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A Short Survey of Scientific Results
of Academician Andria Bitsadze

“It is too difficult to write about a scientist not only because
of the great responsibility toward the history of science, but
also because of the complexity of scientific creative process
without which it is impossible to show his real personality”.

A. Bitsadze

Such an attitude of Andria Bitsadze to the problem cited in the epigraph is not accidental; a task
to give an exhaustive description of his versatile activities seems to us insuperable. The true appraisal
of human creativity and its crystallization occurs in the future generations. This point of view has
been shared by A. Bitsadze. However, his creative work during his lifetime was properly evaluated
by the mathematical community. This is confirmed at least by the fact that in the mathematical
literature we are often encountered with the facts and terms associated with his name: Bitsadze’s
equation, Lavrent’ev–Bitsadze’s equation, Bitsadze’s general mixed problem, Bitsadze’s extremum
principle, Bitsadze’s inversion formula, weakly and strongly connected Bitsadze’s elliptic systems,
Bitsadze–Samarski’s problem, and others. We do not intend to touch upon his organizational, peda-
gogical or educational work with students, we will dwell only on his scientific results not pretending
to present them in a perfect form.

We consider it appropriate to divide Andria Bitsadze’s activity into several staged, keeping here
chronology.

Elliptic equations and systems together with the problems posed for them take central place in
Andria Bitsadze’s creative work.

The fact that the condition of uniform ellipticity

k0

( n∑
i=1

λ2i

)N

≤ det
n∑

i,j=1

Aij(x)λiλj ≤ k1

( n∑
i=1

λ2i

)N

, k0, k1 = const > 0,

of the linear equation, or of the system

L(u) :=

n∑
i,j=1

Aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

Bi(x)
∂u

∂xi
+ C(x)u = F (x), u = (u1, . . . , uN )

ensures fredholmity of the boundary value problems in the domain D, in particular, of the first
boundary value problem
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was assumed formerly indisputable.
Irregularity of this fact was illustrated by A. Bitsadze in a simple and clear for everyone example,

called later on Bitsadze’s system
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It turned out that the Dirichlet homogeneous problem for Bitsadze’s system in a circular domain
D : (x − x0)

2 + (y − y0)
2 < R2 has an infinite set of linearly independent solutions, and all of them

are representable explicitly by the formula
w := u1 + iu2 =

(
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)
ψ(z), z0 = x0 + iy0

written in terms of an arbitrary analytic function ψ(z) of the complex argument z = x+ iy.
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While this fact seemed unexpected and almost improbable, it became a subject of discussions for
many mathematicians trying to explain this phenomenon. At his known seminar, I. Gelfand made an
attempt to explain this fact by multiplicity of characteristic roots of system (1). In reply, A. Bitsadze
has constructed another system
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with simple characteristic roots, the system for which the Dirichlet problem has likewise an infinite
set of linearly independent solutions

wk(z) = Bk

{[
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]k − (µζ − ζ)2k
}
, k = 1, 2, . . . ,

where ζ = z − z0, (1 +
√
2)µ = i, and Bk are arbitrary complex constants. On the basis of those

simple and refined examples, the theory of boundary value problems for elliptic systems has acquired
a great deal of new trends. The widely known theory of nonfredholm boundary value problems is one
of such them. These theories do not lose their importance even nowadays, and many of A. Bitsadze’s
followers and pupils devote them their researches.

Afterwards, there arose the natural question to single out classes of elliptic systems with solvable, in
a certain sense, boundary value problems, in particular, solvable in the Fredholm, Noether or Hausdorff
sense. In this direction, it is impossible to hold back about the question on weakly connected Bitsadze’s
systems for which the Dirichlet problem is always fredholmian one.

It was considered earlier that solvability of boundary value problems is determined only by the
principal part of the system. A. Bitsadze has expressed somewhat different opinion that coefficients
of the system with lower order derivatives may significantly affect the solvability of the problem. To
justify this concept, he introduced the notion of strongly connected elliptic systems that cover systems
(1) and (2) constructed earlier in the form of particular examples. As it has become clear, the solvable
in one or another sense boundary value problems for elliptic systems with Bitsadze’s operators in the
principal part may turn out to be unsolvable on adding the lower order terms.

