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p-MOMENT EXPONENTIAL STABILITY OF
DIFFERENTIAL EQUATIONS WITH RANDOM
IMPULSES AND THE ERLANG DISTRIBUTION



Abstract. The investigation of differential equations with random impulses combines ideas in the
qualitative theory of differential equations and probability theory. The p-moment exponential stability
of the solutions is defined and studied when the waiting time between two consecutive impulses is
Erlang distributed. The study is based on the application of Lyapunov functions. Some examples are
given to illustrate the results.
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ÒÄÆÉÖÌÄ. ÛÄÌÈáÅÄÅÉÈ ÉÌÐÖËÓÄÁÉÀÍÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÂÀÌÏÊÅËÄÅÀ ÀÄÒÈÉÀ-
ÍÄÁÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÈÅÉÓÄÁÒÉÅÉ ÈÄÏÒÉÉÓÀ ÃÀ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÉÓ ÉÃÄÄÁÓ.
ÀÌÏÍÀáÓÍÈÀ p-ÌÏÌÄÍÔÖÒÉ ÄØÓÐÏÍÄÍÝÉÀËÖÒÉ ÌÃÂÒÀÃÏÁÀ ÂÀÍÓÀÆÙÅÒÖËÉÀ ÃÀ ÛÄÓßÀÅËÉËÉÀ
ÉÌ ÛÄÌÈáÅÄÅÀÛÉ, ÒÏÝÀ ÏÒ ÌÏÌÃÄÅÍÏ ÉÌÐÖËÓÓ ÛÏÒÉÓ ËÏÃÉÍÉÓ ÃÒÏ ÀÒÉÓ ÄÒËÀÍÂÉÓ ßÄÓÉÈ
ÂÀÍÀßÉËÄÁÖËÉ. ÂÀÌÏÊÅËÄÅÀ Ä×ÖÞÍÄÁÀ ËÉÀÐÖÍÏÅÉÓ ×ÖÍØÝÉÄÁÉÓ ÂÀÌÏÚÄÍÄÁÀÓ. ÛÄÃÄÂÄÁÉÓ
ÓÀÉËÖÓÔÒÀÝÉÏÃ ÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÄÁÉ.
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1 Introduction
In some real world phenomena the investigated process changes instantaneously at uncertain mo-
ments. In modeling such processes it is necessarily to combine deterministic differential equations
with random variables presenting the moments of impulses. The presence of randomness in the jump
condition changes the behavior of solutions of differential equations significantly. The study of prop-
erties of solutions combines methods of deterministic differential equations and probability theory.
Impulsive differential equations with random impulsive moments differ from stochastic differential
equations with jumps [5, 9–11]. Investigations concerning deterministic differential equations with
random impulses were considered in [2, 3, 7, 8, 12], but there are some inaccuracies there concerning
properties of deterministic variables and random variables.

In this paper we study nonlinear differential equations subject to impulses occurring at random
moments. Inspired by queuing theory and the distribution for the waiting time, we study the case of
Erlang distributed random variables between two consecutive moments of impulses. The p-moment
exponential stability of the solution is investigated by employing Lyapunov’s functions.

2 Random impulses in differential equations
Let the increasing sequence of nonnegative points {Tk}∞k=0 be given with lim

k→∞
{Tk} = ∞. Consider

the initial value problem for the system of impulsive differential equations (IDE) with fixed points of
impulses

x′ = f(t, x(t)) for t ∈ (Tk, Tk+1], k = 0, 1, 2, . . . ,

x(Tk + 0) = Ik(x(Tk − 0)) for k = 1, 2, . . . ,

x(T0) = x0,

(2.1)

where x, x0 ∈ Rn, f ∈ C[R+ × Rn,Rn], Ik : R+ × Rn → Rn.
We will assume the following condition is satisfied

H1. f(t, 0) = 0 and Ik(t, 0) = 0 for t ≥ 0, k = 1, 2, . . . .

Let the probability space (Ω,F , P ) be given. Let {τk}∞k=1 be a sequence of independent random
variables that are defined on the sample space Ω. We will call the random variables τk waiting times.
Assume

∞∑
k=1

τk = ∞ with probability 1.

We will assume the following condition is satisfied:

H2. The random variables {τk}∞k=1, τk ∈ Erlang(αk, λ) are independent random variables.

We will recall some properties of Erlang distribution:

(i) If X ∈ Erlang(α1, λ) and Y ∈ Erlang(α2, λ) are independent random variables, then X + Y ∈
Erlang(α1 + α2, λ);

(ii) The cumulative distribution function (CDF) of Erlang(α, λ) is

F (x;α, λ) = 1−
α−1∑
j=1

(λx)j

j!
e−λx, x ≥ 0,

and the density function is

f(x;α, λ) = λ
(λx)α−1

(α− 1)!
e−λx, x > 0.

