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Abstract. This paper contains a short presentation of author’s results
on spectral properties of main boundary value problems for strongly elliptic
second-order systems in bounded Lipschitz domains. We consider the ques-
tions on the completeness of root functions, on the summability of Fourier
series with respect to them and on their basis property in spaces Hs

p with
indices s, p close to ±1, 2. The complete presentation will be published
elsewhere.
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ÒÄÆÉÖÌÄ. ÀÌ ÓÔÀÔÉÀÛÉ ÌÏÊËÄÃ ÀÒÉÓ ÂÀÃÌÏÝÄÌÖËÉ ÀÅÔÏÒÉÓ ÛÄÃÄ-
ÂÄÁÉ, ÒÏÌËÄÁÉÝ ÄáÄÁÀ ÞËÉÄÒ ÄËÉ×ÓÖÒÉ ÌÄÏÒÄ ÒÉÂÉÓ ÓÉÓÔÄÌÄÁÉÓ-
ÈÅÉÓ ÛÄÌÏÓÀÆÙÅÒÖË ËÉ×ÛÉÝÉÓ ÀÒÄÄÁÛÉ ÃÀÓÌÖËÉ ÌÈÀÅÀÒÉ ÓÀÓÀÆÙ-
ÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÓÐÄØÔÒÀËÖÒ ÈÅÉÓÄÁÄÁÓ. ÜÅÄÍ ÂÀÍÅÉáÉËÀÅÈ ÓÀÊÉ-
ÈáÄÁÓ ÒÏÌËÄÁÉÝ ÄáÄÁÀ ×ÄÓÅÉ ×ÖÍØÝÉÄÁÉÓ ÓÉÓÒÖËÄÓ, ÌÀÈ ÌÉÌÀÒÈ
×ÖÒÉÄÓ ÌßÊÒÉÅÄÁÉÓ ÊÒÄÁÀÃÏÁÀÓÀ ÃÀ ÌÀÈ ÞÉÒÉÈÀÃÉ ÈÅÉÓÄÁÄÁÓ Hs

p
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1. Let Ω be a bounded domain in Rn, n ≥ 2, with Lipschitz boundary Γ.
Assume that we have a matrix strongly elliptic [16] second-order operator

Lu := −
n∑

j,k=1

∂jaj,k∂ku+
n∑

j=1

bj∂ju+ cu

in Ω with complex-valued coefficients of small smoothness (in particular,
with Lipschitz higher-order coefficients). The form

Φ(u, v) =

∫
Ω

[∑
aj,k∂ku · ∂jv +

∑
bj∂ju · v + cu · v

]
dx

is associated with L. We first consider the Dirichlet and Neumann prob-
lems in a weak sense for the equation Lu = f with homogeneous boundary
conditions. Solutions are defined by the Green formula

(Lu, v)Ω = Φ(u, v). (1)
In the simplest setting, in the Dirichlet problem

u, v ∈
◦
H1(Ω) = H̃1(Ω), Lu = f ∈ H−1(Ω),

and in the Neumann problem

u, v ∈ H1(Ω) = W 1
2 (Ω), Lu = f ∈ H̃−1(Ω).

(The definitions of more general spaces can be seen in Section 2 below.) In
such a generality, the Green formula is postulated. The functions f and u,
v belong to spaces dual with respect to a continuation of the standard inner
product in L2(Ω)

(u, v)Ω =

∫
Ω

u · v dx.

The bounded operators

LD : H̃1(Ω) −→ H−1(Ω) and LN : H1(Ω) −→ H̃−1(Ω)

correspond to these problems. The domains of these operators are com-
pactly and densely embedded in the right-hand spaces. We wish to con-
sider spectral properties of these operators. We assume that the form Φ is
coercive:

∥u∥2H1(Ω) ≤ C1 ReΦ(u, u) + C2∥u∥2L2(Ω). (2)

In the Dirichlet problem, the coerciveness is needed only on
◦
H1(Ω) and

follows from the strong ellipticity, For the Neumann problem, the simple
sufficient conditions are known, fulfilled, in particular, for elasticity systems
(see e.g. [2, Section 11]).

