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VARIATION FORMULAS OF SOLUTION FOR
NEUTRAL FUNCTIONAL-DIFFERENTIAL EQUATIONS

WITH REGARD FOR THE DELAY FUNCTION
PERTURBATION AND THE CONTINUOUS

INITIAL CONDITION

Abstract. Variation formulas of solution are obtained for linear with re-
spect to prehistory of the phase velocity (quasi-linear) neutral functional-
differential equations with variable delays. In the variation formulas, the
effect of perturbation of the delay function appearing in the phase coordi-
nates is stated.
ÒÄÆÉÖÌÄ. ×ÀÆÖÒÉ ÓÉÜØÀÒÉÓ ßÉÍÀÉÓÔÏÒÉÉÓ ÌÉÌÀÒÈ ßÒ×ÉÅÉ ÍÄÉÔÒÀËÖÒÉ
×ÖÍÝÉÏÍÀËÖÒ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÝÅËÀÃÉ ÃÀÂÅÉ-
ÀÍÄÁÄÁÉÈ ÌÉÙÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ×ÏÒÌÖËÄÁÉ. ÅÀÒÉÀÝÉÉÓ
×ÏÒÌÖËÄÁÛÉ ÂÀÌÏÅËÄÍÉËÉÀ ×ÀÆÖÒ ÊÏÏÒÃÉÍÀÔÄÁÛÉ ÛÄÌÀÅÀËÉ ÃÀÂ-
ÅÉÀÍÄÁÉÓ ×ÖÍØÝÉÉÓ ÛÄÛ×ÏÈÄÁÉÓ Ä×ÄØÔÉ.
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Let I = [a, b] be a finite interval and Rn be the n-dimensional vector space
of points x = (x1, . . . , xn)T , where T is the sign of transposition. Suppose
that O ⊂ Rn is an open set, and Ef is the set of functions f : I × O2 →
Rn satisfying the following conditions: the function f(t, · ) : O2 → Rn

is continuously differentiable for almost all t ∈ I; the functions f(t, x, y),
fx(t, x, y) and fy(t, x, y) are measurable on I for any (x, y) ∈ O2; for each
f ∈ Ef and compact set K ⊂ O, there exists a function mf,K(t) ∈ L(I,R+),
R+ = [0,∞), such that

|f(t, x, y)|+ |fx(t, x, y)|+ |fy(t, x, y)| ≤ mf,K(t)

for all (x, y) ∈ K2 and almost all t ∈ I.
Further, let D be the set of continuous differentiable scalar functions

(delay functions) τ(t), t ∈ I, satisfying the conditions:

τ(t) < t, τ̇(t) > 0, inf {τ(a) : τ ∈ D} := τ̂ > −∞.

Let Φ be the set of continuously differentiable initial functions φ(t) ∈ O,
t ∈ I1 = [τ̂ , b].
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To each element µ = (t0, τ, φ, f) ∈ Λ = [a, b)×D×Φ×Ef we assign the
quasi-linear neutral functional-differential equation

ẋ(t) = A(t)ẋ(σ(t)) + f
(
t, x(t), x(τ(t))

)
(1)

with the continuous initial condition
x(t) = φ(t), t ∈ [τ̂ , t0], (2)

where A(t) is a given continuous matrix function of dimension n×n; σ ∈ D
is a fixed delay function.

Definition 1. Let µ = (t0, τ, φ, f) ∈ Λ. A function x(t) = x(t;µ) ∈ O,
t ∈ [τ̂ , t1], t1 ∈ (t0, b], is said to be a solution of equation (1) with the initial
condition (2), or a solution corresponding to the element µ and defined on
the interval [τ̂ , t1], if x(t) satisfies condition (2) and is absolutely continuous
on the interval [t0, t1] and satisfies equation (1) almost everywhere on [t0, t1].

Let µ0 = (t00, τ0, φ0, f0) ∈ Λ be the given element and x0(t) be a solution
corresponding to µ0 and defined on [τ̂ , t10], with a < t00 < t10 < b.

Let us introduce the set of variations

V =
{
δµ = (δt0, δτ, δφ, δf) : |δt0| ≤ α, ∥δτ∥ ≤ α,

δφ =

k∑
i=1

λiδφi, δf =

k∑
i=1

λiδfi, |λi| ≤ α, i = 1, k
}
.

Here
δt0 ∈ R, δτ ∈ D − τ0, ∥δτ∥ = sup

{
|δτ(t)| : t ∈ I

}
and

δφi ∈ Φ− φ0, δfi ∈ Ef − f0, i = 1, k,

are the fixed functions and α > 0 is a fixed number.
There exist the numbers δ1 > 0 and ε1 > 0 such that for arbitrary

(ε, δµ) ∈ (0, ε1] × V the element µ0 + εδµ ∈ Λ and there corresponds the
solution x(t;µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 ( [1, Theo-
rem 2]).

Due to the uniqueness, the solution x(t;µ0) is a continuation of the so-
lution x0(t) on the interval [τ̂ , t10 + δ1]. Therefore, the solution x0(t) is
assumed to be defined on the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution

x0(t) = x(t;µ0) : ∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t),

∀ (t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1]× V.