Define the sequence of random variables {ξk}∞k=0 such that

ξk = T0 +
k∑

i=1

τi, k = 1, 2, . . . ,
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where T0 ≥ 0 is a fixed point.
We note that {ξk}∞k=0 is an increasing sequence of random variables defined by the recurrence

formula ξ0 = T0, ξk = ξk−1 + τk, k = 1, 2, . . . . The random variable ξn will be called the waiting time
and it gives the arrival time of n-th impulses.

Remark 2.1. The random variables Ξn = ξn − T0 =
n∑

i=1

τi ∈ Erlang
( n∑
i=1

αi, λ
)

are continuous with

CDF

F
(
t;

n∑
i=1

αi, λ
)
= P (Ξn < t) = 1−

∑n
i=1 αi−1∑
j=1

(λt)j

j!
e−λt for t ≥ 0.

Let the points tk be arbitrary values of the random variables τk, k = 1, 2, . . . , correspondingly.

Define the increasing sequence of points Tk = T0+
k∑

i=1

ti, k = 1, 2, 3 . . . , that are values of the random

variables ξk.
Consider the initial value problem (IVP) for the system of impulsive fractional differential equations

(IFrDE) with fixed points of impulses (2.1). The solution of IVP for IDE (2.1) depends not only on
the initial condition (T0, x0) but on the moments of impulses Tk, k = 1, 2, . . . , i.e. the solution
depends on the initially chosen arbitrary values tk of the random variables τk, k = 1, 2, . . . . We
denote the solution of the initial value problem (2.1) by x(t;T0, x0, {Tk}). We will assume that
x(Tk;T0, x0, {tk}) = lim

t→Tk−0
x(t;T0, x0, {tk}) for any k = 1, 2, . . . .

The set of all solutions x(t;T0, x0, {Tk}) of IVP for IDE (2.1) for any values tk of the random
variables τk, k = 1, 2, . . . , generates a stochastic process with state space Rn. We denote it by
x(t;T0, x0, {τk}) and we will say that it is a solution of the following initial value problem for impulsive
differential equations with random moments of impulses (RIDE)

x′(t) = f(t, x(t)) for t ≥ T0, ξk < t < ξk+1, k = 0, 1, . . . ,

x(ξk + 0) = Ik(x(ξk − 0)) for k = 1, 2, . . . ,

x(T0) = x0.

(2.2)

Definition 2.1. Let tk be a value of the random variable τk, k = 1, 2, 3, . . . , and Tk = T0 +
k∑

i=1

ti,

k = 1, 2, . . . . Then the solution x(t;T0, x0, {Tk}) of the IVP for the IDE with fixed points of impulses
(2.1) is called a sample path solution of the IVP for the RIDE (2.2).

Any sample path solution x(t;T0, x0, {Tk}) ∈ C1((Tk, Tk+1],Rn), k = 0, 1, 2, . . . .

Definition 2.2. A stochastic process x(t;T0, x0, {τk}) with an uncountable state space Rn is said to
be a solution of the IVP for the system of RIDE (2.2) if for any values tk of the random variable τk,

k = 1, 2, 3, . . . , and Tk = T0 +
k∑

i=1

ti, k = 1, 2, . . . , the corresponding function x(t;T0, x0, {Tk}) is a

sample path solution of the IVP for RIDE (2.2).

Example.
Case 1 (differential equation). Consider the following scalar ordinary differential equation (ODE)

x′ = 0, x(0) = x0 ̸= 0. Its solution x(t) = x0, t ≥ 0, is stable but does not approach 0.
Case 2 (impulsive differential equations with fixed points of impulses). Consider the following IVP

for the scalar IDE (2.1)
x′ = 0 for t ≥ 0, t ̸= Tk,

x(Tk + 0) = ax(Tk − 0) for k = 1, 2, . . . ,

x(0) = x0 ̸= 0,

(2.3)

where a is a constant.
The solution of IVP (2.3) is the piecewise continuous function x(t;x0) = akx0 for t ∈ (Tk, Tk+1].

The behavior of x(t;x0) depends significantly on the amplitude a of the impulses.
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If |a| < 1 then |x(t;x0)| approaches 0.
Case 3 (differential equation with random points of impulses). Consider the following partial case

of the IVP for RIDE (2.2)

x′ = 0 for t ≥ 0, ξk < t < ξk+1,

x(ξk + 0) = ax(ξk − 0) for k = 1, 2, . . . ,

x(0) = x0 ̸= 0,

(2.4)

where x ∈ R, a is a constant and the random variables ξk are defined above.

