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Abstract. Problems in technology lead to initial boundary value problems for partial differential
equations. Material properties which appear in constitutive relations are obtained by measurements.
These data are uncertain and thus are known to some extent only. Using their mean values in numerical
modelling cause several serious failures in technology.

The problem of finding a reliable solution by uncertain data is solved by the so-called worst scenario
method introduced by Ivo Babuška and Ivan Hlaváček. The method consists in looking for the worst
scenario that may appear in the case of any admissible data, the badness of situation is estimated by
means of a criterion-functional evaluating critical parts of the body.

In the contribution, the worst scenario method is applied to boundary value problems for nonlinear
equation with a scalar hysteresis operator F or its inverse G of Prandtl–Ishlinskii type. The method
demands special construction of admissible data and estimates the hysteresis operators. The existence
of a reliable solution for the initial boundary value problem for the heat conduction or the diffusion
equation c ut = (Fη[ux])x + f with various types of criterion-functionals is proved.∗
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ÒÄÆÉÖÌÄ. ÔÄØÍÏËÏÂÉÉÓ ÀÌÏÝÀÍÄÁÓ ÌÉÅÚÀÅÀÒÈ ÊÄÒÞÏßÀÒÌÏÄÁÖËÉÀÍÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏ-
ËÄÁÄÁÉÓÈÅÉÓ ÃÀÓÌÖË ÓÀßÚÉÓ-ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÀÌÃÄ. ÌÀÔÄÒÉÀËÖÒÉ ÌÀáÀÓÉÀÈÄÁËÄÁÉ,
ÒÏÌËÄÁÉÝ ÌÏÍÀßÉËÄÏÁÓ ÊÏÍÓÔÉÔÖÝÉÖÒ ÈÀÍÀ×ÀÒÃÏÁÄÁÛÉ, ÌÉÙÄÁÖËÉÀ ÂÀÆÏÌÅÉÓ ÓÀÛÖÀËÄ-
ÁÉÈ. ÄÓ ÌÏÍÀÝÄÌÄÁÉ ÌáÏËÏÃ ÂÀÒÊÅÄÖËÉ ÓÉÆÖÓÔÉÈ ÀÒÉÓ ÝÍÏÁÉËÉ. ÌÀÈÉ ÓÀÛÖÀËÏ
ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÂÀÌÏÚÄÍÄÁÀÌ ÒÉÝáÅÉÈ ÌÏÃÄËÉÒÄÁÀÛÉ ÂÀÌÏÉßÅÉÀ ÒÀÌÃÄÍÉÌÄ ÔÄØÍÏËÏÂÉÖÒÉ
ÌÀÒÝáÉ.

ÂÀÍÖÓÀÆÙÅÒÄË ÌÏÍÀÝÄÌÉÓ ÓÀÛÖÀËÄÁÉÈ ÓÀÉÌÄÃÏ ÀÌÏÍÀáÓÍÉÓ ÌÏÞÄÁÍÉÓ ÀÌÏÝÀÍÀ ÂÀÃÀßÚÅÄ-
ÔÉËÉÀ ÉÅÏ ÁÀÁÖÛÊÀÓ ÃÀ ÉÅÀÍ äËÀÅÀÜÄÊÉÓ ÌÉÄÒ ÛÄÌÏÔÀÍÉËÉ Ä.ß. ÖÀÒÄÓÉ ÓÝÄÍÀÒÉÓ ÌÄÈÏ-
ÃÉÈ. ÌÄÈÏÃÉ ÌÃÂÏÌÀÒÄÏÁÓ ÉÌ ÖÀÒÄÓÉ ÓÝÄÍÀÒÉÓ ÌÏÞÄÁÍÀÛÉ, ÒÏÌÄËÉÝ ÛÄÉÞËÄÁÀ ÂÀÌÏÜÍÃÄÓ
ÍÄÁÉÓÌÉÄÒÉ ÃÀÓÀÛÅÄÁÉ ÌÏÍÀÝÄÌÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ. ÓÉÔÖÀÝÉÉÓ ÖÀÒÄÓÏÁÀ ÛÄ×ÀÓÄÁÖËÉÀ ÓáÄÖ-
ËÉÓ ÊÒÉÔÉÊÖËÉ ÍÀßÉËÄÁÉÓ ÊÒÉÔÄÒÉÖÌ-×ÖÍØÝÉÏÍÀËÖÒÉ ÛÄ×ÀÓÄÁÉÓ ÓÀÛÖÀËÄÁÉÈ.

ÖÀÒÄÓÉ ÓÝÄÍÀÒÉÓ ÌÄÈÏÃÉ ÂÀÌÏÚÄÍÄÁÖËÉÀ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÛÉ ÀÒÀßÒ×ÉÅÉ ÂÀÍÔÏËÄ-
ÁÉÓÈÅÉÓ ÓÊÀËÀÒÖËÉ äÉÓÔÄÒÄÆÉÓÉÓ F ÏÐÄÒÀÔÏÒÉÈ ÀÍ ÌÉÓÉ ÐÒÀÍÃÔË-ÉÛËÉÍÓÊÉÓ ÔÉÐÉÓ G
ÛÄÁÒÖÍÄÁÖËÉÈ. ÌÄÈÏÃÉ ÌÃÂÏÌÀÒÄÏÁÓ ÛÄÓÀÞËÏ ÌÏÍÀÝÄÌÄÁÉÓ ÓÐÄÝÉÀËÖÒ ÊÏÍÓÔÒÖØÝÉÀÛÉ
ÃÀ äÉÓÔÄÒÄÆÉÓÉÓ ÏÐÄÒÀÔÏÒÄÁÉÓ ÛÄ×ÀÓÄÁÀÛÉ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÓÉÈÁÏÂÀÌÔÀÒÄÁËÏÁÉÓ ÀÍ
ÃÉ×ÖÆÉÉÓ c ut = (Fη[ux])x + f ÂÀÍÔÏËÄÁÉÓÈÅÉÓ ÓÀßÚÉÓÉ ÀÌÏÝÀÍÉÓ ÓÀÉÌÄÃÏ ÀÌÏÍÀáÓÍÉÓ
ÀÒÓÄÁÏÁÀ ÓáÅÀÃÀÓáÅÀ ÔÉÐÉÓ ÊÒÉÔÄÒÉÖÌ-×ÖÍØÝÉÏÍÀËÉÓÈÅÉÓ.