The last term in (2) can be removed by using a shift of the spectral
parameter. After this, we have the strong coercivity of Φ. Below it is
assumed. From it, the invertibility of the operators LD and LN follows by
the Lax–Milgram theorem (see e.g. [2, Section 18]). The same is true for the
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adjoint operators L∗
D and L∗

N defined by the operator L∗ formally adjoint
to L (in Ω or Ω, respectively, see [2, Section 11]) and the Green formula

Φ(u, v) = (u, L∗v)

with the same Φ.
The inverse operators are compact. Hence LD and LN are the operators

with a discrete spectrum in their ranges. Our main question is: when their
root functions are complete, i.e. their finite linear combinations are dense
(in the ranges and hence in the domains), or are “better”.

For the problems in the simplest setting indicated above, there are simple
tools for the investigation of the completeness since only Hilbert spaces are
used in this setting. In particular, L can be a formally self-adjoint operator
in Ω or Ω:

Φ(u, v) = Φ(v, u)

for u, v in H̃1(Ω) or H1(Ω), respectively. Then we take the form Φ(u, v) for
the inner product in the domain of LD or LN , respectively. In the ranges,
we introduce the corresponding inner product e.g. Φ(L−1

D f, L−1
D g) in the

case of the Dirichlet problem. The operators become self-adjoint, and a
unique orthogonal basis of eigenfunctions exists in the both spaces.

Here, elementary, but very important remark consists in the fact that we
need the inner product defined by the operator.

The asymptotics of the eigenvalues λk of self-adjoint operators LD and
LN in a Lipschitz domain is known [12]. Namely, if λk are enumerated in
the non-decreasing order taking multiplicities into account, then, as for the
smooth problems,

λk ∼ ck
n
2

(even with a fairly good remainder estimate). For non-self-adjoint compact
operators L−1

D and L−1
N , this implies the estimate of “s-numbers” (see [7,

Chapter 2])
sk ≤ Ck−

n
2 . (3)

We have also the completeness if L is a weak perturbation of a formally
self-adjoint operator (i.e. a perturbation in terms of order not greater
than 1).

A more general condition, sufficient for the completeness, gives the Dun-
ford–Schwartz theorem which is formulated in terms of angles between rays
on the complex plane from the origin with power estimate for the norm of
the resolvent (see [9, Chapter XI]). We only formulate a corollary for our
problems in the simplest spaces.

Denote by Λθ the closed sector on the complex plane of opening 2θ with
bisector R+. By Mθ we denote the closure of the complement to Λθ. Let θ0
be such that the values of Φ(u, u) (with zero boundary values for u in the
case of the Dirichlet problem) are contained in Λθ0 . Obviously, it contains
all eigenvalues of LD or LN .

Note that θ0 < π
2 and that eiαΦ is strongly coercive if 0 < α < π

2 − θ0.
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Proposition 1. The root functions of the operators LD and LN are com-
plete in their ranges and domains if

θ0 <
π

n
. (4)

The proof uses (3) and the optimal resolvent estimate in Mθ with θ a
little greater than θ0 (see (8) below), it is easily obtained in our simplest
spaces, see [2, Section 11].

2. However, our problems can be considered in more general spaces Hs
p of

Bessel potentials. (For p = 2, they are Hs.) We remind definitions and
some facts from their theory (cf. [2, Sections 14]).

1. Hs
p(Rn) = Λ−sLp(Rn) for 1 < p < ∞, s ∈ R, where Λ−s =

F−1(1 + |ξ|2)−s/2F and F is the Fourier transform in the sense
of distributions.

2. Hs
p(Ω) is the space of restrictions of elements in Hs

p(Rn) to Ω with
inf-norm. For integers s > 0, they are the Sobolev spaces W s

p (Ω).

3. H̃s(Ω) is the subspace in Hs(Rn) of elements supported in Ω.
We need to mention the following facts.
These spaces are separable and reflexive Banach spaces.
There is a universal bounded operator of continuation from Hs

p(Ω) to
Hs

p(Rn) [13].
There is an operator of passage to the trace on Γ acting boundedly from

H
s+ 1

p
p (Ω) to the Besov–Slobodetskii space Bs

p(Γ) = W s
p (Ω) for 0 < s < 1

(only) with a bounded right inverse.
The spaces H̃s

p(Ω) can be identified with Hs
p(Ω) for small |s|.

