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ON ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF A LINEAR FRACTIONAL DIFFERENTIAL EQUATION
WITH A VARIABLE COEFFICIENT



Abstract. The paper deals with qualitative analysis of solutions of a test linear differential equation
involving variable coefficient and derivative of non-integer order. We formulate upper and lower
estimates for these solutions depending on boundedness of the variable coefficient. In the special case
of asymptotically constant coefficient, we present the sufficient (and nearly necessary) conditions for
the convergence of solutions to zero.*
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1 Introduction

During several last decades, derivatives and integrals of non-integer orders, the so-called fractional
derivatives and integrals, serve as an effective tool for modelling of many interesting technical and
physical problems originating, e.g., in control theory, rheology, anomalous diffusion, chemistry (see,
e.g., [4,7]). The extensive applications of this theory bring the need to understand well basic behaviour
of the solutions of differential equations containing fractional derivatives.

Starting point for introductory investigation of the qualitative properties of fractional differential
equations is the test equation of the form

oy(t) = Xy(t), a€(0,1), AeR, (1.1)
D§~'y(0) = yo, yo € R. (1.2)

The asymptotic behaviour of (1.1),(1.2) was extensively studied by many authors (see, e.g., [6-8])
and their results can be summarized as

Theorem 1.1. Let a € (0,1), A € R. Then the following statements hold:
(i) All solutions of (1.1) eventually tend to zero if and only if A < 0.
(if) All non-trivial solutions of (1.1) are eventually unbounded if and only if A > 0.

Analogous results were obtained for the modifications of (1.1) including vector cases [6,8], delay [1]
or discretized operators [2].

Although the statement of Theorem 1.1 seems to be quite similar to the results known from the
classical analysis of the equation y'(t) = Ay(t), fractional differential equations show several distinguish
properties. Most apparent difference occurs for A = 0, where in the integer-order case the solutions
are known to be bounded but they do not tend to zero. Theorem 1.1 does not discuss the decay rate
of solutions. If A < 0, unlike for the integer-order differential equations, the solutions of (1.1) do not
tend to zero exponentially, but algebraically (this decay depends on the derivative order «).

The goal of this paper is to generalize Theorem 1.1 for the linear fractional differential equation
with variable coefficient, i.e.,

DGy(t) = f(t)y(t), a€(0,1), AeR, (1.3)

where f is a continuous bounded real function and (1.2) is supplied as the initial condition.

Fractional differential equations with variable coefficients are usually studied in the literature from
the viewpoint of constructing the solutions with no particular stress put on qualitative properties of
such solutions (see, e.g., [10]). In [8,9], the authors considered (1.3) in the vector form and attempted
to employ Gronwall’s inequality to perform qualitative analysis, however the resulting assertions and
proof techniques contain some unfeasible conditions and incorrect assumptions.

This paper is organized as follows. Section 2 presents basic definitions and preliminary results.
Main results are contained in Section 3 including the corresponding proofs. Section 4 concludes the
paper by some comments and remarks.

2 Preliminaries

Throughout this paper, we employ the Riemann—Liouville derivative of order «. It is introduced as
follows: First, let y be a real scalar function defined on (0, 00). For v € (0, 00), the fractional integral

of y is defined as
t

_ e\yr—1
Dy = [ U= e)de, te (0,00),
0

and, for a € (0,00), the Riemann-Liouville fractional derivative of y is defined as

dlel

= o (Dy Ty (1)), t € (0,00),

Dgy(t)



74 Tomas Kisela

where [ -] denotes the ceiling function (also called upper integer part). We put DJy(t) = y(t) (for
more on fractional calculus see, e.g., [5,7]).
It is well-known that the solution of (1.1), (1.2) is given by

y(t) = yot* " Ea o (A7),
where F, . denotes the two-parameter Mittag—Lefller function introduced generally via the series
J

Eus®) = 2 5057 5)

j=0

, 2z€C, n,p € (0,00). (2.1)

The Mittag—Leffler function is known to play a role of generalized exponential function within frac-
tional calculus. Hence, asymptotic behaviour of (2.1) is essential with respect to the qualitative
analysis of fractional differential equations. For some of these properties relevant for this paper see,
e.g., [3,7,11].

