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Abstract. For the linear homogeneous system of differential equations, coefficients of which are
represented by an absolutely and uniformly convergent Fourier series with slowly varying coefficients
and frequency, the conditions of existence of the linear transformation with coefficients of similar
structure leading this system to a block-diagonal form in a special case are obtained.
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ÒÄÆÉÖÌÄ. ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ßÒ×ÉÅÉ ÄÒÈÂÅÀÒÏÅÀÍÉ ÓÉÓÔÄÌÉÓÈÅÉÓ, ÒÏÌËÉÓ
ÊÏÄ×ÉÝÉÄÍÔÄÁÉ ßÀÒÌÏÉÃÂÉÍÄÁÀ ÀÁÓÏËÖÔÖÒÀÃ ÃÀ ÈÀÍÀÁÒÀÃ ÊÒÄÁÀÃÉ ×ÖÒÉÄÓ ÌßÊÒÉÅÄÁÉÈ
ÍÄËÀ ÝÅËÀÃÉ ÊÏÄ×ÉÝÉÄÍÔÄÁÉÈ ÃÀ ÓÉáÛÉÒÉÈ, ÃÀÃÂÄÍÉËÉÀ ÀÍÀËÏÂÉÖÒÉ ÓÔÒÖØÔÖÒÉÓ ÊÏÄ×É-
ÝÉÄÍÔÄÁÉÓ ÌØÏÍÄ ÉÓÄÈÉ ßÒ×ÉÅÉ ÂÀÒÃÀØÌÍÉÓ ÀÒÓÄÁÏÁÉÓ ÐÉÒÏÁÄÁÉ, ÒÏÌÄËÓÀÝ ÄÒÈ ÓÐÄÝÉÀËÖÒ
ÛÄÌÈáÅÄÅÀÛÉ ÄÓ ÓÉÓÔÄÌÀ ÃÀäÚÀÅÓ ÖãÒÖË-ÃÉÀÂÏÍÀËÖÒ ×ÏÒÌÀÌÃÄ.
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1 Introduction
This article continues the research started by the author in [1] on the problem of the block separation
of the linear homogeneous system of differential equations, whose coefficients are represented by an
absolutely and uniformly convergent Fourier series with slowly varying in some sense coefficients and
frequency. Now we study a special case which by the conditions of the theorem proved in [1] is not
covered.

2 Basic notations and definitions
Let G = {t, ε : t ∈ R, ε ∈ [0, ε0], ε0 ∈ R+}.

Definition 2.1. We say that a function p(t, ε), generally complex-valued, belongs to the class S(m; ε0),
m ∈ N ∪ {0}, if t, ε ∈ G and

1) p(t, ε) ∈ Cm(G) with respect to t;

2) dkp(t, ε)

dtk
= εkp∗k(t, ε), sup

G
|p∗k(t, ε)| < +∞ (0 ≤ k ≤ m).

Slowly variability of a function is understood in the sense of its belonging to the class S(m; ε0).
As examples of functions of this class may serve, in general, complex-valued, bounded together with
their derivatives up to and including the order m functions that depend on the “slow time” τ = εt:
sin τ , arctg τ etc.

Definition 2.2. We say that a function f(t, ε, θ(t, ε)) belongs to the class F (m; ε0; θ), m ∈ N ∪ {0},
if it can be represented as

f(t, ε, θ(t, ε)) =

∞∑
n=−∞

fn(t, ε) exp(inθ(t, ε)),

and

1) fn(t, ε) ∈ S(m; ε0),
dkfn(t, ε)

dtk
= εkfnk(t, ε) (n ∈ Z, 0 ≤ k ≤ m);

2) ∥f∥F (m;ε0;θ)
def
=

m∑
k=0

∞∑
n=−∞

sup
G

|fnk(t, ε)| < +∞,

3) θ(t, ε) =

t∫
0

φ(τ, ε) dτ , φ(t, ε) ∈ R+, φ(t, ε) ∈ S(m; ε0), inf
G

φ(t, ε) > 0.

Some properties of functions from the class F (m; ε0; θ) are described in [1].
For any function f(t, ε, θ) ∈ F (m; ε0; θ) denote

Γn(f) =
1

2π

2π∫
0

f(t, ε, u) exp(−inu) du, I(f) = f − Γ0(f).

We say that the function f(t, ε, θ) ∈ F (m; ε0; θ) satisfies condition (A), if Γ0(f) ≡ 0.
Let A(t, ε, θ) = (ajs(t, ε, θ))j=1,M ; s=1,K , ajs ∈ F (m; ε0; θ) (j = 1,M ; s = 1,K). Denote

∥A∥∗F (m;ε0;θ)
= max

1≤j≤M

K∑
l=1

∥ajl(t, ε, θ)∥F (m;ε0;θ).



