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ON THE CONTI–OPIAL TYPE EXISTENCE AND
UNIQUENESS THEOREMS FOR GENERAL

NONLINEAR BOUNDARY VALUE PROBLEMS
FOR SYSTEMS OF DISCRETE EQUATIONS

Abstract. The general nonlinear boundary value problem for systems
of discrete equations is considered. The sufficient, among them effective,
conditions for the solvability and unique solvability of this problem are
given.
ÒÄÆÉÖÌÄ. ÃÉÓÊÒÄÔÖË ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓ ÂÀÍáÉËÖËÉÀ ÆÏ-
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In the present paper, we consider the problem on the solvability of a
system of nonlinear discrete equations

∆y(l − 1) = g(l, y(l), y(l − 1)) for l ∈ Nm0 (1)
under the boundary value condition

ζ(y) = 0, (2)
where m0 ≥ 2 is a fixed natural number, the function g = (gi)

n
i=1 belongs to

the discrete Carathéodory class Car(Nm0 ×Rn,Rn), and ζ : E(Ñm0 ,Rn) →
Rn is a continuous, nonlinear in general, vector-functional.

In the paper, the sufficient, among them effective, conditions are given
for the solvability and unique solvability of the general nonlinear discrete
boundary value problem (1), (2). We have established the Conti–Opial type
theorems for the solvability and unique solvability of this problem. Anal-
ogous problems are investigated in [9, 12–14, 17] (see also the references
therein) for the general nonlinear boundary value problems for ordinary
differential and functional-differential systems.

The results obtained in the paper are analogous to those given in [12–14]
for ordinary differential and functional-differential problems.

Quite a number of issues on the theory of systems of difference equations
(both linear and nonlinear) have been studied sufficiently well (for a survey
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of the results see e.g. [1–8,10,11,15,16,18–21] and references therein). But
the above-mentioned works, as we know, do not contain the results obtained
in the present paper.

Throughout the paper, the use will be made of the following notation
and definitions.

N = {1, 2, . . . }, N0 = {0, 1, . . . }, Z is the set of all integers.
If m ∈ N, then Nm = {1, . . . ,m}, Ñm = {0, 1, . . . ,m}.
R = ]−∞,+∞[ , R+ = [0,+∞[ .
Rn×m is the space of all real n × m-matrices X = (xij)

n,m
i,j=1 with the

norm ∥X∥ = maxj=1,...,m

∑n
i=1 |xij |; |X| = (|xij |)n,mi,j ;

Rn×m
+ =

{
(xij)

n,m
i,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)

}
.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1; Rn

+ =

Rn×1
+ .
If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix

inverse to X, the determinant of X and the spectral radius of X; In×n is
the identity n× n-matrix.

E(J,Rn×m), where J ⊂ Z, is the space of all matrix-functions Y =
(yij)

n,m
i,j=1 : J → Rn×m with the norm

∥Y ∥J = max
{
∥Y (l)∥ : l ∈ J

}
, |Y |J =

(
|yij |J

)n,m
i,j=1

.

∆ is the difference operator of the first order, i.e.,

∆Y (k − 1) = Y (k)− Y (k − 1) for Y ∈ E(Ñl,Rn×m), k ∈ Nl.

If a function Y is defined on Nl or Ñl−1, then we assume Y (0) = On×m,
or Y (l) = On×m, respectively, if necessary.

C(D1, D2), where D1 ⊂ Rn and D2 ⊂ Rn×m, is the set of all continuous
matrix-functions X : D1 → D2;

If B1 and B2 are the normed spaces, then an operator g : B1 → B2

(nonlinear, in general) is said to be positive homogeneous if g(λx) = λg(x)
for every λ ∈ R+ and x ∈ B1; if, in addition, the spaces are partially
ordered, then the operator g is called nondecreasing if g(x) ≤ g(y) for every
x, y ∈ B1 such that x ≤ y.

A matrix-function is said to be continuous, nondecreasing, integrable,
etc., if each of its components is such.

If J ⊂ Z, D1 ⊂ Rn and D2 ⊂ Rn×m, then Car(J × D1, D2) is the
discrete Carathéodory class, i.e., the set of all mappings F = (fkj)

n,m
k,j=1 :

J ×D1 → D2 such that the function fkj(t, · ) : D1 → D2 is continuous for
every i ∈ {1, . . . , l}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , n}.

By a solution of the difference problem (1), (2) we understand a vector-
function y ∈ E(Ñm0 ,Rn) satisfying both the system (1) for i ∈ {1, . . . ,m0}
and the boundary value condition (2).

Definition. Let L : E(Ñm0 ,Rn) → Rn be a linear continuous operator, and
let L : E(Ñm0 ,Rn) → Rn

+ be a positive homogeneous operator. We say that
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a pair (G1, G2), consisting of matrix-functions Gj ∈ Car(Nm0 ×R2n,Rn×n)
(j = 1, 2), satisfies the Opial condition with respect to the pair (L,L0) if:

(a) there exists a matrix-function Φ ∈ E(Nm0
,Rn

+) such that
|Gj(l, x, y)| ≤ Φ(l) for x, y ∈ Rn (j = 1, 2; l = 1, . . . ,m0); (3)

(b)
det

(
In×n + (−1)jBj(l)

)
̸= 0 (j = 1, 2; l = 1, . . . ,m0) (4)

and the problem
∆y(l − 1) = B1(l)y(l) +B2(l)y(l − 1) (l ∈ Nm0), (5)

|L(y)| ≤ L0(y) (6)
has only the trivial solution for every matrix-functions Bj ∈
E(Nm0 ,Rn×n) (j = 1, 2) for which there exists a sequence xk, yk ∈
E(Nm0

,Rn×n) (k = 1, 2, . . . ) such that
lim

k→+∞
Gj(l, xk(l), yk(l)) = Bj(l) (j = 1, 2; l = 1, . . . ,m0).