The above-mentioned fundamental effects were discovered by A. Bitsadze by using the apparatus
of the theory of functions of a complex variable. This instrument is well suited for a homogeneous
system consisting only of the principal part
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with two independent variables. A. Bitsadze has constructed a general regular solution of system (1)
in the form
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where φjl(zj) are analytic functions of the complex variable zj = x + λjy, and λj are the roots of
the corresponding to system (3) characteristic polynomial Q(λ) = det(A+ 2Bλ+ Cλ2) with positive
imaginary parts. As regards the N -component vectors Clkj , they are the solutions of the fully defined
system of linear algebraic equations.

The instruments of the theories of analytic functions and of one-dimensional singular integral
equations make it possible to investigate many boundary value problems in the case of two independent
variables. If there are more than two variables, then there arise considerable difficulties due to the
lack of a complete theory of multidimensional singular integral equations. Using a multidimensional
analogue of the Sokhotski–Plemelj theorem, A. Bitsadze has studied the first boundary value problem
for the well-known Moisel–Theodorescu system, reduced it to a multidimensional system of singular
integral equations with a special matrix kernel and constructed the inversion formula which in the
literature is called “Bitsadze’s inversion formula”.

Among the problems formulated for elliptic equations and systems, even, in particular, for harmonic
functions, the problem with an oblique derivative is regarded as one of the basic ones, when on the



Academician Andria Bitsadze 3

boundary of the n-dimensional domain D there is the condition
n∑
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As far back as in G. Giraud’s works it has been shown that if the direction of the vector ℓ :=
(ℓ1, . . . , ℓn) at none of the boundary points meets the tangent, the problem becomes solvable in
Fredholm’s sense. Otherwise, the situation changes insomuch that many scientists were inclined to
consider this problem atypical for elliptic equations. Considering these nonstandard cases, A. Bitsadze
has shown this problem not at all to exceed the bounds of typical problems and proved the theorems
on a number and existence of solutions. As it has become clear, the problem with an oblique derivative
may turn out to be simultaneously subdefinite and overdetermined. For the problem to be well-posed,
it is necessary, proceeding from the structure of interconnection between the vector field ℓ and the
domain, to release some set of boundary points from the conditions and impose additional conditions
on some set of points. To illustrate this, we consider one simplest example when the vector field meets
the boundary at k isolated points. In this case a number of linearly independent solutions of the
problem under consideration does not exceed k.

The objects of A. Bitsadze’s investigations are not always ordinary. He studied the problems which
are, as a rule, not subjected to the standard conditions ensuring the existence and uniqueness of
solutions. To such problems may belong those suggested by A. Bitsadze for elliptic equations with
parabolic degeneration with weighted conditions on the boundary. These problems were dictated by
their practical necessity. For such problems not only the conditions of uniform or strong ellipticity
violate, but they degenerate parabolically either on the whole boundary, or on its certain part. In
addition, a set of points of parabolic degeneration may turn out to be even a characteristic. For
example, for the equation
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the line of degeneration y = 0 is simultaneously its multiple characteristic. In such a case, the role of
coefficients with the lower order derivatives extends, and depending on them, not all solutions may be
bounded. M. Keldysh considered this problem in the class of bounded functions, and hence neglected
unbounded solutions. A. Bitsadze replaced the requirement of the boundedness by the following
weighted boundary conditions:

u
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σ
= f, lim

y→0
ψ(x, y)u(x, y) = φ(x), 0 ≤ x ≤ 1,

where σ ∪{y = 0, 0 ≤ x ≤ 1} is the boundary of the domain, and the weighted function ψ on the line
of degeneration vanishes. These problems have brought to light new practical and theoretical validity
of weighted functional spaces that before and after formulation of those problems have become the
subject of a great number of research works.

The hyperbolic equations and systems aren’t less rich with the effects connected with parabolic
degeneration. Many factors affect the solvability of the problems formulated here; they include an
order of parabolic degeneration, orientation of a set of degeneration points with respect to charac-
teristic manifolds, etc. As distinct from a separately taken equation, hyperbolic systems show a lot
of unexpected properties even without parabolic degeneration. Thus, for example, the well-known
Goursat problem for a scalar equation is quite well-posed. The constructed by A. Bitsadze hyperbolic
system
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has shown that the corresponding homogeneous problem may have an infinite set of linearly indepen-
dent solutions, and what is more, the lower order terms of the system may affect significantly the
well-posedness of the problem. This fact has given a great impetus to many important researches and
stimulated the development of a series of scientific trends.