128 Sergey Shchogolev

3 Statement of the problem
We consider the system of differential equations

dx1

dt
= H1(φ)x1 + µ(B11(t, ε, θ)x1 +B12(t, ε, θ)x2),

dx2

dt
= H2(φ)x2 + µ(B21(t, ε, θ)x1 +B22(t, ε, θ)x2),

(3.1)

where x1 = colon(x11, . . . , x1N1
), x2 = colon(x21, . . . , x2N2

),

H1(φ) =


ipφ 0 · · · 0 0
1 ipφ · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · ipφ 0
0 0 · · · 1 ipφ

 , H2(φ) =


irφ 0 · · · 0 0
1 irφ · · · 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · irφ 0
0 0 · · · 1 irφ


are the Jordan blocks of dimensions N1 and N2, respectively (N1+N2 = N); p, r ∈ Z; Bjk(t, ε, θ) are
the (Nj × Nk)-matrices with elements from the class F (m; ε; θ); φ(t, ε) is the function appearing in
the definition of the class F (m; ε; θ); µ ∈ (0, 1). In this sense, we are dealing with the resonance case.

Just as in [1], we study the question of the existence as well as the properties of the transformation
of the form

xj = Lj1(t, ε, θ, µ)x̃1 + Lj2(t, ε, θ, µ)x̃2, j = 1, 2, (3.2)

where the elements Ljk (j, k = 1, 2) of (Nj × Nk)-matrices belong to the class F (m − 1; ε1; θ) (0 <
ε1 ≤ ε0), reducing the system (3.1) to the form

dx̃1

dt
= DN1

(t, ε, θ, µ)x̃1,
dx̃2

dt
= DN2

(t, ε, θ, µ)x̃2, (3.3)

where the elements DNj (j = 1, 2) of (Nj ×Nj)-matrices also belong to the class F (m− 1; ε∗; θ).
Performing in the system (3.1) the transformation

x1 = eipθy1, x2 = eirθy2,

where y1 = colon(y11, . . . , y1N1
), y2 = colon(y21, . . . , y2N2

), we obtain

dy1
dt

= JN1y1 + µ(B̃11(t, ε, θ)y1 + B̃12(t, ε, θ)y2),

dy2
dt

= JN2
y2 + µ(B̃21(t, ε, θ)y1 + B̃22(t, ε, θ)y2),

(3.4)

where

JN1
=


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0

 , JN2
=


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0


are the Jordan blocks of dimensions N1 and N2, respectively, whose diagonal elements are equal to
zero, and all elements of matrices B̃jk(t, ε, θ) belong to the class F (m; ε0; θ).

Thus, the problem of the existence of transformation (3.2) reduces to the problem of the existence
of the transformation

y1 = z1 + µQ12(t, ε, θ, µ)z2, y2 = µQ21(t, ε, θ, µ)z1 + z2, (3.5)

leading the system (3.4) to the form

dz1
dt

= DN1
(t, ε, θ, µ)z1,

dz2
dt

= DN2
(t, ε, θ, µ)z2,
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where DN1 , DN2 are matrices of dimensions (N1 ×N1) and (N2 ×N2), respectively.
The matrices Q12, Q21 must satisfy the system of matrix-equations

dQjk

dt
= JNj

Qjk −QjkJNk
+ B̃jk(t, ε, θ)

+ µ
(
B̃jj(t, ε, θ)Qjk −QjkB̃kk(t, ε, θ)

)
− µ2QjkB̃kjQjk, j, k = 1, 2 (j ̸= k). (3.6)

Then
DN1 = JN1 + µB̃11(t, ε, θ) + µ2B̃12(t, ε, θ)Q21(t, ε, θ, µ),

DN2 = JN1 + µB̃22(t, ε, θ) + µ2B̃21(t, ε, θ)Q12(t, ε, θ, µ).
(3.7)

It is easy to see that the system (3.6) is divided into two independent matrix-equations, each of
which has the form

dX

dt
= JMX −XJK + F (t, ε, θ) + µ

(
A(t, ε, θ)X −XB(t, ε, θ)

)
− µ2XR(t, ε, θ)X, (3.8)

where X = (xjs)j=1,M ; s=1,K ,

JM =


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0

 , JK =


0 0 · · · 0 0
1 0 · · · 0 0
. . . . . . . . . . . . . . . .
0 0 · · · 0 0
0 0 · · · 1 0


are the Jordan blocks of dimensions M and K, respectively, whose diagonal elements are equal to
zero, F = (fjs)j=1,M ; s=1,K , A = (ajs)j,s=1,M , B = (bjs)j,s=1,K , R = (rjs)j=1,K; s=1,M . All elements
of matrices F , A, B, R belong to the class F (m; ε0; θ).

Therefore the problem of the existence of transformation (3.5), where all elements of matrices Q12,
Q21 belong to the class F (m − 1; ε∗; θ) (0 < ε∗ < ε0), reduces to the problem of the existence of a
particular solution X of the equation (3.8) such that xjs ∈ F (m− 1; ε∗; θ) (j = 1,M ; s = 1,K).

In [1], the conditions of the existence of such a solution are obtained when one of the sets of
assumptions I, II, III is fulfilled.

I. (1) M < K;

(2) V1(F ) ≡ 0, where V1 = colon(v11(t, ε), . . . , v1M (t, ε),

v1j(t, ε) =

j∑
s=1

Γ0(fs,K−j+s(t, ε, θ)) (j = 1,M);

(3) inf
G

∣∣Γ0(b1K(t, ε, θ))
∣∣ > 0.