∗Reported on Conference “Differential Equation and Applications”, September 4-7, 2017, Brno
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1 Introduction
Many problems in technology can be modelled by the initial boundary value problems for partial
differential equations with a hysteresis operator. Among them let us consider a scalar one-dimensional
equation

c ut = qx + f , q = k ux, x ∈ (0, ℓ), t ∈ (0, T ),

which can be physically interpreted as the heat conduction in a one-dimensional body, particularly in
a bar (0, ℓ). The unknown u(x, t) is the temperature, q(x, t) is a negative heat flow, c is specific heat
capacity and k is thermal conductivity. We take a negative heat flow q in order to obtain the linear
Fourier law q = k ux with positive k > 0 instead of the usual Fourier law q = −k ux with (positive)
heat flow q. We replace this Fourier law by the relation q = F [ux] with a hysteresis operator F which
describes behavior of a rate-independent material with memory or phase transition. In this way we
obtain the equation

c ut = qx + f , q = F [ux], x ∈ (0, ℓ), t ∈ (0, T ).

The equation contains material parameters, which are not known exactly, since they are obtained
by measurements. They are uncertain, i.e., they are known to some extent only. In the past, using
mean values of the data in the process of mathematical modelling caused several serious failures in
technology. This problem with uncertain data has been solved by I. Babuška and I. Hlaváček in a
series of papers, see [6, 7]. They proposed the so-called worst scenario method.

The method takes into account all data, i.e., all material parameters from their range of uncertainty.
Using a criterion-functional which measures the badness of the situation, we seek for the worst scenario
that may appear. The method is used in engineering for its simplicity: the model is deterministic (no
need to deal with stochastic models), and optimization tools can be used for computing the maximum:
theory, numeric analysis and the corresponding software.

The problem of longitudinal vibration of a nonhomogeneous elasto-plastic rod including homog-
enization problem was solved in [2]. The one-dimensional diffusion equation with a scalar hysteresis
operator was solved in [3] and a higher space dimensional heat equation with a scalar hysteresis opera-
tor including homogenization problem was studied in [4]. Reliable solutions of the problem of periodic
oscillations of an elasto-plastic beam was studied in [9]. Reliable solutions of a homogenization problem
with monotone operators was studied in [5].

In the contribution, we study the initial boundary value problem for a nonlinear heat conduction
equation (or diffusion equation) with a hysteresis operator of Prandtl–Ishlinskii type. These hysteresis
operators are described and studied in e.g. [1, 8, 10]. The aim of the contribution is to propose sets
for admissible data, criterion-functionals and to prove the existence of the worst scenario solution.

The paper is organized as follows. Section 2 contains the survey of hysteresis operators and their
properties, in Section 3, the existence of a solution of the initial boundary value problem is proved,
and the worst scenario method applied to the problem is considered in Section 4 including the setting
of a set of admissible data and proposals of various criterion-functionals.

2 Hysteresis operators
In this section we deal with the one-dimensional hysteresis operators. These operators acting in a
space of real functions on an interval I = ⟨0, T ⟩ representing time can be simply characterized by the
following properties. The hysteresis operators T are:

• rate independent – the output T [v] is independent of speed of the input v: T [v◦φ](t) = T [v](φ(t))
for any increasing mapping φ from I onto I,

• causal – the output is independent of future input, i.e., if u(s) = v(s) for all s ≤ t, then
T [u](t) = T [v](t),

• locally monotone – a locally non-decreasing input yields a locally non-decreasing output and
also a non-increasing input provides a non-increasing output, i.e.,

T [v]′(t) · v′(t) ≥ 0 for a.e. t ∈ I.
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For more detailed study of hysteresis operators we can recommend [1,8, 10].

2.1 Stop and play operators
Here we deal with hysteresis operators of Prandtl–Ishlinskii type. These operators are defined by
means of operators called as a stop and a play operator with one parameter r > 0. Their definition
is based on the solution of the following variational inequality. Let v ∈ W 1,1(I) be an input function
and s0r ∈ ⟨−r, r⟩ be an initial state. We look for a function s ∈W 1,1(I) satisfying:

|s(t)| ≤ r ∀ t ∈ I, s(0) = s0r,

(s′(t)− v′(t))(s̃− s(t)) ≥ 0 ∀ |s̃| ≤ r, a.e. t ∈ I.
(2.1)

It should be noted that the above inequality yields s′(t) = v′(t) provided s(t) is inside the interval
(−r, r). If s(t) = r and v is increasing, then s′(t) = 0 and, also, if s(t) = −r and v is decreasing, then
likewise s′(t) = 0.