Theorem 1. Let the following conditions hold:
1) the function f0(t, x, y), (t, x, y) ∈ I ×O2 is bounded;
2) there exists the limit

lim
z→z0

f0(z) = f−
0 , z = (t, x, y) ∈ (a, t00]×O2,
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where z0 = (t00, φ0(t00), φ0(τ0(t00))).
Then there exist the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (3)

for arbitrary (t, ε, δµ) ∈ [t00, t10 + δ2]× (0, ε2]× V −, where V − = {δµ ∈ V :
δt0 ≤ 0} and

δx(t; δµ) = Y (t00−; t)
[
φ̇0(t00)−A(t00)φ̇0(σ(t00))− f−

0

]
δt0+

+ β(t; δµ), (4)
β(t; δµ) = Ψ(t00; t)δφ(t00)+

+

t00∫
τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s) ds+

+

t00∫
σ(t00)

Y (ϱ(s); t)A(ϱ(s))ϱ̇(s)δ̇φ(s) ds+

+

t∫
t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s) ds+

+

t∫
t00

Y (s; t)δf [s] ds, (5)

lim
ε→0

o(t; εδµ)

ε
= 0 uniformly for (t, δµ) ∈ [t00, t10 + δ2]× V −,

Y (s; t) and Ψ(s; t) are the n× n-matrix functions satisfying the system{
Ψs(s; t) = −Y (s; t)f0x[t]− Y (γ0(s); t)f0y[γ0(s)]γ̇0(s),

Y (s; t) = Ψ(s; t) + Y (ϱ(s); t)A(ϱ(s))ϱ̇(s), s ∈ [t00, t],

and the condition

Ψ(s; t) = Y (s; t) =

{
H, s = t,

Θ, s > t;

f0y[s] = f0y
(
s, x0(s), x0(τ0(s))

)
, δf [s] = δf

(
s, x0(s), x0(τ0(s))

)
;

γ0(s) is the function, inverse to τ0(t), ϱ(s) is the function, inverse to σ(t),H
is the identity matrix and Θ is the zero matrix.

Some comments. The function δx(t; δµ) is called the variation of the
solution x0(t), t ∈ [t00, t10+δ2], and the expression (4) is called the variation
formula.
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The addend
t∫

t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s) ds

in formula (5) is the effect of perturbation of the delay function τ0(t).
The expression

Y (t00−; t)
[
φ̇0(t00)−A(t00)φ̇0(σ(t00))− f−

0

]
δt0

is the effect of the continuous initial condition (2) and perturbation of the
initial moment t00.

The expression

Ψ(t00; t)δφ(t00) +

t00∫
τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s) ds+

+

t00∫
σ(t00)

Y (ϱ(s); t)A(ϱ(s))ϱ̇(s)δ̇φ(s) ds+

t∫
t00

Y (s; t)δf [s] ds

in formula (5) is the effect of perturbations both of the initial function φ0(t)
and of the function f0(t, x, y).

Variation formulas of solutions for various classes of neutral functional-
differential equations without perturbation of delay function can be found
in [2–4]. The variation formula of solution plays the basic role in proving the
necessary conditions of optimality and under sensitivity analysis of mathe-
matical models [5–8]. Finally, it should be noted that the variation formula
allows one to get an approximate solution of the perturbed equation

ẋ(t) = A(t)ẋ(σ(t))+

+f0
(
t, x(t), x(τ0(t) + εδτ(t))

)
+ εδf

(
t, x(t), x(τ0(t) + εδτ(t))

)
with the perturbed initial condition

x(t) = φ0(t) + εδφ(t), t ∈ [τ̂ , t00 + εδt0].

In fact, for a sufficiently small ε ∈ (0, ε2] it follows from (3) that

x(t;µ0 + εδµ) = x0(t) + εδx(t; δµ).

Theorem 2. Let the following conditions hold:
1) the function f0(t, x, y), (t, x, y) ∈ I ×O2 is bounded;
2) there exists the limit

lim
z→z0

f0(z) = f+
0 , z ∈ [t00, b)×O2.
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Then for each t̂0 ∈ (t00, t10) there exist the numbers ε2 ∈ (0, ε1) and δ2 ∈
(0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t̂0, t10 + δ2]× (0, ε2]× V +, where
V + = {δµ ∈ V : δt0 ≥ 0}, formula (3) holds, where

δx(t; δµ) = Y (t00+; t)(φ̇(t00)−A(t00)φ̇0(σ(t00))− f+
0 )δt0 + β(t; δµ).

The following assertion is a corollary to Theorems 1 and 2.

Theorem 3. Let the assumptions of Theorems 1 and 2 be fulfilled. More-
over, f−

0 = f+
0 := f̂0 and t00 ̸∈ {σ(t10), σ2(t10)), . . . }. Then there exist

the numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈
[t10 − δ2, t10 + δ2]× (0, ε2]× V formula (3) holds, where

δx(t; δµ) = Y (t00; t)(φ̇(t00)−A(t00)φ̇0(σ(t00))− f̂0)δt0 + β(t; δµ).

All assumptions of Theorem 3 are satisfied if the function f0(t, x, y) is
continuous and bounded. Clearly, in this case

f̂0 = f0
(
t00, φ0(t00), φ0(τ0(t00))

)
.
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