II. (1) M = K;

(2) V2(F ) ≡ 0, where V2 = colon(v21(t, ε), . . . , v2M (t, ε),

v2j(t, ε) =

j∑
s=1

Γ0(fs,K−j+s(t, ε, θ)) (j = 1,M);

(3) inf
G

∣∣Γ0(a1M (t, ε, θ)− b1M (t, ε, θ))
∣∣ > 0.

III. (1) M > K;

(2) V3(F ) ≡ 0, where V3 = colon(v31(t, ε), . . . , v3K(t, ε),

v3j(t, ε) =

j∑
s=1

Γ0(fs,K−j+s(t, ε, θ)) (j = 1,K);

(3) inf
G

|Γ0(a1M (t, ε, θ))| > 0.
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In this paper it is assumed that the condition (2) in each of sets I, II, III is satisfied. But instead
of the condition (3) it is accordingly supposed that

Γ0(b1K(t, ε, θ)) ≡ 0 (M < K);

Γ0(a1M (t, ε, θ)− b1M (t, ε, θ)) ≡ 0 (M = K);

Γ0(a1M (t, ε, θ)) ≡ 0 (M > K).

4 Auxiliary results
As in [1], along with the equation (3.8) we consider an auxiliary matrix-equation

φ(t, ε)
dΞ

dθ
= JMΞ− ΞJK + F (t, ε, θ) + µ

(
A(t, ε, θ)Ξ− ΞB(t, ε, θ)

)
− µ2ΞR(t, ε, θ)Ξ, (4.1)

where t, φ are considered as constants, Ξ = (ξjs)j=1,M ; s=1,K , F , A, B, R are the same as in the
equation (3.8).

In accordance with the Poincaré method of small parameter [2], we construct an approximate
2π-periodic with respect to θ solution of the equation (4.1) in the form of the sum

Ξ =

2q−1∑
ν=0

Ξν(t, ε, θ)µ
ν , (4.2)

where Ξν = (ξν,js)j=1,M ; s=1,K . The coefficients Ξν are determined from the following chain of linear
nonhomogeneous matrix differential equations:

φ(t, ε)
dΞ0

dθ
= JMΞ0 − Ξ0JK + F (t, ε, θ), (4.3)

φ(t, ε)
dΞ1

dθ
= JMΞ1 − Ξ1JK +A(t, ε, θ)Ξ0 − Ξ0B(t, ε, θ), (4.4)

φ(t, ε)
dΞ2

dθ
= JMΞ2 − Ξ2JK +A(t, ε, θ)Ξ1 − Ξ1B(t, ε, θ)− Ξ0R(t, ε, θ)Ξ0, (4.5)

φ(t, ε)
dΞν

dθ
= JMΞν − ΞνJK +A(t, ε, θ)Ξν−1 − Ξν−1B(t, ε, θ)

−
ν−2∑
l=0

ΞlR(t, ε, θ)Ξν−2−l, ν = 3, 2q − 1.

First, we consider the case M < K.
In scalar form, the equation (4.3) can be written as a following system of differential equations:

φ(t, ε)
dξ0,1K
dθ

= f1K(t, ε, θ),

φ(t, ε)
dξ0,jK
dθ

= ξ0,j−1,K + fjK(t, ε, θ) (j = 2,M),

φ(t, ε)
dξ0,1s
dθ

= −ξ0,1,s+1 + f1s(t, ε, θ) (s = 1,K − 1),

φ(t, ε)
dξ0,js
dθ

= −ξ0,j−1,s − ξ0,j,s+1 + fjs(t, ε, θ) (j = 2,M ; s = 1,K − 1).

(4.6)

The condition I (2) ensures the existence of a 2π-periodic with respect to θ solution of the equation
(4.3) of the form

Ξ0(t, ε, θ) = C
(1)
0 (t, ε) + L1(F (t, ε, θ)), (4.7)

where the (M ×K)-matrix C
(1)
0 (t, ε) has the form

C
(1)
0 (t, ε) =


c
(1)
01 (t, ε) 0 · · · 0 0 · · · 0

c
(1)
02 (t, ε) c

(1)
01 (t, ε) · · · 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(1)
0M (t, ε) c

(1)
0,M−1(t, ε) · · · c

(1)
01 (t, ε) 0 · · · 0

 (4.8)
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with c
(1)
01 (t, ε), . . . , c

(1)
0M (t, ε) as yet unknown scalar functions of the class S(m; ε0), L1(F (t, ε, θ)) =

(ξ̃0,js(t, ε, θ))j=1,M ; s=1,K , and ξ̃0,js are defined from the following equalities:

ξ̃0,1K(t, ε, θ) = I(f1K(t, ε, θ)) + p1K(t, ε),

ξ̃0,jK(t, ε, θ) = I
(
ξ̃0,j−1,K(t, ε, θ) + fjK(t, ε, θ)

)
+ pjK(t, ε) (j = 2,M),

ξ̃0,11(t, ε, θ) = I
(
f11(t, ε, θ)− ξ̃0,12(t, ε, θ)