Let for any k = 1, 2, . . . the point tk be an arbitrary value of the random variable τk and Tk =
k∑

i=0

ti,

k = 1, 2, 3 . . . , i.e. Tk is a value of the random variable ξk. Consider the IVP for the corresponding IDE

x′ = 0 for t ≥ 0, t ̸= Tk,

x(Tk + 0) = ax(Tk − 0) for k = 1, 2, . . . ,

x(0) = x0.

(2.5)

The solution of (2.5) is x(t; 0, x0, {Tk}) = akx0 for Tk < t ≤ Tk+1. It depends on both initial value
x0 and the moments of impulses Tk, i.e. on the initially chosen arbitrary values tk of the random
variables τk, k = 1, 2, . . . .

The set of all solutions of the IVP (2.5) for any values tk of the random variables τk generates a
stochastic process x(t;x0, {τk}) = akx0 for ξk < t ≤ ξk+1 which has an expected value

E
∣∣x(t;x0, {τk})

∣∣ = |x0|P (T0 < t < ξ1) +
∞∑
k=1

|akx0|P (ξk < t < ξk+1),

i.e. it depends significantly on the distribution of the random variables τk.

3 Preliminary probability results
Lemma 3.1. Let the condition (H2) be satisfied. Then the probability that there will be exactly k
impulses until time t, t ≥ T0, is given by

P (Sk(t)) = e−λ(t−T0)

k∑
i=1

αi−1∑
j=

∑k−1
i=1 αi

(λ(t− T0))
j

j!
, t ≥ T0,

where the events Sk(t) = {ω ∈ Ω : ξk(ω) < t < ξk+1(ω)}, k = 1, 2, . . . .

Proof. According to Remark 2.1 we get

P (Sk(t)) = P (ξk < t < ξk+1) = P (ξk − T0 < t− T0 < ξk+1 − T0)

= FΞk

(
t− T0;

k∑
i=1

αi, λ
)
− FΞk+1

(
t− T0;

k+1∑
i=1

αi, λ
)
.

Corollary. Let the condition (H2) be satisfied with αi = α, i = 1, 2, . . . . Then the probability that
there will be exactly k impulses until time t, t ≥ T0, is given by

P (Sk(t)) = e−λ(t−T0)
kα−1∑

j=(k−1)α

(λ(t− T0))
j

j!
.
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We now obtain a formula for the solution of the initial value problem for a scalar linear differential
equation with random moments of impulses:

u′ = −mku for t ≥ T0, ξk < t < ξk+1,

u(ξk + 0) = bku(ξk − 0) for k = 1, 2, . . . ,

u(T0) = u0,

(3.1)

where u0 ∈ R, mk > 0, k = 0, 1, 2, . . . , and bk ̸= 1, k = 1, 2, . . . , are real constants.
Lemma 3.2. Let the condition (H2) be satisfied and the nonincreasing sequence of real positive
numbers {mi}∞i=0 be such that

∞∑
k=0

e−mk(t−T0)
k∏

i=1

|bi| < ∞.

Then the solution of the IVP for the linear RIDE (3.1) is given by the formula

u(t;T0, u0, {τk}) =


u0e

−m0(t−T0) for T0 < t < τ1

u0

( k∏
i=1

bi

)
e
−

k∑
i=1

mi−1τi
e−mk(t−ξk) for ξk < t < ξk+1, k = 1, 2, . . . ,

(3.2)

and the expected value of the solution satisfies the inequality

E
(∣∣u(t;T0, u0, {τk})

∣∣) ≤ |u0|
∞∑
k=0

e−mk(t−T0)
k∏

i=1

|bi| for t ≥ T0.

Proof. The formula for the solution follows from the formula for the solution of the corresponding
IVP for the linear IDE with fixed points of impulses and Definition 2.2.

According to Lemma 3.1, formula (3.2), the independence of the random variables τk and inequality
E(η) ≤ E(ξ) for the random variables η, ξ : 0 ≤ η ≤ ξ we have

E
(∣∣u(t;T0, u0, {τk})

∣∣) = |u0|e−m0(t−T0)P (τ1 > t− T0)

+
∞∑
k=1

|u0|
( k∏

i=1

|bi|
)
e−mk(t−T0)

k∏
i=1

E
(
e−(mi−1−mk)τi

)
P (Sk(t)) for t ≥ T0. (3.3)

Using the definition of the density function of the Erlang distribution and substituting (mi−mk+
λ)x = s we get

Ee(mk−mi)τi =

∞∫
0

e(mk−mi)xλ
(λx)αi−1

(αi − 1)!
e−λx dx =

(λ)αi

(αi − 1)!

∞∫
0

e−(mi−mk+λ)xxαi−1 dx

=
1

(mi −mk + λ)αi

(λ)αi

(αi − 1)!