Lemma 2.1. Let n, 5 € (0,00). Then E, g(z) is positive and increasing for z € R.
Lemma 2.2. Let n,8 € (0,00), A € R.
(i) If A >0, then

A1=8)/n

tPLE, s(MT) = exp(A\Yt) + OP 2171 s t — oo.

(ii) If A= 0, then
et

L(n)

71, (M) =

(iii) If A < 0, then

_th—n—1 o311
. NXG—n) +O(t ), B#mn,
tPTLE, s(MT) = - as t — oo.
-t —op—1 _

We note that the O-symbol for any functions g, h is introduced as g(t) = O(h(t)) as t = oo if and
only if there exist reals to, M such that |g(t)| < M|h(t)| for all ¢ > ¢,.

3 Main results

In this section we study asymptotic properties of solutions of (1.3) based on the boundedness of the

variable coefficient f. We supply (1.3) with the initial condition (1.2) where, without loss of generality,

we assume yo € (0, 00) throughout this section.

Lemma 3.1. Let o € (0,1), U,L € R and let f be a continuous real function such that
L<f(t)<U forall t€(0,00).

Then every solution y of (1.3), (1.2) satisfies

Yot® By o (LtY) < y(t) < yot® ' EL o (UtY) for all t € (0, 00).
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Proof. First we show that y(t) > yot® 1 E, o(LtY) for all t > 0. We introduce an auxiliary function
€~ via the relation e~ (¢t) = f(t) — L, i.e. L = f(t) —e(t). Clearly, ¢~ is non-negative and bounded
by U — L. This enables us to rewrite (1.3) as

Dgy(t) = Ly(t) + e~ @)y(t).

We denote by y& the solution of D§y(t) = Ly(t), D§y(0) = 1. Hence, based on the variation of
constants formula, the solution y of (1.3), (1.2) satisfies

y(t) = yoyr (t +/y£ (t—=&em(§)y(8) dE. (3.1)

Due to Lemma 2.1 we have 0 < yZ(t) for all ¢ € (0, 00). Assume that there exists t such that
y(t) < yoyk (). Relation (3.1) implies that there exists to € (0,t) such that

y(t) > yoyk (t) for all t € (0,t0).

Since y is a continuous function, ¢y can be chosen so that y(to) = yoyE (to). Therefore, by (3.1), we get
to
[ vkt -9 @i ag =o. (32)
0

Since yﬁ and £~ are non-negative functions, (3.2) implies that there exists a subset of non-zero measure
of (0,to) where y is negative, which leads to a contradiction. Hence, y(t) > yoyE (t) = yot® ' Eq.o(Lt%)
for all ¢ > 0.

The second part of the inequality, i.e., y(t) < yot® L Eq o(UtY) for all t > 0, is proved analogously
by using the auxiliary non-negative function e defined via the relation e*(¢t) = U — f(¢). That
concludes the proof. O

This enables us to formulate

Theorem 3.2. Let « € (0,1), U,L € R, ¢ty € (0,00) and let f be a bounded continuous function.
Further, let L < f(t) < U for allt € (tg,0).

(i) If U < 0, then all solutions of (1.3) tend to zero. Moreover, every non-trivial solution y of
(1.3), (1.2) satisfies KLt=o=1 < y(t) < KVt=2=! as t — oo for suitable positive real constants
KL KU,

(ii) If U = 0, then all solutions of (1.3) tend to zero. Moreover, every non-trivial solution y of
(1.3), (1.2) satisfies KLt < y(t) < KVt~ as t — oo for suitable positive real constants
KL, KU,

(iii) If L > 0, then all non-trivial solutions of (1.3) are unbounded.

Proof. (i) Since f is bounded, Lemma 3.1 implies that the solution y of (1.3) is positive.
First let us prove that y(t) < KVt=*"1 ast — oo for suitable real KY. We denote et (t) = U — f(t)
and, using similar approach as in the proof of Lemma 3.1, rewrite the solution of (1.3) as

y(t) = you¥ () - / y (t - €)™ (€)(E) dt — / g (= )t (E)y(€) de. (3.3)

Now, we investigate each term of (3.3) separately. The asymptotic behaviour of the first term is
known, indeed, due to U < 0 and Lemma 2.2, we have

—yot— !

m + O(t_2a_1) as t — oo. (34)