)
+ p11(t, ε),

ξ̃0,1s(t, ε, θ) = I
(
f1s(t, ε, θ)− ξ̃0,1,s+1(t, ε, θ)

)
+ p1s(t, ε) (s = 1,K − 1),

ξ̃0,js(t, ε, θ) = I
(
ξ̃0,j−1,s(t, ε, θ)− ξ̃0,j,s+1(t, ε, θ) + fjs(t, ε, θ)

)
+ pjs(t, ε) (j = 2,M ; s = 1,K − 1),

where pjs(t, ε) are the functions from the class S(m; ε0) determined from the condition: all right-hand
sides of the equations in (4.6) must satisfy condition (A). It is easy to verify that pjs(t, ε) can be
represented as some linear combinations of functions Γ0(fαβ(t, ε, θ)) (α = 1,M ; β = 1,K).

We now define the matrix C
(1)
0 (t, ε) from the condition

V1

(
A(t, ε, θ)Ξ0 − Ξ0B(t, ε, θ)

)
= 0.

By virtue of (4.7), this condition can be rewritten as

V1

(
A(t, ε, θ)C

(1)
0 − C

(1)
0 B(t, ε, θ)

)
= V1

(
L1(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L1(F (t, ε, θ))

)
. (4.9)

In scalar form, the condition (4.9) can be written as a triangular with respect to c
(1)
01 , . . . , c

(1)
0M

system of linear algebraic equations:
j∑

l=1

g
(1)
jl (t, ε)c

(1)
0l = h

(1)
j (t, ε), j = 1,M,

where g(1)jl (t, ε), h
(1)
j (t, ε) ∈ S(m; ε0) and g

(1)
jj (t, ε) = Γ0(b1K(t, ε, θ)) (j = 1,M) are the know functions.

Suppose that

g
(1)
jl (t, ε) ≡ 0 (j, l = 1,M, l ≤ j), (4.10)

h
(1)
j (t, ε) ≡ 0 (j = 1,M). (4.11)

Then
V1

(
A(t, ε, θ)C0 − C0B(t, ε, θ)

)
= 0 (4.12)

for any matrix C0 of the form (4.8). Besides,

V1

(
A(t, ε, θ)L1(F (t, ε, θ))− L1(F (t, ε, θ))B(t, ε, θ)

)
= 0. (4.13)

Therefore the equation (4.9) is satisfied for any matrix C
(1)
0 of the form (4.8).

The equalities (4.12), (4.13) ensure the existence of a 2π-periodic with respect to θ solution of the
equation (4.4) having the form

Ξ1(t, ε, θ) = C
(1)
1 (t, ε) + L1

(
A(t, ε, θ)Ξ0 − Ξ0B(t, ε, θ)

)
, (4.14)

where

C
(1)
1 (t, ε) =


c
(1)
11 (t, ε) 0 · · · 0 0 · · · 0

c
(1)
12 (t, ε) c

(1)
11 (t, ε) · · · 0 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(1)
1M (t, ε) c

(1)
1,M−1(t, ε) · · · c

(1)
11 (t, ε) 0 · · · 0

 .

The solution (4.14) can be written as

Ξ1(t, ε, θ) = C
(1)
1 (t, ε) + L1

(
A(t, ε, θ)C

(1)
0 − C

(1)
0 B(t, ε, θ)

)
+ F1(t, ε, θ), (4.15)
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where F1(t, ε, θ) = L1(AL1(F )− L1(F )B) does not depend on C
(1)
0 .

We write down the conditions of the existence of a 2π-periodic with respect to θ solution of the
equation (4.5):

V1

(
A(t, ε, θ)Ξ1 − Ξ1B(t, ε, θ)− Ξ0R(t, ε, θ)Ξ0

)
= 0.

Taking into account the equalities (4.7) and (4.15), this condition can be rewritten (for brevity, we
omit the arguments t, ε, θ) as

V1(AC
(1)
1 − C

(1)
1 B) + V1

(
AL1(AC

(1)
0 − C

(1)
0 B)− L1(AC

(1)
0 − C

(1)
0 B)B

)
+ V1(AF1 − F1B)

− V1(C
(1)
0 RC

(1)
0 )− V1

(
L1(F )RC

(1)
0 + C

(1)
0 RL1(F )

)
− V1(L1(F )RL1(F )) = 0. (4.16)

Due to (4.12), the condition (4.16) can be rewritten as

V1

(
AL1(AC

(1)
0 − C

(1)
0 B)− L1(AC

(1)
0 − C

(1)
0 B)B

)
− V1

(
L1(F )RC

(1)
0 + C

(1)
0 RL1(F )

)
− V1(C

(1)
0 RC

(1)
0 ) + U (1) = 0, (4.17)

where U (1) = U (1)(t, ε) is the known M -vector that does not depend on C
(1)
0 .