In the middle of the past century, mathematics has found new significant applications that should,
seemingly, be explained by an unprecedented rate of technical progress. The major achievements in
transonic and supersonic velocities have drawn attention of scientists to many problems, including
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those of mixed type equations in which M. Lavrent’ev has shown spacial interest and awoken it in
A. Bitsadze. Combining the methods of the theory of analytic functions, of partial differential equa-
tions and singular integral equations, A. Bitsadze created a powerful and, at the same time, elegant
apparatus, convenient for solving the problems formulated for the mixed type equations. Effectiveness
of the suggested method has been tested on the boundary value problems for the Lavrent’ev–Bitsadze’s
equation

∂2u

∂x2
+ sgn y ∂

2u

∂y2
= 0

being the model of the well-known Tricomi’s equation for which A. Bitsadze posed a great number
of actual problems and established a series of significant facts known in the literature as “Bitsadzian
facts”. Here we will mention only Bitsadze’s extremum principle. For the Tricomi’s equation

y
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along with the Tricomi’s problem has also been considered the Dirichlet problem expecting its solv-
ability. This was needed, mainly, for practical, concrete purpose.

A. Bitsadze has shown that this problem was not always well-posed, and for it to be solvable, it was
necessary to release a definite part of the boundary of hyperbolic subdomain from the conditions. To
formulate the problems responding practical purposes in which the whole boundary is occupied with
the conditions, A. Bitsadze suggested several versions. In one of his versions he linked the solution
values at different boundary points with the functional law. This nonlocal problem is well-posed. It
has prompted the ways of its natural generalization to a multidimensional case.

To every well-posed plane problem there may be assigned several spatial versions, of which we
will dwell only on those which maximally approach practical problems. The spatial version of the
above-mentioned problem of exactly such a nature is easily generalizable and provides us with a well-
posed problem. As concerns the Tricomi’s problem, it has several generalization versions that make
it possible to demonstrate the structure of a set of type variation points. This set of points may turn
out to be a surface, oriented to the space and time. This moment determines two essentially different
trends in the theory of boundary value problems for multidimensional mixed type equations.

Equations refer to different types, depending on their characteristic roots. If the equation, along
with its real characteristic roots, has complex ones, then it belongs to the composite type equations.
Such equations include, for example, the Laplace differentiated equation. If instead of the Laplace
operator is differentiated Tricomi’s operator, we obtain the mixed-composite type operator. For the
equation of such a complicated nature, A. Birsadze formulated a great number of actual problems and
obtained important results.

We have mentioned above the nonlocal problem in which the values of an unknown solution are
interconnected at different boundary points. Of practical and theoretical interest are the problems, in
which the boundary values of solutions are connected by the specific law with their values on a set of
interior points of the domain. Among the problems of such a kind the Bitsadze-Samarski’s problem
takes central place. Its simplest and visual version is formulated as follows: Find in a unit circle a
harmonic function u satisfying the condition

u(x, y)− u(δx, δy) = f(x, y), x2 + y2 = 1,

where the constant δ ∈ (0, 1).
Practical problems in modeling are reduced, mainly, to the nonlinear equations. This is, seemingly,

the fact that explains special interest to the above formulated problems. The powerful methods used
for linear equations, in the nonlinear case are not always effective. It is a great advantage to reveal
even a separate class of their solutions. The constructed by A. Bitsadze exact solutions of special type
nonlinear equations
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have found versatile practical and theoretical applications. Equations of type (4) cover a large number
of models corresponding to the well-known equations of gravitation field, ferromagnetism theory,
Heisenberg equations and Lorentz-covariant equations.
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A large number of A. Bitsadze’s creative achievements, including those mentioned above, have
become long ago a corner stone on which scientific trends in the modern theory of partial differential
equations are constructed.

Sergo Kharibegashvili
Otar Jokhadze
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15. On the problem of equations of mixed type. (Russian) Trudy Mat. Inst. Steklov. vol. 41.

Izdat. Akad. Nauk SSSR, Moscow, 1953. 59 pp.
16. Über die Gleichung von gemischten Typus. (Russian) Usp. Mat. Nauk 8, no. 1(53), 174–175

(1953).
17. Spatial analogue of an integral of Cauchy type and some of its applications. (Russian) Izvestiya

Akad. Nauk SSSR. Ser. Mat. 17 (1953), 525–538.
18. A spatial analogue of the Cauchy-type integral and some of its applications. (Russian) Doklady

Akad. Nauk SSSR (N.S.) 93 (1953) 389–392; errata, 94, 980 (1954).



8 Academician Andria Bitsadze

19. Inversion of a system of singular integral equations. (Russian) Doklady Akad. Nauk SSSR
(N.S.) 93 (1953), 595–597; errata, 94, 980 (1954).
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