The inequality admits a unique solution s ∈ W 1,1(I) which defines the elementary hysteresis
operators:

Definition 2.1. The solution s(t) of the variational inequality (2.1) defines two complementary
operators: the stop operator Sr and the play operator Pr:

Sr[v](t) := s(t), Pr[v](t) := v(t)− s(t), t ∈ ⟨0, T ⟩. (2.2)

To simplify the notation, we have taken for the input v(t) the so-called virgin initial state
s0r = min{r,max{−r, v(0)}} and omit s0r in the notation of the operators. We also put the input
v into square brackets to indicate that the dependence is not local: the value at time t depends on
values on the whole interval ⟨0, t⟩. Let us note that the stop operator can be equivalently introduced
on each interval of monotonicity ⟨ta, tb⟩ of the input v(t) by the relation

Sr[v](t) = min
{
r,max

{
− r,Sr[v](ta) + v(t)− v(ta)

}}
∀ t ∈ (ta, tb⟩.

Both stop and play operators are rate independent, causal and locally monotone, and in addition,
they satisfy Sr[v]

′(t) · Pr[v]
′ = 0 for a.e. t ∈ I.

Values of the stop and play operators can be visualized by the so-called “piston in cylinder model”.
Let us consider a piston freely moving in a cylinder of length 2r. Position of the piston is the input
v(t), position of the cylinder center is the value of the play operator Pr[v](t), while the position of the
piston with respect to the cylinder center is the value of the stop operator Sr[v](t).

-

6

-

vPr[v]

Sr[v]

0

Piston in the cylinder model for the stop and play operators.

In mechanics, the stop operator Sr can be interpreted as the output stress Sr[v](t) = s(t) of an
elasto-plastic material caused by the input strain (deformation) v(t). Its rheological element consists
of an elastic and a friction element combined in series. On the other hand, the play operator Pr can
be interpreted as the output strain Pr[v](t) = v(t) − s(t) of an elasto-plastic material caused by the
input stress v(t). Its rheological element consists of an elastic and a friction elements combined in
parallel. In both cases the elasticity modulus is 1 and plasticity limit is r.

Plane diagram [v,Sr[v]] of the stop operator has straight line segments with slope 0 or 1 with
concave increasing branches and convex decreasing branches, while the plane diagram [v,Pr[v]] of the
play operator has also straight line segments with slope 0 or 1, whereas the increasing branches are
convex and decreasing branches are concave:
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Diagrams of the stop operator v 7→ Sr[v] and the play operator v 7→ Pr[v] .

Let us consider the properties of the stop and play operators (for proofs see, e.g., [2]).

Proposition 2.2. Let v1, v2 ∈W 1,1(I) and put si(t) = Sr[vi](t), pi(t) = Pr[vi](t), i = 1, 2. Then we
have

(p′1(t)− p′2(t))(s1(t)− s2(t)) ≥ 0, for a.e. t ∈ I, (2.3)
|p1(t)− p2(t)| ≤ max

{
|p1(0)− p2(0)|, ∥v1 − v2∥⟨0,t⟩

}
for t ∈ I, (2.4)

|s1(t)− s2(t)| ≤ ∥v1 − v2∥⟨0,t⟩ for t ∈ I. (2.5)

2.2 Prandtl–Ishlinskii operators
Diagrams of the stop and play operators consist of straight line segments with two slopes. But
diagrams of the real elasto-plastic materials have curved changing slope branches. To obtain such
diagrams we combine the operators with different parameters r of various weights.

The Prandtl–Ishlinskii operator F of stop type is defined as a parallel combination of the stop
operators with increasing parameters ri and various weights ci

F [v] = c1Sr1 [v] + c2Sr2 [v] + · · ·+ cnSrn [v] + c∞v.

The combination can be rewritten with Stieltjes integral

F [v] = η(∞) v −
∞∫
0

Sr[v]dη(r)

by a non-increasing distribution function η(r), where η(r) = c∞ for r ∈ ⟨rn,∞), η(r) = ci + ci+1 +
· · ·+ cn + c∞ for r ∈ ⟨ri−1, ri), i = 1, 2, . . . , n− 1, where r0 = 0.

The Stieltjes integral enables us to cover both the discrete combination of stop operators Sri ,
when η is piecewise constant, and a continuous combination of stop operators Sr if η is a continuous
function.

Definition 2.3. Let α, β ∈ R be positive constants, αβ < 1 and let η : ⟨0,∞) → ⟨0,∞) be a non-
increasing right continuous function satisfying α ≤ η(r) ≤ 1

β for all r. Then the Prandtl–Ishlinskii
operator of stop type is given by

Fη[v](t) := η(∞) v(t)−
∞∫
0

Sr[v](t)dη(r) . (2.6)

In the case of elasto-plastic material, the dependence of the stress q on strain e = ux can be
modelled by this operator as

q(t) = Fη[e](t). (2.7)

The corresponding diagram of dependence of q(t) on e(t) is an oriented continuous curve with concave
increasing and convex decreasing parts.

Similarly, the Prandtl–Ishlinskii operator of play type is defined as a serial combination of the play
operators with increasing ri. Again, we use the Stieltjes integral by a non-decreasing function η which
enables us to describe both discrete and continuous combinations:
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Definition 2.4. Let α, β ∈ R be positive constants, αβ < 1 and let ζ : ⟨0,∞) → ⟨0,∞) be a non-
decreasing right continuous function satisfying β ≤ η(r) ≤ 1

α for all r. Then the Prandtl–Ishlinskii
operator of play type is given by

Gζ [v](t) := ζ(0) v(t) +

∞∫
0

Pr[v](t)dζ(r). (2.8)

In the case of elasto-plastic material, the dependence of the strain e on the stress q can be modelled
by this operator as

e(t) = Gζ [q](t). (2.9)
The corresponding diagram of the dependence of e(t) on q(t) is an oriented continuous curve with
convex increasing and concave decreasing parts.