In scalar form, the equation (4.17) can be written as a nonlinear with respect to c
(1)
01 , . . . , c

(1)
0M

system of algebraic equations

Φ
(1)
j (t, ε, c

(1)
01 , . . . , c

(1)
0M ) = 0, j = 1,M, (4.18)

with quadratic nonlinearities.
Suppose that the system (4.18) has a solution c

(1)
01 , . . . , c

(1)
0M such that

inf
G

∣∣∣det ∂(Φ
(1)
1 , . . . ,Φ

(1)
M )

∂(c
(1)
01 , . . . , c

(1)
0M )

∣∣∣ > 0. (4.19)

Then the equation (4.5) has a 2π-periodic with respect to θ solution Ξ2(t, ε, θ) belonging to the class
F (m; ε0; θ).

We now consider the equation for the vector-function Ξν+2 and distinguish in it explicitly the
terms which depend on Ξν+1, Ξν :

φ(t, ε)
dΞν+2

dθ
= JMΞν+2 − Ξν+2JK +A(t, ε, θ)Ξν+1 − Ξν+1B(t, ε, θ)

− Ξ0R(t, ε, θ)Ξν − ΞνR(t, ε, θ)Ξ0 −
ν−1∑
l=1

ΞlR(t, ε, θ)Ξν−l. (4.20)

For α = 0, ν + 1, we have

Ξα(t, ε, θ) = C(1)
α (t, ε) + Ξ̃α(t, ε, θ), (4.21)

where C
(1)
α (t, ε) is the (M ×K)-matrix of the form (4.8), and Ξ̃α(t, ε, θ) is the known vector-function

belonging to the class F (m; ε0; θ).
We suppose that the matrices Ξ0(t, ε, θ),Ξ1(t, ε, θ), . . . ,Ξν−1(t, ε, θ) are completely defined, includ-

ing the matrix C
(1)
ν−1(t, ε), and the matrix C

(1)
ν (t, ε), C(1)

ν+1(t, ε) have to be defined.
We write down the conditions of the existence of a 2π-periodic with respect to θ solution of the

equation (4.20) as follows:

V1

(
A(t, ε, θ)Ξν+1 − Ξν+1B(t, ε, θ)− Ξ0R(t, ε, θ)Ξν

)
− V1

(
ΞνR(t, ε, θ)Ξ0 +

ν−1∑
l=1

ΞlR(t, ε, θ)Ξν−l

)
= 0. (4.22)
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Represent the matrix Ξ̃ν+1 as
Ξ̃ν+1 = Ξ̃

(∗)
ν+1 + Ξ̃

(∗∗)
ν+1, (4.23)

where Ξ̃
(∗)
ν+1 is a 2π-periodic with respect to θ solution of the equation

φ(t, ε)
dΞν+1

dθ
= JMΞν+1 − Ξν+1JK +A(t, ε, θ)C(1)

ν (t, ε)− C(1)
ν (t, ε)B(t, ε, θ) (4.24)

and Ξ̃
(∗∗)
ν+1 is a 2π-periodic with respect to θ solution of the equation

φ(t, ε)
dΞν+1

dθ
= JMΞν+1 − Ξν+1JK +A(t, ε, θ)Ξ̃ν − Ξ̃νB(t, ε, θ)−

ν−1∑
l=1

ΞlR(t, ε, θ)Ξν−1−l.

The condition of the existence of a 2π-periodic with respect to θ solution of the equation (4.24)
has the form

V1(A(t, ε, θ)C(1)
ν − C(1)

ν B(t, ε, θ)) = 0.

By (4.12), this equality holds for any matrix Cν of the kind

Cν(t, ε) =


cν1(t, ε) 0 · · · 0 0 · · · 0
cν2(t, ε) cν1(t, ε) · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cνM (t, ε) cν,M−1(t, ε) · · · cν1(t, ε) 0 · · · 0

 .

Therefore the equation (4.24) has a 2π-periodic with respect to θ solution of the kind

Ξ̃
(1)
ν+1 = L1

(
A(t, ε, θ)C(1)

ν − C(1)
ν B(t, ε, θ)

)
.

Taking into account (4.21) and (4.23), the condition (4.22) can be rewritten as

V1

(
A(t, ε, θ)C

(1)
ν+1 − C

(1)
ν+1B(t, ε, θ)

)
+ V1

(
A(t, ε, θ)(Ξ̃

(∗)
ν+1 + Ξ̃

(∗∗)
ν+1)− (Ξ̃

(∗)
ν+1 + Ξ̃

(∗∗)
ν+1)B(t, ε, θ)

)
− V1

(
Ξ0R(t, ε, θ)Ξν + ΞνR(t, ε, θ)Ξ0

)
+ V ∗

1 (t, ε) = 0, (4.25)

where V ∗
1 (t, ε) is the known M -vector belonging to the class S(m; ε0).