∞∫
0

e−ssαi−1 ds =
( λ

mi −mk + λ

)αi

. (3.4)

Substitute (3.4) in (3.3), use Lemma 3.1 and obtain

E
(∣∣u(t;T0, u0, {τk})

∣∣) = |u0|e−(m0+λ)(t−T0)
α1−1∑
j=1

(λ(t− T0))
j

j!

+
∞∑
k=1

|u0|e−(mk+λ)(t−T0)
( k∏

i=1

|bi|
) k∏

i=1

( λ

mi −mk + λ

)αi

k∑
i=1

αi−1∑
j=

∑k−1
i=1 αi

(λ(t− T0))
j

j!
. (3.5)

Inequalities (3.5) and λ
mi−mk+λ ≤ 1 prove the lemma.

Remark 3.1. Note that the conditions of Lemma 3.2 are satisfied for mk = m and |bi| = 1
2 .
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4 p-exponential stability
In this paper we will use Lyapunov functions V (t, x) : J ×∆ → R+, which are continuous on J ×∆
and locally Lipschitzian with respect to its second argument, where J ⊂ R+ and ∆ ⊂ Rn, 0 ∈ ∆, and
their Dini derivatives.
Definition 4.1. Let p > 0. Then the trivial solution (x0 = 0) of the RIDE (2.2) is said to
be p-moment exponentially stable if for any x0 ∈ Rn there exist constants α, µ > 0 such that
E[∥x(t;T0, x0, {τk})∥p] < α∥x0∥pe−µ(t−T0) for all t > T0, where x(t;T0, x0, {τk} is the solution of the
IVP for the RIDE (2.2).
Theorem 4.1. Let the following conditions be satisfied:

1. The conditions (H1), (H2) hold.

2. The function V ∈ Λ(R+,Rn) and there exist positive constants a, b such that

(i) a∥x∥p ≤ V (t, x) ≤ b∥x∥p for t ∈ R+, x ∈ Rn;
(ii) there exists a constant m ≥ 0 such that

D+
(2.1)V (t, x) ≤ −mV (t, x) for t ∈ R+, x ∈ Rn;

(iii) for any k = 1, 2, . . . there exist functions wk ∈ C(R+,R+) and constants Ck > 0, wk(t) ≤

Ck for t ≥ 0 such that
∞∑
k=0

k∏
i=1

Ci = C < ∞ and

V (t, Ik(x)) ≤ wk(t)V (t, x) for t ∈ R+, x ∈ Rn. (4.1)

Then the trivial solution of the RIDE (2.2) is p-moment exponentially stable.
Proof. Let (T0, x0) ∈ R+ × Rn be an arbitrary initial data and the stochastic process xτ (t) =
x(t;T0, x0, {τk}) be a solution of the IVP for the RIDE (2.2).

Now consider the IVP for the scalar linear RIDE (3.1) with mk = m, bk = Ck and u0 = V (T0, x0)
with a solution uτ (t) = u(t;T0, x0, {τk}). According to Lemma 3.2 the inequality

E
(
|uτ (t)|

)
≤ |u0|e−m(t−T0)

∞∑
k=0

k∏
i=1

|Ci| = C|u0|e−m(t−T0)

holds.
Let tk be arbitrary values of the random variables τk, k = 1, 2, . . . , and Tk = T0 +

k∑
i=1

ti, k =

1, 2, . . . . Consider the sample path solutions x(t) = x(t;T0, x0, {Tk}) and u(t) = u(t;T0, x0, {Tk}).
Let v(t) = V (t, x(t)) for t ≥ T0. The function v(t) satisfies the linear impulsive differential inequ-

alities with fixed points of impulses
D+v(t) ≤ −mvτ (t) for Tk < t < Tk+1,

v(Tk+) ≤ Ckv(Tk), k = 1, 2, . . . ,

v(T0) = V (T0, x0).

(4.2)

The function m(t) = v(t)−u(t), t ≥ T0, is a piecewise continuous function and satisfies IVP (4.2) with
a zero initial condition. Therefore m(t) ≤ 0 on [T0,∞) (for details see the books [4, 6]). Therefore
vτ (t) ≤ uτ (t) where the set of v(t;T0, x0, {Tk}) for any values tk of the random variables τk, k =
1, 2, . . . , generates a stochastic process vτ (t) with state space Rn.

From the condition 2 (i) of Theorem 4.1 we obtain

E
(
∥xτ (t)∥p

)
=

1

a
E
(
a∥xτ (t)∥p

)
≤ 1

a
E(V (t, xτ (t))) =

1

a
E(vτ (t)) ≤

1

a
E(uτ (t))

≤ C

a
V (T0, x0)e

−m(t−T0) ≤ Cb

a
∥x0∥pe−m(t−T0), t ≥ T0.

Remark 4.1. If αk = 1 for all k, i.e. the random variables τk ∈ Exp(λ), the p-moment exponential
stability is studied in [1].
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