For the increasing input v(s) = s, s ∈ ⟨0,∞) and the Prandtl–Ishlinskii operator of stop type we
obtain the so-called virgin curve φ(s) = F [v](s) which is a continuous increasing concave unbounded
function on R+. Similarly, for the input v(t) = t, t ∈ ⟨0,∞) and the Prandtl–Ishlinskii operator
of play type we obtain the curve ψ(t) = G[v](t) which is a continuous increasing convex unbounded
function on R+.

Let these functions φ, ψ be a pair of increasing mutually inverse functions, i.e.,

t = φ(s) ⇐⇒ s = ψ(t), s, t ∈ ⟨0,∞). (2.10)

Moreover, the function φ is concave if and only if ψ is convex.
Definition 2.5. Let α, β > 0, αβ < 1 be positive constants. We say that the functions [η, ζ] defined
on R+ form a pair of Prandtl–Ishlinskii distribution functions if they are right continuous, η non-
increasing, ζ non-decreasing, they satisfy

α ≤ η(r) ≤ 1

β
and β ≤ ζ(r) ≤ 1

α
(2.11)

and their primitive functions

φ(s) =

s∫
0

η(r)dr, ψ(t) =

t∫
0

ζ(r)dr

are mutually inverse, i.e., they satisfy (2.10). The set of all such pairs of distribution functions will
be denoted by PI(α, β) and the set of ζ by PI+(α, β).

These pairs of distribution functions define mutually inverse operators:
Proposition 2.6. Let (η, ζ) ∈ PI(α, β). Then the corresponding Prandtl–Ishlinskii operators are
mutually inverse, i.e., for each inputs e, q

q(t) = Fη[e](t) if and only if e(t) = Gζ [q](t). (2.12)

2.3 Properties of the operators
Let α, β > 0, αβ < 1 and (η, ζ) ∈ PI(α, β). Let us consider the properties of the corresponding
Prandtl–Ishlinskii operators. They are locally monotone and Lipschitz continuous (for proofs, see [2,
Propositions 2.7–2.12].
Proposition 2.7. Let α, β > 0, αβ < 1, (η, ζ) ∈ LP (α, β). Then the corresponding operators F and
G map W 1,∞(I) into W 1,∞(I) and also W 1,1(I) into W 1,1(I).

Let further q ∈ W 1,1(I) and put e = Gζ [q] or, equivalently, q = Fη[e]. Then for a.e. t ∈ I, the
derivatives exist and the following estimates hold:

α(e′(t))2 ≤ e′(t) q′(t) ≤ 1

β
(e′(t))2, (2.13)

β(q′(t))2 ≤ e′(t) q′(t) ≤ 1

α
(q′(t))2. (2.14)
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The following estimates ensure the Lipschitz continuity of the operators:

Proposition 2.8. Let (η, ζ) ∈ LP (α, β) and q1, q2, e1, e2 ∈W 1,1(I). Then for t ∈ I, we have∣∣Fη[e1](t)−Fη[e2](t)
∣∣ ≤ ( 2

β
− α

)
· ∥e1 − e2∥⟨0,t⟩, (2.15)∣∣Gζ [q1](t)− Gζ [q2](t)

∣∣ ≤ 1

α
· ∥q1 − q2∥⟨0,t⟩. (2.16)

The following estimate is a consequence of (2.3) (see also [2, 3]):

Proposition 2.9. Let ζ ∈ LP+(α, β) and q1, q2 ∈W 1,1(I). Then for a.e. t ∈ I, we have

(
Gζ [q1](t)− Gζ [q2](t)

)
t
(q1 − q2) ≥

β

2

d
dt [(q1 − q2)

2]. (2.17)

Finally, the following estimate yields the dependence of the operator Gζ on the distribution func-
tions ζ (for proof see, e.g., [2, Proposition 2.10]).

Proposition 2.10. Let ζ1, ζ2 ∈ PI+(α, β) be two distribution functions, Gζ1 , Gζ2 be the corresponding
operators and q1, q2 ∈W 1,1(I) be arbitrary input functions. Then

∥Gζ1 [q1]− Gζ2 [q2]∥[0,t] ≤ ζ1(∞)∥q1 − q2∥[0,t] +

∥q2∥[0,t]∫
0

|ζ1(r)− ζ2(r)|dr. (2.18)

2.4 Space dependent case
In case of nonhomogeneous materials the material properties depend even on the space variable x.
Thus both function η and ζ are not only the functions of r, but in addition, they depend on the space
variable x, i.e., η = η(x, r) and ζ = ζ(x, r).

3 Heat conduction and diffusion equation with
hysteresis operator

We deal with the following equations:

c ut = qx + f, q = Fη[ux] or, equivalently, ux = Gζ [q] (3.1)

on x ∈ Ω ≡ (0, ℓ) and t ∈ I ≡ (0, T ) with a pair of mutually inverse hysteresis operators Gζ or Fη.
The equations are completed with the boundary conditions, e.g.,

u(0, t) = 0, q(ℓ, t) = 0 for t ∈ I (3.2)

and the standard initial condition

u(x, 0) = u0(x) for x ∈ Ω. (3.3)

The problem can be physically interpreted as the heat conduction or the diffusion problem in some
materials with a changing phase in a bar (0, ℓ) and time (0, T ). In the case of heat conduction, the
variable u stands for temperature and q for a negative heat flow, and in the case of diffusion problem,
u denotes concentration and q negative mass flow.