Based on (4.12), (4.21) and (4.23), we can rewrite (4.25) as

V1

(
A(t, ε, θ)L1

(
A(t, ε, θ)C(1)

ν − C(1)
ν B(t, ε, θ)

)
− L1

(
A(t, ε, θ)C(1)

ν − C(1)
ν B(t, ε, θ)

)
B(t, ε, θ)

)
− V1

(
L1(F )R(t, ε, θ)C(1)

ν + C(1)
ν R(t, ε, θ)L1(F )

)
− V1

(
C0R(t, ε, θ)C(1)

ν + C(1)
ν R(t, ε, θ)C0

)
+ Z(1)(t, ε) = 0, (4.26)

where Z(1)(t, ε) is the known M -vector belonging to the class S(m; ε0).
It is not difficult to establish the validity of the relations

(XRY )αβ =


α∑

j=1

xj

M+1−β∑
l=1

rα+1−j,l+β−1yl, if β ≤ M,

0, if β > M,

where X, Y are the (M ×K)-matrices of the kind (4.8). It follows that in a scalar form the equation
(4.26) can be written as

M∑
l=1

∂Φ
(1)
j (t, ε, c

(1)
01 , . . . , c

(1)
0M )

∂c
(1)
0l

c
(1)
νl = z

(1)
j (t, ε), j = 1,M, (4.27)
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where u
(1)
j (t, ε) are the known functions belonging to the class S(m; ε0). By the condition (4.19), the

system (4.27) has a unique solution c
(1)
ν1 (t, ε), . . . , c

(1)
νM (t, ε) belonging to the class S(m; ε0).

Thus, all the matrices Ξν(t, ε, θ) (ν = 0, 2q − 1) are completely defined and belong to the class
F (m; ε0; θ). Therefore, by (4.2), the matrix Ξ(t, ε, θ, µ) is also completely defined ∀µ ∈ (0, 1) and
belongs to the class F (m; ε0; θ).

Lemma 4.1. Let the equation (3.8) satisfy the following conditions:

(1) M < K;

(2) V1(F (t, ε, θ)) ≡ 0;

(3) the equalities (4.10), (4.11) hold;

(4) the system (4.18) has a solution satisfying the condition (4.19).

Then there exists µ1 ∈ (0, 1) such that for any µ ∈ (0, µ1) there exists a transformation of the form

X = Ξ(t, ε, θ, µ) + Φ(t, ε, θ, µ)YΨ(t, ε, θ, µ), (4.28)

where the matrix Ξ(t, ε, θ, µ) is defined by the equality (4.2) and the elements of the (M ×M)-matrix
Φ and those of the (K ×K)-matrix Ψ belong to the class F (m; ε0; θ) ∀µ ∈ (0, µ1), which reduces the
equation (3.8) to the form

dY

dt
= JMY − Y JK +

( q∑
l=1

Ul1(t, ε)µ
l
)
Y − Y

( q∑
l=1

Ul2(t, ε)µ
l
)

+ ε
(
U1(t, ε, θ, µ)Y − Y U2(t, ε, θ, µ)

)
+ µq+1

(
W1(t, ε, θ, µ)Y − YW2(t, ε, θ, µ)

)
+ εH1(t, ε, θ, µ) + µ2qH2(t, ε, θ, µ) + µY R1(t, ε, θ, µ)Y, (4.29)

where the elements of matrices Ul1, Ul2 (l = 1, q) belong to the class S(m; ε0), and the elements of
matrices U1, U2, W1, W2, H1, H2, R1 of the corresponding dimensions belong to the class F (m −
1; ε0; θ).

Proof. Substituting
X = Ξ(t, ε, θ, µ) + X̃

in (3.8), where X̃ is a new unknown matrix, we obtain

dX̃

dt
= JM X̃ − X̃JK + εH3(t, ε, θ, µ) + µ2qH4(t, ε, θ, µ)

+
( q∑

l=1

Pl(t, ε, θ)µ
l
)
X̃ − X̃

( q∑
l=1

Ql(t, ε, θ)µ
l
)

+ µq+1(W ∗
1 (t, ε, θ, µ)X̃ − X̃W ∗

2 (t, ε, θ, µ)) + µ2X̃R(t, ε, θ)X̃. (4.30)

By Lemma 1 from [1], using the substitution of the kind

X̃ =
(
EM +

q∑
l=1

Φl(t, ε, θ)µ
l
)
Y
(
EK +

q∑
l=1

Ψl(t, ε, θ)µ
l
)
,

where EM , EK are the identity matrices of dimensions M and K, respectively, the elements of the
(M ×M)-matrices Φl and those of (K ×K)-matrices Ψl (l = 1, q) belong to the class F (m; ε0; θ), we
reduce the equation (4.30) to the form (4.29).

We now consider the case M = K. The condition II (2) ensures the existence of a 2π-periodic with
respect to θ solution of the equation (4.3), which is of the form

Ξ0(t, ε, θ) = C
(2)
0 (t, ε) + L2(F (t, ε, θ))
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with

C
(2)
0 (t, ε) =


c
(2)
01 (t, ε) 0 · · · 0

c
(2)
02 (t, ε) c

(2)
01 (t, ε) · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(2)
0M (t, ε) c

(2)
0,M−1(t, ε) · · · c

(2)
01 (t, ε)

 , (4.31)

where the linear matrix-operator L2(F ) can be constructed similarly to the operator L1(F ). The
matrix C

(2)
0 is defined from the equation

V2

(
A(t, ε, θ)C

(2)
0 − C

(2)
0 B(t, ε, θ)

)
= V2

(
L2(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L2(F (t, ε, θ))

)
. (4.32)

In scalar form, the condition (4.32) can be written as a triangular with respect to C
(2)
01 , . . . , C