The spaces Hs
p(Ω) and H̃−s

p′ (Ω) are dual. Here and below 1
p + 1

p′ = 1.
We agree not to write Ω.
Now, in the Dirichlet problem

u ∈ H̃
1
2+s+ 1

p
p , f ∈ H

− 1
2+s− 1

p′
p , v ∈ H̃

1
2−s+ 1

p′

p′ ,

and in the Neumann problem

u ∈ H
1
2+s+ 1

p
p , f ∈ H̃

− 1
2+s− 1

p′
p , v ∈ H

1
2−s+ 1

p′

p′ .

The solutions are defined by the same Green formula (1). The domains
of the operators LD and LN : u 7−→ f are again compactly and densely
embedded in their ranges. The functions u and f belong to the spaces with
difference of superscripts equal 2. The functions f and v belong to the dual
spaces. But |s| < 1

2 in view of the trace theorem, and the functions f and
u are generally not in dual spaces; because of this fact, the Lax–Milgram
theorem cannot be applied.

Instead, the remarkable Shneiberg’s theorem from the interpolation the-
ory of operators is applicable. See [14] or [2, Section 13]. This is a theorem
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on the extrapolation of the invertibility of operators. According to it, there
exist some numbers ε ∈ (0, 1

2 ] and (small) δ > 0 such that our problem
(Dirichlet or Neumann) is uniquely solvable for |s| < ε, |r − 1

2 | < δ, where
r = 1

p . Simultaneously, this is a statement on the smoothness of solutions.
If L has a formally self-adjoint principal part, then, under an easy additional
condition at the points near Γ, ε = 1

2 .
Let Qε,δ be the rectangle of corresponding points (s, 1

p ). For convenience,
we assume that it is common for the Dirichlet and Neumann problem and
that ε > δ. Below, we will consider only (s, t) ∈ Qε,δ.

What can be said about spectral properties of our operators in these
Banach spaces? Spectral properties of problems in abstract Banach spaces
were investigated by many mathematicians (Grothendieck, Pietsch, König,
Edmunds, Evans, Triebel, Markus, Matsaev, and many others). In partic-
ular, there are extensions of Dunford–Schwartz theorem ([6], [1]). But to
apply them, one needs to have an extension of the resolvent estimate.

However, it turned out that for our problems special theorems on the
completeness in Banach spaces are non-necessary at all. Let us explain
this.

For a fixed p with | 1p − 1
2 | < δ, denote by Ip the interval(

− 3

2
− ε+

1

p
,
1

2
+ ε+

1

p

)
.

This is the union of superscripts of “the most right” domain of our operator,
“the most left” range of it and intermediate points. These spaces form a
unique scale. When the superscript decreases, the space is expanded. The
embedding is dense since smooth functions are dense in all spaces. Since
LD and LN are invertible, their root functions belong to the domain and
to the range simultaneously. If we have the completeness in one of these
spaces, then this is true in the other one as well.

We obtain the following

Proposition 2. The root functions of the operator LD belong to all spaces
corresponding to points of Ip, and if they are complete in one of them, they
are complete in all other. The same is true for the operator LN .

This is useful in obtaining the following result.

Theorem 3. The root functions belong to all spaces corresponding to points
of the union of intervals Ip with | 1p − 1

2 | < δ, and if they are complete for
p = 2, then the same is true for all p.

The proof uses, besides isomorphisms defined by our operator, the known
embeddings for our spaces. For p < 2, the obvious embeddings are used for
s = 1

2 − 1
p . For p > 2, we use a less simple result (see [15, Section 4.6.1]):

Let
1 < p ≤ q < ∞, σ − τ ≥ n

(1
p
− 1

q

)
.
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Then there is a continuous and dense embedding Hσ
p ⊂ Hτ

q . A similar
statement is true for the spaces H̃σ

p .
It follows that for our operators the domain with the subscript p and

superscript 1
2 + 1

p is embedded into the range with the subscript q > p and
superscript −1

2 − 1
q′ if

2

n− 1
≥ 1

p
− 1

q
.

We increase p by small steps and obtain the result in a finite number of
steps. �

In a simpler case of smooth elliptic problems in Sobolev spaces, such
approach was used by Agmon in his classical paper [4].