The boundary condition u = 0 prescribes zero temperature or zero concentration on the left end
of the bar, while q = 0 means thermal or mass insulated right end of the bar. The hysteresis operator
describes the relation between the negative heat or mass flow q and the temperature or concentration
gradient e = ux.
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3.1 Solvability of the problem
Hypotheses 3.1. We adopt the following hypotheses for the data of the problem:

• c ∈ L∞(Ω) and cm ≤ c(x) ≤ cM for a.e. x ∈ Ω for some 0 < cm < cM ,

• f ∈W 1,1(I, L2(Ω)),

• η, ζ ∈ L∞(Ω × I) such that (η, ζ)(x, ·) ∈ PI(α, β) for a.e. x ∈ Ω for some constants α, β > 0,
αβ < 1,

• u0 ∈ W 1,2(Ω) and it satisfies the compatibility condition with the boundary conditions, i.e.,
u0(0) = 0 and F [u0x](ℓ) = 0.

Theorem 3.2. Let Hypotheses 3.1 hold. Then the problem has a unique solution, namely, there exist
the functions u, q ∈ C(Ω× I) and e = ux ∈ L2(Ω, C(I)) such that

ut, et, qt, qx,∈ L∞(I, L2(Ω)),

and equalities (3.1)–(3.3) hold almost everywhere.
The solution is unique. Moreover, all unknowns and their derivatives are bounded in the corre-

sponding norms by the constants depending on α, β, cm, cM and the norm of f in W 1,1(I, L2(Ω))
and u0 in W 1,2(Ω).

Let us briefly sketch the proof of the theorem (the details can be found in [3]). The proof will be
done in several steps.

3.2 Semidiscretized problem
First we convert the partial differential equation into a system of ordinary differential equations in t.
We divide the interval Ω = (0, ℓ) into n parts Ωk = (xk−1, xk), k = 1, 2, . . . , n, of length h = ℓ/n,
where xk = kh. In the semidiscretized problem, the space derivative is replaced by the difference, the
unknowns uk, ek, qk are the function of time t ∈ I approximating the value at xk = kh, k = 0, 1, . . . , n.
In this way, we obtain the following system of equations, k = 1, 2, . . . , n− 1 and t ∈ I,

ck u
′
k =

1

h
(qk+1 − qk) + fk, (3.4)

ek =
1

h
(uk − uk−1), (3.5)

ek = Gk[qk] or equivalently qk = Fk[ek], (3.6)
uk(0) = u0k , (3.7)

where ck, u0k, fk(t), ζk(r) are the integral means of the corresponding functions over the space interval
Ωk, e.g., fk(t) = 1

h

∫
Ωk

f(x, t)dx. The operator Gk is determined by the averaged distribution function

ζk(r) and Fk is the operator, inverse to the operator Gk.
We have obtained a system of ordinary differential equations (3.4) with the initial conditions (3.7)

with additional equations (3.5), (3.6). Taking qk = Fk[
1
h (uk−uk−1)] and the properties of the Prandtl–

Ishlinskii operator of stop type, the right-hand side of the ODE (3.4) are Lipschitz continuous in uk,
and thus by the Piccard theorem, the system admits unique solutions uk ∈ W 2,1(I), ek ∈ W 2,1(I)
and qk ∈W 1,∞(I).

3.3 Estimates
We use the following estimates.
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Lemma 3.3. The solutions {uk, ek, qk} to system (3.4)–(3.7) satisfies

h

n−1∑
k=1

[
(u′k)

2 +
(qk+1 − qk

h

)2]
(t) ≤ C ∀ t ∈ I, (3.8)

∫
I

h

n−1∑
k=1

[
(q′k)

2 + (e′k)
2 +

(uk − uk−1

h

)2]
(τ)dτ ≤ C, (3.9)

where the constant C is independent of n, h.

Proof. To derive the estimate, we differentiate equation (3.4), multiply it by u′k and sum it with
equation (3.5) differentiated and multiplied by q′k:

ck u
′′
ku

′
k + e′kq

′
k =

1

h
(q′k+1 u

′
k − q′k u

′
k−1) + f ′k u

′
k.

Further, summing up the equation for k = 1, 2, . . . , n− 1, we obtain for a.e. t ∈ I∑
k

ck u
′′
ku

′
k +

∑
k

e′kq
′
k =

1

h
(q′n u

′
n−1 − q′1 u

′
0) +

∑
k

f ′k u
′
k.

Owing to the boundary conditions, we have q′n = 0 and u′0 = 0. We multiply the equality by h. Since
u′′k u

′
k = 1

2 [(u
′
k)

2]′, integration of the last equality from 0 to a fixed t ≤ T yields

h
∑
k

ck
2
(u′k(t))

2 +

t∫
0

h
∑
k

e′k q
′
k dτ = h

∑
k

ck
2
(u′k(0))

2 +

t∫
0

h
∑
k

f ′k u
′
k dτ. (3.10)

Using equation (3.4), initial condition (3.7) and properties of the operator Gk, the first term with
u′k(0) can be estimated by a constant. Using the inequalities∫

I

|f(t)g(t)|dt ≤ max
I

|f(t)|
∫
I

g(t)dt,
(∫

I

f(t)dt
)2

≤ |I|
∫
I

f2(t)dt

and |ab| ≤ εa2 + 1
4εb

2, we estimate the term with f ′k∣∣∣∣
t∫

0

h
∑
k

f ′ku
′
k dτ

∣∣∣∣ ≤ εh max
t∈⟨0,t⟩

∑
k

(u′k)
2 +

t∫
0

h
∑
k

(f ′k)
2 dτ.

