[T (−iξ, n)Φ(−)(ξ̃, 0)]−1F̂ (ξ̃) e−iξ̃·x̃ dξ̃. (3.28)

Due to Lemma 3.3 in [15] the entries of the matrix A−1(−iξ) are homogeneous functions in ξ and

A−1(−iξ) =

[
[O(|ξ|−2)]5×5 [O(|ξ|−3)]5×1

[0]1×5 O(|ξ|−2)

]
6×6

. (3.29)

Using the Cauchy integral theorem for analytic functions and the relations (3.6), (3.29), from
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(3.28) we get

x3F−1

ξ̃→x̃
[Û(ξ̃, x3)]

= x3

∫
R2

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

] [
[O(1)]5×5 [O(|ξ̃|−1)]5×1

[0]1×5 O(1)

]
F̂ (ξ̃) dξ̃

= x3

∫
R2

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
F̂ (ξ̃) dξ̃ = I1 + I2,

where

I1 = x3

∫
|ξ|≤M

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
F̂ (ξ̃) dξ̃,

I2 = x3

∫
|ξ|>M

e−|ξ̃|x3

[
[O(|ξ̃|−1)]5×5 [O(|ξ̃|−2)]5×1

[0]1×5 O(|ξ̃|−1)

]
F̂ (ξ̃) dξ̃

for some positive number M .
Since F̂ (ξ̃) ∈ S(R2), it is easy to check that I1 = O(1) and I2 = O(1) and hence (3.24) holds.
We can prove the boundedness of the vector function x23F−1

ξ̃→x̃
[Û(ξ̃, x3)] quite similarly taking into

account that F̂ (ξ̃) = O(|ξ̃|3) as |ξ̃| → 0.
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