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ON OSCILLATORY AND MONOTONE SOLUTIONS
OF NONLINEAR FUNCTIONAL DIFFERENTIAL SYSTEMS

Abstract. The nonlinear functional differential system with deviating arguments
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is considered, where fi : [a,+∞[×R → R (i = 1, 2) and τi : [a,+∞[→ R (i = 1, 2) are continuous
functions, and τi(t) → +∞ as t → +∞ (i = 1, 2). Conditions are found under which any proper
solution of that system is, respectively: a) oscillatory, b) either oscillatory or Kneser solution,
c) either oscillatory or rapidly increasing.
ÒÄÆÉÖÌÄ. ÂÀÍáÉËÖËÉÀ ÂÀÃÀáÒÉËÀÒÂÖÌÄÍÔÄÁÉÀÍÉ ÀÒÀßÒ×ÉÅÉ ×ÖÍØÝÉÏÍÀËÖÒ-ÃÉ×ÄÒÄÍÝÉÀ-
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ÓÀÃÀÝ fi : [a,+∞[×R → R (i = 1, 2) ÃÀ τi : [a,+∞[→ R (i = 1, 2) ÖßÚÅÄÔÉ ×ÖÍØÝÉÄÁÉÀ
ÃÀ τi(t) → +∞, ÒÏÝÀ t → +∞ (i = 1, 2). ÍÀÐÏÅÍÉÀ ÐÉÒÏÁÄÁÉ, ÒÏÌÄËÈÀ ÛÄÓÒÖËÄÁÉÓÀÓ ÀÌ
ÓÉÓÔÄÌÉÓ ÍÄÁÉÓÌÉÄÒÉ ßÄÓÉÄÒÉ ÀÌÏÍÀáÓÍÉ ÓÀÈÀÍÀÃÏÃ ÀÒÉÓ: À) ÒáÄÅÀÃÉ, Á) ÀÍ ÒáÄÅÀÃÉ, ÀÍ
ÊÍÄÆÄÒÖËÉ, Â) ÀÍ ÒáÄÅÀÃÉ, ÀÍ ÓßÒÀ×ÀÃ ÆÒÃÀÃÉ.
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The present paper is devoted to the investigation of asymptotic properties of solutions of the
nonlinear functional differential system

u
(n1)
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(
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)
, u
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(
t, u1(τ2(t))

)
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Here, n1 ≥ 1, n2 ≥ 2, a > 0, while fi : [a,+∞[×R → R and τi : [a,+∞[→ R (i = 1, 2) are continuous
functions. Moreover,

lim
t→+∞

τi(t) = +∞ (i = 1, 2),

and one of the following two conditions
fi(t, 0) = 0, (−1)i−1fi(t, x) ≤ (−1)i−1fi(t, y) for t > a, x < y (i = 1, 2); (2)

fi(t, 0) = 0, fi(t, x) ≤ fi(t, y) for t ≥ a, x < y (i = 1, 2) (3)
is satisfied.

Asymptotic (including oscillatory) properties of solutions of the system (1) previously have been
investigated mainly in the cases where this system can be reduced to one n1 + n2-order functional
differential equation, or in the cases where n1 = n2 = 1 (see [1–7, 11, 12, 15–19] and the references
therein). The case, where n1 + n2 > 2, τi(t) ̸≡ t (i = 1, 2), and the system (1) cannot be reduced
to one equation, still remains practically unstudied. The results of the present paper concern namely
this case.

Let a0 ≥ a. A vector function (u1, u2) : [a0,+∞[→ R2 is said to be a solution of the system (1)
if u1 and u2 are, respectively, n1-times and n2-times continuously differentiable functions, and there
exist continuous functions vi : ] −∞, a0] → R (i = 1, 2) such that on [a0,+∞[ the equalities (1) are
fulfilled, where

ui(t) = vi(t) for t ≤ a0 (i = 1, 2).

A solution (u1, u2) of the system (1), defined on some interval [a0,+∞[⊂ [a,+∞[ , is said to be
proper if it is not identically zero in any neighborhood of +∞.

A proper solution of the system (1) is said to be oscillatory if at least one of its components
changes the sign in any neighborhood of +∞.
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Note that if one of the conditions (2) and (3) is satisfied, then both components of every oscillatory
solution of the system (1) change the sign in any neighborhood of +∞.

A nontrivial solution (u1, u2) : [a0,+∞[→ R of the system (1) is said to be a Kneser solution if
on [a0,+∞[ it satisfies the inequalities

(−1)iu
(i)
1 (t)u1(t) ≥ 0 (i = 1, . . . , n1),

(−1)ku
(k)
2 (t)u2(t) ≥ 0 (k = 1, . . . , n2),

and it is said to be rapidly increasing if

lim
t→+∞

|u(ni−1)
i (t)| > 0 (i = 1, 2).

Let
n = n1 + n2,

and following I. Kiguradze [8, 9] introduce the definitions.

Definition 1. The system (1) has the property A0 if every its proper solution for n even is oscillatory,
and for n odd either is oscillatory or is a Kneser solution.

Definition 2. The system (1) has the property B0 if every its proper solution for n even either is
oscillatory, or is a Kneser solution, or is rapidly increasing, and for n odd either is oscillatory or is
rapidly increasing.

I. T. Kiguradze [8, 9] has established unimprovable in a certain sense conditions under which the
differential system

u
(n1)
1 (t) = f1(t, u2(t)), u

(n2)
2 (t) = f2(t, u1(t))

has the property A0 (the property B0). The theorems below are the generalizations of those results
for the system (1).