Since fk is the integral mean of f(x) over the interval Ωk, we have h
∑
k

fk =
∫
Ω

f(x)dx. Thus, by (2.8)

e′kq
′
k ≥ 0, for sufficiently small ε > 0, we obtain the estimate of the terms on the left-hand side of

(3.10). Using inequalities (2.14), (2.15) and equations (3.4), (3.5), we obtain the remaining estimates
of Lemma 3.3.

3.4 Approximate solutions and passage to the limit
For a fixed n, using the solutions uk, ek, qk and the data ck, fk, ζk, we construct approximated
solutions

• c(n), f (n), u(n) are “forward” piecewise constant approximate solutions defined by the relation
φ(n) = φk−1 for x ∈ Ωk,

• e(n), q(n), ζ(n) are “backward” piecewise constant approximate solutions defined by the relation
φ(n) = φk for x ∈ Ωk,

• û(n), q̂(n) are continuous piecewise linear on each Ωk approximation satisfying φ̂(n)(xk) = φk.
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The above approximations satisfy the system of equations for all t and a.e. x ∈ Ω:

c(n)u
(n)
t = q̂(n)x + f

(n)
, e

(n)
t = û(n)x , e(n) = G(n)

[q(n)]. (3.11)

Estimates (3.8), (3.9) yield the estimates of the corresponding approximate solutions u(n), e(n), q(n),
û(n) and q̂(n). By the compactness, these sequences contain converging subsequences which converge
to the functions u, e, q satisfying the problem. Thus the solution to the problem exists.

The proof of the uniqueness of a solution can be found in [3]. Since the uniqueness for the worst
scenario method is not necessary, we omit the proof. We have also proved that the unknowns in the
corresponding spaces are bounded by the constants depending on the constants ℓ, T , cm, cM , α, β
and the norms of f and u0 only.

4 Problems with uncertain data and reliable solutions
Mathematical models of particular problems in engineering contain data, mainly material constants or
constitutive relation dependence. These data are obtained by measurements and thus are not known
exactly, they are uncertain, their values are known to some extent only. Since using the mean value
of the data by modelling already caused several failures of a construction in engineering practice, Ivo
Babuška has proposed the so-called worst scenario method.

The method consists in considering the problems with all data admissible by the measurements and
the corresponding solutions. According to the character of the problem, a criterion-functional on data
and solutions is chosen. This functional should evaluate a rate of danger of the situation. The method
thus looks for the data yielding the worst situation, i.e., what the worst can happen within the given
uncertain data, although the probability may be very low. The worst scenario method for obtaining
reliable solutions was further developed by Ivan Hlaváček and others (see, e.g., [7]) and also applied
to many particular problems. The survey paper [6] can be recommended for a brief introduction.

The advantage of the worst scenario method consists in the possibility to use numerical methods,
algorithms and software developed for optimization problems. For its deterministic character the
method is much more simpler and effective than probabilistic approaches.

4.1 Worst Scenario Method
Here we describe the method. Let us denote by Pa the state problem with data a and the corresponding
solution by ua. The data a may contain coefficients of the equation, right-hand side, values in the
boundary conditions, etc. The set of all admissible values of data a will be denoted by Uad. It should
be chosen such that for each a ∈ Uad the problem Pa admits a solution ua.

The criterion-functional Φ = Φ(a, ua) “evaluating” danger of the situation will be defined on the
data a ∈ Uad and the corresponding solutions ua of the problem Pa. Then the worst scenario problem
reads:
Problem. Find the data a∗ ∈ Uad which maximize the functional Φ, i.e.,

Look for a∗ ∈ Uad s.t. Φ(a∗, ua∗) ≥ Φ(a, ua) for all a ∈ Uad. (4.1)

In the case if the solution of the problem Pa exists but is not unique, the problem is modified to:

Find a∗ ∈ Uad and u∗ ∈ Ua∗ s.t. Φ(a∗, u∗) ≥ Φ(a, u) ∀ a ∈ Uad ∀u ∈ Ua,

where Ua is the set of all solutions ua to the problem Pa with data a.
The aim of the contribution is to prove that the problem admits a solution, i.e., the functional Φ

is bounded and attains its maximum. Let us note that this maximum can be attained for more than
one data a∗ and in the case of a nonlinear problem the maximum can be reached for the data a∗ in
the interior of the set Uad of admissible data, i.e., not on the boundary of Uad as in the case of a linear
problem.

Knowing that for each a ∈ Uad the problem Pa admits a solution, the procedure continues with
the following steps:
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• we choose the set Uad which is compact, i.e., each sequence {an} ⊂ Uad contains a subsequence
converging to an element a∗ ∈ Uad,

• we prove that the mapping a 7→ ua is continuous, i.e.,

an → a∗ =⇒ uan → ua∗

• and we verify the continuous dependence of the functional Φ on the data a and the solution
ua, i.e.,

an → a∗, uan → ua∗ =⇒ Φ(an, uan) → Φ(a∗, ua∗).