Remark. In the case of a formally self-adjoint L, in the spaces corresponding
to the points of the interval I2, it is possible to introduce inner products
by using powers of the operator LD or LN , and then we have the same
orthogonal basis of eigenfunctions in these spaces.

3. For our spectral problems, there exists a second realization. The corre-
sponding operators can be considered as acting in Lp(Ω) (in particular, in
L2(Ω), which is especially popular in the literature, see e.g. [12]) instead of
spaces with negative superscripts. We consider the Neumann problem for
definiteness.

Let p be fixed with | 1p − 1
2 | < δ. Denote by Ĥp(Ω) the space of such u

that the form Φ(u, v) defines a continuous anti-linear functional on Lp′(Ω).
Of course, it is continuous on H

1
2−s+ 1

p′

p′ (Ω) for |s| < ε (since the superscript
is positive here). Hence formula

(LNu, v) = Φ(u, v) (5)

defines a solution u of the equation LNu = f belonging to all H
1
2+s+ 1

p
p (Ω)

with |s| < ε. In Ĥp(Ω), we introduce the graph norm by the equality

∥u∥p
Ĥp

(Ω) = ∥u∥pLp(Ω) + ∥f∥pLp(Ω).

For p = 2, it corresponds to the natural inner product in Ĥ2(Ω). The first
term in the right-hand side can be omitted.

Theorem 4. The Ĥp(Ω) is a Banach space continuously embedded into the
spaces H

1
2+s+ 1

p
p (Ω) for |s| < ε. The operator LN defined by (5) maps the

space Ĥp(Ω) onto Lp(Ω) isomorphically. Its spectrum and root functions
remain the same, and the root functions are complete in Ĥp(Ω) if they are
complete in H̃−1(Ω). In L2(Ω), this operator is self-adjoint if it is self-
adjoint in H̃−1(Ω), and then the orthonormal basis of eigenfunctions in
H̃−1(Ω) remains an orthogonal basis in Ĥ2(Ω).
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Remark. If the boundary Γ and the coefficients in L are smooth, then Ĥp(Ω)
coincides with the subspace in W 2

p (Ω) of functions satisfying the homoge-
neous Neumann boundary conditions in the usual sense. Otherwise, Ĥp(Ω)

can contain less smooth functions. The exact description of Ĥp(Ω) in a
general Lipschitz domain is unavailable including p = 2.

The situation with the Dirichlet problem is similar.

4. Now we discuss the summability of Fourier series with respect to root
functions by the Abel–Lidskii method. This is an intermediate property
between the completeness and the basis property.

First, we define the formal Fourier series with respect to the root vectors.
Let X and Y be separable Banach spaces with a compact and dense em-
bedding Y ⊂ X, and let A be a bounded and invertible operator Y → X.
Assume that A has a complete minimal system {xj}∞1 of root vectors in X.
Then the biorthogonal to it system {zj}∞1 is uniquely constructed from the
root vectors of A∗, and to each vector x ∈ X its formal Fourier series with
respect to {xj}∞1 is associated:

x ∼
∞∑
1

ckxk, where ck = (x, zk), (6)

( · , · ) is the duality between X and X∗. We enumerate the corresponding
eigenvalues λk of A in order of increasing moduli taking multiplicities into
account.

Let now A be one of our operators LD and LN , X and Y be its range and
domain. Under some conditions (discussed below), it is possible to represent
each vector x ∈ X in the form

x =
1

2πi
lim
t→0

∫
∂Λθ

e−tλγ

RA(λ) dλx. (7)

Here, the number γ and the parameter t are positive, the contour ∂Λθ is the
boundary of Λθ with negative direction, and RA(λ) is the resolvent of A:

RA(λ) = (A− λI)−1.

Moreover, assume that the domain Λθ can be divided into subdomains by
arcs of radii Rl ↑ ∞ not containing eigenvalues and that the integral (7)
can be represented as the sum of integrals along the boundaries of these
subdomains. Each integral is calculated via the residues of the integrand at
the eigenvalues λk lying in the subdomain.

This is a summability method of order γ of the series (6) to the original
vector x. This method was proposed by Lidskii in the case of a Hilbert space
under the name Abel’s method. Lidskii has found the conditions sufficient
for the realization of this method [11]; see also [3, Chapter 5].