If m is a natural number, then by N 0
m we denote the set of those k ∈ {1, . . . ,m} for which m+ k

is even.
For any natural k, we put

φk(t, x) = x

[
|τ2(t)|n1−1 +

∫ τ2(t)

a

(τ2(t)− s)n1−1
∣∣f1(t, x|τ1(s)|k−1

)∣∣ ds].
Theorem 1. Let the condition (2) hold and let for any x ̸= 0 and k ∈ N 0

n2−1 the equalities∫ +∞

a

|f1(t, x)| dt = +∞,

∫ +∞

a

tn2−1|f2(t, x)| dt = +∞, (4)∫ +∞

a

tn2−k−1
∣∣f2(t, φk(t, x))

∣∣ dt = +∞ (5)

be satisfied. Then the system (1) has the property A0.

Theorem 2. Let n2 > 2 (n2 = 2) and the condition (3) hold. If, moreover, for any x ̸= 0 and
k ∈ N 0

n2−2 the equalities (4) and (5) are satisfied (for any x ̸= 0 the equalities (4) are satisfied), then
the system (1) has the property B0.

Remark 1. For the equality (5) to be satisfied for any x ̸= 0 and k ∈ N 0
n2−1 it is sufficient that the

equality ∫ +∞

a

∣∣f2(t, x|τ2(t)|n1−1
)∣∣ dt = +∞

be satisfied for any x ̸= 0.

The conditions of Theorems 1 and 2 do not guarantee the existence of proper solutions appearing
in the definitions of the properties A0 and B0. The problem on the existence of such solutions needs
additional investigation. In particular, for the system (1) we have to study the initial problem

u
(k−1)
i (a) = cik (k = 1, . . . , ni; i = 1, 2), (6)
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the Kneser problem
2∑

i=1

ni∑
k=1

|u(k−1)
i (a)| = c0, (−1)k−1u

(k−1)
i (t)ui(t) > 0 for t ≥ a (k = 1, . . . , ni; i = 1, 2), (7)

and the Kiguradze problem [10]

u
(k−1)
1 (a) = α1ku

(n2−1)
2 (a) + c1k (k = 1, . . . , n1),

u
(k−1)
2 (a) = α2ku

(n2−1)
1 (a) + c2k (k = 1, . . . , n2 − 1), lim inf

t→+∞
|u(n2−1)

2 (t)| < +∞.
(8)

The following lemma is valid.

Lemma 1. If the conditions
a ≤ τi(t) < t, fi(t, x) ̸= 0 for t > a, x ̸= 0 (i = 1, 2),

and
2∑

i=1

ni∑
k=1

|cik| > 0

are fulfilled, then the problem (1), (6) is solvable and every its solution is proper.

On the basis of the methods proposed in [13] and [14], the following lemmas can be proved.

Lemma 2. If c0 > 0,
τi(t) > t for t > a (i = 1, 2),

and

f1(t, x)x > 0, (−1)n1+n2f2(t, x)x > 0 for t > a, x ̸= 0,

then the problem (1), (7) is solvable.

Lemma 3. Let the conditions
a ≤ τi(t) < t, fi(t, x)x > 0 for t ≥ a, x ̸= 0 (i = 1, 2),

f1(t, x) ≤ f1(t, y) for t ≥ a, x ≤ y,

and ∫ +∞

a

∣∣f1(t, x|τ1(t)|n2−1
)∣∣ dt = +∞ for x ̸= 0

hold. If, moreover,

α1j > 0, α2k > 0 (j = 1, . . . , n1; k = 1, . . . , n2 − 1),

n1∑
j=1

|c1j |+
n2−1∑
k=1

|c2k| > 0,

then the problem (1), (8) is solvable and every its solution is proper.

Theorem 1 and Lemmas 1 and 2 yield the following propositions.

Theorem 3. Let n1 + n2 be even and along with (2) the condition
τi(t) < t, fi(t, x) ̸= 0 for t ≥ a, x ̸= 0 (i = 1, 2) (9)

be satisfied. If, moreover, for any x ̸= 0 and k ∈ N 0
n2−1 the equalities (4) and (5) are fulfilled, then

the system (1) has an infinite set of proper solutions and every such solution is oscillatory.

Theorem 3′. Let n1 + n2 be odd and along with (2) the condition
τi(t) > t, fi(t, x) ̸= 0 for t > a, x ̸= 0 (i = 1, 2) (10)

hold. If, moreover, for any x ̸= 0 and k ∈ N 0
n2−1 the equalities (4) and (5) are satisfied, then:
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(i) the system (1) has an infinite set of proper Kneser solutions and every such solution is
vanishing at infinity;

(ii) an arbitrary nontrivial solution (u1, u2) of the system (1), defined on some interval [a0,+∞[⊂
[a,+∞[ and satisfying the inequality

min
{
(−1)ku

(k)
i (a0)ui(a0) : k = 1, . . . , ni − 1; i = 1, 2

}
≤ 0,

is oscillatory.
On the basis of Theorem 2 and Lemma 3 the following theorem can be proved.

Theorem 4. Let n1 + n2 be odd and the conditions (3) and (9) hold. If, moreover, n2 > 2 (n2 = 2)
and for any x ̸= 0 and k ∈ N 0

n2−2 the equalities (4) and (5) are satisfied (for any x ̸= 0 the equalities
(4) are satisfied), then the system (1) has infinite sets of oscillatory and rapidly increasing solutions.

Remark 2. If n1 + n2 is even and the conditions (3) and (10) hold, then by Lemma 3 the system (1)
has an infinite set of proper Kneser solutions. However, in this case the problem on the existence of
oscillatory and rapidly increasing solutions of that system remains open.
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