Then the worst scenario problem admits a reliable solution. Indeed, let the sequence of data {an}∞n=1

maximize the functional Φ on Uad, i.e., Φ(an, uan
) tends to a supremum of Φ on Uad. Since the set Uad

is compact, the sequence {an} contains a subsequence {an′} converging to a∗ ∈ Uad. The continuity of
the mapping a→ ua yields uan′ → ua∗ and the continuity of Φ yields Φ(an′ , uan′ ) tends to Φ(a∗, ua∗).
Thus the supremum is a real number and Φ admits a maximum on Uad.

4.2 Admissible data
The data in our problem are of several types: the material constant c, the pair of distribution functions
(η, ζ) of the hysteresis operator, the right-hand side f , the initial condition u0 and the boundary
conditions for the unknown at x = 0 and x = ℓ; for the sake of simplicity, they were chosen to be zero.
For simplicity, we also take the initial condition u0 and right-hand side to be certain.

We consider a nonhomogeneous medium composed of two or more homogeneous materials occu-
pying the parts Ω1, . . . ,Ωk. For the sake of simplicity, we assume that the parts Ωi are known, only
the constant c on each Ωi is uncertain, i.e., its real values are within the intervals ⟨cim, ciM ⟩. Thus
c(x) will be piecewise constant functions from the admissible set Cad

Cad =
{
c : Ω → R, c(x) = ci ∈ ⟨cim, ciM ⟩ for x ∈ Ωi, i = 1, . . . , k

}
, (4.2)

where the constants 0 < cim ≤ ciM are given. Since the set Cad is “equivalent” to the cartesian
product of compact intervals ⟨cim, ciM ⟩, we have arrived to

Lemma 4.1. The set Cad is compact in the maximum norm.

4.3 Admissible data for hysteresis operators
Mutually inverse Prandtl–Ishlinskii operators F and G are fully determined by their distribution
function η ∈ PI(α, β)− or ζ ∈ PI(α, β)+. Since the use is made of the operator G of play type, we
define the set of admissible functions for ζ as a subset of PI(α, β)+ which are constant outside of the
interval ⟨0, R⟩ with some R > 0. Thus for α, β > 0, αβ < 1 and R > 0 let Z(α, β,R) be the set of all
functions ζ = ζ(r) satisfying:

(a) ζ is right-continuous nondecreasing function ⟨0,∞) → ⟨0,∞),

(b) β ≤ ζ(r) ≤ 1/α ∀ r ∈ ⟨0,∞) (i.e., ζ ∈ PI(α, β)+),

(c) ζ(r) is constant on ⟨R,∞).

The set Z(α, β,R) is compact in the following sense: Each sequence of {ζn}∞n=1 in the set Z(α, β,R)

contains a subsequence {ζn′} and there exists a function ζ∗ in Z(α, β,R) such that
R∫
0

|ζn′(r)−ζ∗(r)|dr

tends to zero as n′ → ∞.
This compactness can be proved by constructing finite ε-nets of piecewise constant functions. Let

us divide the interval ⟨0, R⟩ by the points ri = i R/nr into nr parts. Further, let us divide the interval
of values ⟨β, 1

α ⟩ by zj = β + ( 1
α − β)j/nz into nz equal parts. Then the functions ζ(r) which are

nondecreasing and take the values zj on each part ⟨rj−1, rj) make for sufficiently large nr and nz a
finite ε-net in Z(α, β,R) which proves the compactness of Z(α, β,R).
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Let {qn(t)} be a bounded sequence ∥qn∥⟨0,T ⟩ ≤ R of functions uniformly converging to q∗(t),
i.e., ∥qn(t) − q∗(t)∥⟨0,T ⟩ → 0. By (2.18), the convergence of ζn(r) ensures that of the corresponding
en = Gζn [qn].

Since the medium consists of k homogeneous materials, we take the functions ζ(r, x) constant in
x on each x ∈ Ωi. For αi, βi > 0, αiβi < 1 and Ri > 0, i = 1, 2, . . . , k, we put

Zad =
{
ζ(r, x), s.t. ζ(x, r) ∈ Z(αi, βi, Ri) for x ∈ Ωi, i = 1, 2, . . . , k

}
. (4.3)

Thus we have arrived to
Lemma 4.2. Each sequence of {ζn}∞n=1 in the set Zad of admissible distribution functions contains a
subsequence {ζn′}, and there exists a function ζ∗ in Zad such that for any qn ∈ C(Ω× I) converging
uniformly to a q∗ ∈ C(Ω× I) the sequence of en = Gζn [qn] converges uniformly to e∗ = Gζ∗ [q∗].

Thus the set for admissible data for our problem will be

Uad = Cad ×Zad.

4.4 Continuity of the mapping a 7→ ua.
It remains to prove that the convergence of data an → a∗ implies that of solutions uan

→ ua∗ ,
where ua = (u, e, q). Let us denote by un = (un, en, qn) the solution of problem Pan

with the data
an = (cn, ζn) and by u∗ = (u∗, e∗, q∗) the solution of problem Pa∗ with the data a∗ = (c∗, ζ∗), i.e.,

cnunt = qnx + f, en = unx , en = Gζn [qn],

c∗u∗t = q∗x + f, e∗ = u∗x, e∗ = Gζ∗ [q∗].

Comparing the first pair of equations and splitting the left-hand side, we obtain

cnunt − c∗u∗t ≡ (cn − c∗)unt + c∗(unt − u∗t ) = qnx − q∗x.