For our problems, it suffices to have (4). The key tool is the optimal
resolvent estimate

∥RA(λ)∥ ≤ C(1 + |λ|)−1 (8)
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in Mθ for θ > θ0. For our operators in the simplest spaces, it is easily
verified, and thus a deep strengthening of Proposition 1 is obtained.

To generalize this result to the spaces Hs
p , first, it is necessary to gener-

alize the Lidskii theorem for the operators in Banach spaces. This was done
in [1]. Here the abstract theorem is required. Secondly, it is necessary to
generalize estimate (8) to these spaces. It turned out that this is not easy.

How to obtain the estimate, the paper by Gröger–Rehberg [8] suggested
to the author. In this and some subsequent papers, the aim was to estimate
the resolvent of the mixed problem in a very general statement, with domain
of the corresponding operator contained in W 1

p (Ω), which is the diagonal
direction s + 1

p = 1
2 in our notation. To obtain the estimate, they used

Agmon’s idea from the same paper [4].
Following this idea, we introduce the additional variable t and consider

the Lipschitz cylinder Ω′ = Ω× [−1, 1]. In Ω′, we consider the operator
L− η∂2

t

with the form
1∫

0

Φ(U, V ) dt+ η

∫
Ω

1∫
−1

∂tU · ∂tV dt dx,

where |η| = 1, | arg η| < π
2 . This form is strongly coercive on functions from

H1(Ω′), equal to zero at t = ±1. We apply the estimate that follows from
Shneiberg’s theorem to functions depending on the parameter µ:

U(x, t) = u(x)v(t), where v(t) = φ(t)eiµt, µ = |λ|, λ = ηµ,

and φ(t) is a function from C∞
0 [−1, 1] equal to 1 on [− 1

2 ,
1
2 ].

Theorem 5. Let θ > θ0. Then for the resolvents of the operators LD and
LN in the spaces corresponding to the points of some neighborhood of the
centrum of the rectangle Qε,δ the uniform estimate (8) is valid for λ ∈ Mθ.

The proof is carried out first in two convenient directions s + 1
p = 1

2

(of Gröger–Rehberg) and 1
p = 1

2 , on which the usual Sobolev–Slobodetskii
norms can be used, and then the interpolation is applied.

Theorem 6. Let condition (4) be fulfilled. Then the Fourier series with
respect to the root functions of the operators LD and LN in the spaces
corresponding to the points of some neighborhood of the centrum of the
rectangle Qε,δ, are summed to the corresponding vectors by the Abel–Lidskii
method of order γ ∈ (nπ , θ−1

0 ).

Remark. The estimate in Theorem 5 allows one to construct analytic semi-
groups e−tLD and e−tLN to solve “parabolic” problems in a Lipschitz cylin-
der in our Banach spaces. See [2, Section 17]. An essential additional
remark: the strong coerciveness of the form Φ is sufficient for this aim, no
additional assumptions on the coerciveness are needed.
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5. A similar approach can be applied to other spectral problems. We indi-
cate some of them. Cf. [2].

The mixed problem (with homogeneous Dirichlet and Neumann bound-
ary conditions on two parts of Γ with common Lipschitz boundary of di-
mension n− 2).

The Robin problem with boundary condition T+u + βu+ = 0, where
u+ is the boundary value of a solution and T+u is its conormal derivative,
Reβ(x) ≥ 0.

The Dirichlet and Neumann problems for high-order strongly elliptic sys-
tems.

Of special interest is the Poincaré-Steklov spectral problem
Lu = 0 in Ω, T+u = λu+.

To it, the Dirichlet-to-Neumann operator is associated:
D : u+ −→ T+u.

Originally, it is considered as a bounded operator from H
1
2 (Γ) = B

1
2
2 (Γ)

to H− 1
2 (Γ) = B

− 1
2

2 (Γ). Its form (Du+, u+) coincides with Φ(u, u), which
implies its strong coerciveness and the invertibility of the operator. By
Shneiberg’s theorem, for small |s| and |p− 1

2 | it has a bounded and invertible
extension

B
1
2+s
p (Γ) −→ B

− 1
2+s

p (Γ)

in Besov spaces on Γ, and we can investigate its spectral properties in these
spaces. Cf. [5].
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