(2)
0M

system of linear algebraic equations:

j∑
l=1

g
(2)
jl (t, ε)c

(2)
0l = h

(2)
j (t, ε), j = 1,M,

where g
(2)
jl (t, ε), h

(2)
j (t, ε) ∈ S(m; ε0) and g

(2)
jj (t, ε) = Γ0(a1M (t, ε, θ) − b1M (t, ε, θ)) (j = 1,M) are the

know functions.
Suppose that

g
(2)
jl (t, ε) ≡ 0 (j, l = 1,M, l ≤ j), (4.33)

h
(2)
j (t, ε) ≡ 0 (j = 1,M). (4.34)

Then
V2(A(t, ε, θ)C0 − C0B(t, ε, θ)) = 0

for any C0 of the kind (4.31), and

V2

(
L2(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L2(F (t, ε, θ))

)
= 0.

Therefore the equation (4.32) is satisfied for any C
(2)
0 of the kind (4.31).

Similarly to the case M < K, we define the matrix C
(2)
0 (t, ε) from the equation

V2

(
AL2(AC

(2)
0 − C

(2)
0 B)− L2(AC

(2)
0 − C

(2)
0 B)B

)
− V2

(
L2(F )RC

(2)
0 + C

(2)
0 RL2(F )

)
− V2(C

(2)
0 RC

(2)
0 ) + U (2) = 0, (4.35)

where U (2) = U (2)(t, ε) is the known M -vector, which does not depend on C
(2)
0 .

In scalar form, the equation (4.35) can be written as a nonlinear with respect to c
(2)
01 , . . . , c

(2)
0M

system of algebraic equations

Φ
(2)
j (t, ε, c

(2)
01 , . . . , c

(2)
0M ) = 0, j = 1,M, (4.36)

with quadratic nonlinearities.
Suppose that the system (4.36) has a solution c

(2)
01 , . . . , c

(2)
0M such that

inf
G

∣∣∣∣det ∂(Φ
(2)
1 , . . . ,Φ

(2)
M )

∂(c
(2)
01 , . . . , c

(2)
0M )

∣∣∣∣ > 0. (4.37)

Lemma 4.2. Let the equation (3.8) satisfy the following conditions:

(1) M = K;
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(2) V2(F (t, ε, θ)) ≡ 0;

(3) the equalities (4.33), (4.34) hold;

(4) the system (4.36) has a solution satisfying the condition (4.37).

Then there exists µ2 ∈ (0, 1) such that for any µ ∈ (0, µ2) there exists a transformation of the
form (4.28), where the matrix Ξ(t, ε, θ, µ) is defined by (4.2) and the elements of the (M ×M)-matrix
Φ and those of the (K ×K)-matrix Ψ belong to the class F (m; ε0; θ) ∀µ ∈ (0, µ2), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.2 is similar to that of Lemma 4.1.

Finally, we consider the case M > K.
The condition III (2) ensures the existence of a 2π-periodic with respect to θ solution of the equation

(4.3), which has the form
Ξ0(t, ε, θ) = C

(3)
0 (t, ε) + L3(F (t, ε, θ))

with

C
(3)
0 (t, ε) =



0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 · · · 0

c
(3)
01 (t, ε) 0 · · · 0

c
(3)
02 (t, ε) c

(3)
01 (t, ε) · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(3)
0K(t, ε) c

(3)
0,K−1(t, ε) · · · c

(3)
01 (t, ε)


, (4.38)

where the linear matrix-operator L3(F ) is constructed similarly to the operator L1(F ). The matrix
C

(3)
0 is defined from the equation

V3

(
A(t, ε, θ)C

(3)
0 − C

(3)
0 B(t, ε, θ)

)
= V3

(
L3(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L3(F (t, ε, θ))

)
. (4.39)

In scalar form, the condition (4.39) can be written as a triangular with respect to c
(3)
01 , . . . , c

(3)
0K

system of linear algebraic equations:

j∑
l=1

g
(3)
jl (t, ε)c

(3)
0l = h

(3)
j (t, ε), j = 1,K,

where g
(3)
jl (t, ε), h

(3)
j (t, ε) ∈ S(m; ε0) and g

(3)
jj (t, ε) = Γ0(a1M (t, ε, θ)) (j = 1,K) are the known func-

tions.
Suppose that

g
(3)
jl (t, ε) ≡ 0 (j, l = 1,K, l ≤ j), (4.40)

h
(3)
j (t, ε) ≡ 0 (j = 1,K). (4.41)

Then
V3

(
A(t, ε, θ)C0 − C0B(t, ε, θ)

)
= 0

for any C0 of the kind (4.38) and

V3

(
L3(F (t, ε, θ))B(t, ε, θ)−A(t, ε, θ)L3(F (t, ε, θ))

)
= 0.

Therefore the equation (4.39) is satisfied for any C
(3)
0 of the kind (4.38).
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Define the matrix C
(3)
0 (t, ε) from the equation

V3

(
AL3(AC

(3)
0 − C

(3)
0 B)− L3(AC

(3)
0 − C

(3)
0 B)B

)
− V3

(
L3(F )RC

(3)
0 + C

(3)
0 RL3(F )

)
− V3(C

(3)
0 RC

(3)
0 ) + U (3) = 0, (4.42)

where U (3) = U (3)(t, ε) is the known M -vector, which does not depend on C
(3)
0 .