Multiplying the equation with (unt − u∗t ), we obtain

(cn − c∗)unt (u
n
t − u∗t ) + c∗(unt − u∗t )

2 = (qnx − q∗x)(u
n
t − u∗t ). (4.4)

The second pair of equalities yields en − e∗ = unx − u∗x. Differentiating it by t and multiplying it by
(qn − q∗), we obtain

(ent − e∗t )(q
n − q∗) = (unxt − u∗xt)(q

n − q∗). (4.5)
Summing up (4.4) and (4.5) and using formula fxg + fgx = (fg)x, we obtain

(cn − c∗)unt (u
n
t − u∗t ) + c∗(unt − u∗t )

2 + (ent − e∗t )(q
n − q∗) = ((unt − u∗t )(q

n − q∗))x.

We integrate the equation over G. Formula
ℓ∫
0

fx dx = f(ℓ) − f(0) and the zero boundary conditions

for x = 0 and x = ℓ give zero in the right-hand side. Finally, integrating the equality over (0, t), we
obtain ∫

Ω×(0,t)

[
(cn − c∗)unt (u

n
t − u∗t ) + c∗(unt − u∗t )

2 + (ent − e∗t )(q
n − q∗)

]
dxdτ = 0. (4.6)

Splitting en − e∗ = Gζn [qn]− Gζn [q∗] + Gζn [q∗]− Gζ∗ [q∗] and using the inequality(
Gζn [qn]− Gζn [q

∗]
)
t
(qn − q∗) ≥ β

2

d
dt [q

n − q∗]2

(see Proposition 2.9), for sufficiently large R, we obtain∫
Ω×(0,t)

c∗(unt − u∗t )
2 dxdτ + β

2

∫
Ω

(qn(t)− q∗(t))2 dx

≤
∫

Ω×(0,t)

[∣∣(cn − c∗)unt (u
n
t − u∗t )

∣∣+ R∫
0

|ζn − ζ∗|dr
]
|qn − q∗| dxdτ. (4.7)
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Since by the compactness of Uad we have cn ⇒ c∗ and ζn − ζ∗ → 0, the right-hand side tends to
zero which proves the convergence of the solutions. In this way even the uniqueness of the solution in
Theorem 3.2 is proved. �

4.5 Criterion-functional
In mechanics, the dangerous situations are extremes of the deformation or stress. In our heat con-
duction problem or the diffusion problem the extremes of the temperature or concentration can be
critical, the extremes of the temperature or concentration gradient can be critical, as well.

From the mathematical point of view, a continuous function on a compact (i.e., closed bounded)
set attains its maximum. If the function is integrable only, say in the Lp space, then its values are
determined except for measure zero sets and thus the value of the function at a point x has no sense.
Instead of it we have to take integral mean of a small part G of Ω

Φ(a, ua) =
1

|G|

∫
G

ua(x)dx,

where G is the small part of Ω, where the failure of the construction may be expected.
Following the existence Theorem 3.2, the solutions u, q are the continuous functions on C(Ω× I).

Thus for any point x0 ∈ Ω and any time t0 the criterion-functional for the data a ∈ Uad and the
corresponding solution ua = (u, q, e) can be defined as the value of u or q for (x0, t0) or its maximum
at the point x0 or time t0, for example,

Φ1(a, ua) = u(x0, t0), Φ2(a, ua) = q(x0, t0),

Φ3(a, ua) = max
x∈G

u(x, t0), Φ4(a, ua) = max
t∈J

q(x0, t),

Φ5(a, ua) = max
(x,t)∈G×J

u(x, t), Φ6(a, ua) = max
(x,t)∈G×J

q(x, t),

where G is a closed subset of Ω and J is a closed subinterval of I.
Following Theorem 3.2, the unknown e = ux ∈ L2(Ω, C(I)). Then the criterion-functional may be

be the integral mean of ux e.g.

Φ7(a, ua) =
1

|G|

∫
G

|ux(x, t0)|dx, Φ8(a, ua) =
1

|G|

∫
G

max
t∈J

|ux(x, t)|dx,

where G is an open subset of Ω and J a closed subinterval of I.
Finally, following Theorem 3.2, the gradients ut, et, qt, qx are in L∞(I, L2(Ω). Thus the criterion-

functional may be the integral mean over a closed G ⊂ Ω and J a subinterval of I, e.g.,

Φ9(a, ua) =
1

|G| · |J |

∫
G×J

|v(x, t)| dtdx,

where v stands for any of ut, et, qt, qx.

4.6 Main result
Since the set of admissible data Uad is compact with respect to the corresponding norms, the mapping
a 7→ ua is continuous and also each functional of type Φ1, . . . ,Φ9 is continuous, we have arrived at
the main result:

Theorem 4.3. Let Hypothesis 3.1 be satisfied, the set of admissible data Uad = Cad × Zad be defined
by (4.2), (4.3).

Then the worst scenario problem for the problem (3.1)–(3.3) with any criterion-functionals of type
Φ1, . . . ,Φ9 or their combination admits the solution.
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5 Concluding remarks
For the sake of simplicity, we have assumed certain zero boundary conditions for u(0, t) = 0, and
q(ℓ, t) = 0, certain initial condition and certain right-hand side f(x, t). The result can be extended
even to uncertain both boundary conditions u(0, t) = u0(t), or uncertain q(0, t) = q0(t) and similar
uncertain data on the right end x = ℓ. Also, the initial condition u0(t) and right-hand side f(x, t)
may be uncertain. One should define the corresponding convenient compact sets for these uncertain
functions, and their difference will appear in the right-hand side of (4.7).
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