Yoyr (t) = yot® 1 Eu o (UtY) =
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The middle term of (3.3) contains positive functions y¥, y and the function e* which is allowed to
change its sign on (0, o), but is bounded, i.e., there exists m such that [T (t)| < m for all t € (0, o).
Thus, we get

to

} S PAGRGIE df] < [t - 9l © e ae
0 0

to
—yot— 1 Coa— —a—
< m(m + 0Ot 1)) /y(f) d¢ < Kt7> ' as t =00, (3.5)
0

where we have used the fact that the solution y of (1.3) is integrable (see, e.g., [5,7]).
The third term of (3.3) contains only positive functions y¥, y and et (more precisely, e* is non-
negative for ¢t € (0,00)). Considering this along with (3.4), (3.5), we can estimate (3.3) as

y(t) < KVt 71 as t — oo,

where KU is a suitable positive real constant. R
The second part of the inequality, i.e., y(t) > KXt=*~1 can be proved analogously.
The assertions (ii), (iii) can be proved by using similar steps as for (i). O

Theorem 3.2 directly implies the following results for f being asymptotically constant.

Corollary 3.3. Let a € (0,1), P € R and let f be a bounded continuous function such that

lim f(t) = P.

t—c0
Then the following statements hold:

(i) All solutions of (1.3) eventually tend to zero if P < 0.

(if) All non-trivial solutions of (1.3) are eventually unbounded if P > 0.

We can see that Corollary 3.3 is nearly in the effective form. The only case holding us from
formulating not only sufficient but also necessary conditions, is P = 0. Theorem 1.1 indicates that
A = 0 plays a role of stability boundary for (1.1), (1.2). Corollary 3.3 therefore further highlights the
special importance of the zero right-hand side of fractional differential equations.

Lemma 3.1 implies that if f is allowed to change its sign, the solutions of (1.3) can tend to zero
and be unbounded. In particular, we can see that if f is non-positive and tends to zero, the solutions
of (1.3) tend to zero (see Theorem 3.2(ii)). None of Theorems 1.1, 3.2 discusses situations when f
tends to zero and is positive or oscillates. To illustrate the range of possible behaviours of solutions
(1.3) in such cases, we consider the following examples:

(A) Let f be a bounded continuous function satisfying

lim f(t) =0 and f(t) > Kt 7,

t—o0

where v € (0,00), « € (0,1) and K is a positive real. Then the solution y of (1.3), (1.2) can be
estimated as

a—1 _ a—1
y(t) = y% + / E=O peyy(e) de
0

I'(«)
ta_l L (t _ f)a—l Ké-a—’y—l B ta_l KP(CV _’7) t2a—'y—1
= 00T +/ Ma) T “ %@ " T@ Tea_v)
0

Obviously, if v € (0,2a — 1) and « € (1/2,1), then y is eventually unbounded.
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(B) Let f be a bounded continuous function such that
f(t)>0 for t € (0,00) and f(t) =0 for ¢ € (¢, 0),

where ¢y € (0,00), a € (0,1). As in the proof of Theorem 3.2, the solution y of (1.3) can be
estimated as

t
tozfl Kl (t _ to)a71 ? tOéfl Kg(t _ to)a71

where K7, Ky are suitable positive reals. Obviously, y tends to zero.

Remark. The assumption of yg € (0,00) made throughout this section is not essential. Clearly, if
Yo € (—00,0), then the resulting inequalities only change their orientation.

4 Conclusions

We have studied asymptotic properties of solutions of the linear fractional differential equation with
variable coefficient (1.3)).

Lemma 3.1 implies that if f is bounded, then the corresponding solution of (1.3) is bounded
by the solutions of (1.1) for particular choices of A depending on the bounds of f. Consequently,
Theorem 1.1 shows that the solutions of (1.3) pose algebraic decay or exponential growth if f is
bounded and non-positive or positive, respectively.

The assumptions on the sign of f needed in Theorem 1.1 were weakened in Theorem 3.2 where
the fixed sign of f is required only for sufficiently large ¢t. Finally, Corollary 3.3 outlines the specific
case of asymptotically constant coefficient f. In particular, if f tends to a non-zero constant, the
full discussion of asymptotic behaviour is presented. If f tends to zero, solutions can be eventually
unbounded or tending to zero depending on decay rate of f as illustrated by the examples.

Possible future research directions are a deeper analysis of the case when f asymptotically ap-
proaches zero, and various generalizations of (1.3) to multi-term equations or vector forms.
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