In scalar form, the equation (4.42) can be written as a nonlinear with respect to c
(3)
01 , . . . , c

(3)
0K

system of algebraic equations

Φ
(3)
j (t, ε, c

(3)
01 , . . . , c

(3)
0K) = 0, j = 1,K, (4.43)

with quadratic nonlinearities.
Suppose that the system (4.43) has a solution c

(3)
01 , . . . , c

(3)
0K such that

inf
G

∣∣∣∣det ∂(Φ
(3)
1 , . . . ,Φ

(3)
K )

∂(c
(3)
01 , . . . , c

(2)
0K)

∣∣∣∣ > 0. (4.44)

Lemma 4.3. Let the equation (3.8) satisfy the following conditions:

(1) M > K;

(2) V3(F (t, ε, θ)) ≡ 0;

(3) the equalities (4.40), (4.41) hold;

(4) the system (4.43) has a solution, which satisfy the condition (4.44).

Then there exists µ3 ∈ (0, 1) such that for any µ ∈ (0, µ3) there exists a transformation of the
form (4.28), where the matrix Ξ(t, ε, θ, µ) is defined by (4.2) and the elements of the (M ×M)-matrix
Φ and those of the (K ×K)-matrix Ψ belong to the class F (m; ε0; θ) ∀µ ∈ (0, µ3), which reduces the
equation (3.8) to the form (4.29).

Proof of Lemma 4.3 is similar to that of Lemma 4.1, too.
Introduce the matrices

Ũ1(t, ε, µ) =

q∑
l=1

Ul1(t, ε)µ
l, Ũ2(t, ε, µ) =

q∑
l=1

Ul2(t, ε)µ
l,

where Ul1, Ul2 (l = 1, q) are defined in Lemma 4.1.

Lemma 4.4. Let the equation (4.29) satisfy the following conditions:

(1) eigenvalues λ1j(t, ε, µ) (j = 1,M) of the matrix JM + Ũ1(t, ε, µ) and λ2s(t, ε, µ) (s = 1,K) of
the matrix JK + Ũ2(t, ε, µ) are such that

inf
G

∣∣Re
(
λ1j(t, ε, µ)− λ2s(t, ε, µ)

)∣∣ ≥ γ0µ
q0 (γ0 > 0, 0 < q0 ≤ q; j = 1,M ; s = 1,K);

(2) there exist a (M ×M)-matrix P1(t, ε, µ) and a (K ×K)-matrix P2(t, ε, µ) such that

(a) all the elements of these matrices belong to the class S(m; ε0) ⊂ F (m; ε0; θ);
(b) ∥P−1

j (t, ε, µ)∥∗F (mε0,θ)
≤ M1µ

−α, M1 ∈ (0,+∞), α ∈ [0, q], j = 1, 2;

(c) P−1
1 (JM+Ũ1)P1=Λ1(t, ε, µ), P2(JK+Ũ2)P

−1
2 = Λ2(t, ε, µ), where Λ1=diag(λ11, . . . , λ1M ),

Λ2 = diag(λ21, . . . , λ2K);

(3) q > q0 + α− 1/2.
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Then there exist µ4 ∈ (0, 1) and K4 ∈ (0,+∞) such that for any µ ∈ (0, µ4) the matrix differential
equation (4.29) has a particular solution Y (t, ε, θ, µ) all elements of which belong to the class F (m−
1; ε1(µ); θ), where ε1(µ) = min(ε0,K4µ

2q0+2α−1).

Proof of Lemma 4.4 is completely analogous to that of Lemma 3 in [1].
The following Lemma is an immediate consequence of the above ones.

Lemma 4.5. Let the equation (3.8) satisfy all conditions of Lemma 4.1 (in case M < K), or Lem-
ma 4.2 (in case M = K), or Lemma 4.3 (in case M > K), and the equation (4.29), obtained from (3.8)
by means of the transformation (4.28), satisfy all conditions of Lemma 4.4. Then there exist µ5 ∈ (0, 1)
and K5 ∈ (0,+∞) such that for any µ ∈ (0, µ5) the equation (3.8) has a particular solution belonging
to the class F (m− 1; ε2(µ); θ), where ε2(µ) = K5µ

2q0+2α−1 and q0, α are defined in Lemma 4.4.

5 The basic result
Based on the above reasoning in Section 3 and Lemma 4.5 we obtain the following result.

Theorem. Let each of the equations (3.6) satisfy all conditions of Lemma 4.5. Then there exist
µ6 ∈ (0, 1) and K6 ∈ (0,+∞) such that for any µ ∈ (0, µ6) there exists a transformation of the
form (3.2) with coefficients from the class F (m− 1; ε3(µ); θ), where ε3(µ) = K6µ

2q0+2α−1 (q0, α are
defined in Lemma 4.4), which reduces the system (3.1) to the block-diagonal form (3.3). The matrices
DN1

, DN2
are defined by (3.7).
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