Remark 1. Note that, due to the condition (3), the condition (4) holds if
∥Φ(l)∥ < 1 (l = 1, . . . ,m0).

We assume that g ∈ Car(Nm0 × Rn,Rn).

Theorem 1. Let the condition∥∥g(l, x, y)−G1(l, x, y)x−G2(l, x, y)y
∥∥ ≤

≤ α
(
l, ∥x∥, ∥y∥

)
for l ∈ Nm0 , x, y ∈ Rn (7)

and
|ζ(y)− L(y)| ≤ L0(y) + ℓ1

(
∥y∥m0

)
for y ∈ E(Ñm0 ,Rn) (8)

hold, where L : E(Ẽm0 ,Rn) → Rn and L0 : E(Ẽm0 ,Rn) → Rn
+ are, res-

pectively, the linear continuous and the positive homogeneous continuous
operators, the pair (G1, G2) satisfies the Opial condition with respect to the
pair (L,L0); and α ∈ Car(Ẽm0 × R+,R+) is a function nondecreasing in
the second variable and ℓ1 ∈ C(R,Rn

+) is a nondecreasing vector-function
such that

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

m0∑
l=1

α(l, ρ)

)
= 0. (9)

Then the problem (1), (2) is solvable.

Theorem 2. Let the conditions (7), (8) and
Pj1(l) ≤ Gj(l, x, y) ≤ Pj2(l) for l ∈ Nm0 , x, y ∈ Rn (j = 1, 2)

hold, where Pj1, Pj2 ∈ E(Nm0 ,Rn)(j = 1, 2), L : E(Ẽm0 ,Rn) → Rn and
L0 : E(Ẽm0 ,Rn) → Rn

+ are, respectively, the linear continuous and the
positive homogeneous continuous operators; and α ∈ Car(Ẽm0 × R+,R+)
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is a function nondecreasing in the second variable and ℓ1 ∈ C(R,Rn
+) is

a nondecreasing vector-function such that the condition (9) holds. Let,
moreover, the condition (4) hold and the problem (5), (6) have only the trivial
solution for every matrix-functions B1 and B2 from E(Nm0 ,Rn) such that

Pj1(l) ≤ Bj(l) ≤ Pj2(l) for l ∈ Nm0 (j = 1, 2).

Then the problem (1), (2) is solvable.

Remark 2. Theorem 2 is interesting only in case Gj(l, · , · ) ̸∈ C(R2n,Rn×n)
for some j ∈ {1, 2} and l ∈ {1, . . . ,m0}, because the theorem immediately
follows from Theorem 1 in case Gj ∈ Car(Nm0 × R2n,Rn×n) (j = 1, 2).

Theorem 3. Let the conditions (8),∣∣g(l, x, y)− P1(l)x− P2(l)y
∣∣ ≤

≤ Q1(l)|x|+Q2(l)|y|+ q
(
l, ∥x∥+ ∥y∥

)
for l ∈ Nm0 , x, y ∈ Rn,

det
(
In×n + (−1)jPj(l)

)
̸= 0 for l ∈ Nm0 (j = 1, 2), (10)

and(
∥Q1(l)∥+ ∥Q2(l)∥

)
·
(
1 +

∥∥(In×n + (−1)jPj(l)
)−1∥∥+

+
∥∥(In×n+(−1)jP3−j(l)

)−1∥∥)<1 for l∈Nm0 , x, y∈Rn (j=1, 2) (11)

hold, where P1, P2 ∈ E(Nm0 ,Rn); Q1, Q2 ∈ E(Nm0 ,Rn
+); L : E(Ẽm0 ,Rn) →

Rn and L0 : E(Ẽm0
,Rn) → Rn

+ are, respectively, the linear continuous and
the positive homogeneous continuous operators; and q ∈ Car(Ẽm0×R+,Rn

+)
is a vector-function nondecreasing in the second variable and ℓ1 ∈ C(R,Rn

+)
is a nondecreasing vector-function such that

lim
ρ→+∞

1

ρ

(
∥ℓ1(ρ)∥+

m0∑
l=1

∥q(l, ρ)∥
)

= 0.

Let, moreover, the problem∣∣∆y(l − 1)− P1(l)y(l)− P2(l)y(l − 1)
∣∣ ≤

≤ Q1(l)|y(l)|+Q2(l)|y(l − 1)| (l ∈ Nm0), (12)
|L(y)| ≤ L0(y) (13)

have only the trivial solution. Then the problem (1), (2) is solvable.

Corollary 1. Let the conditions∥∥g(l, x, y)−G1(l)x−G2(l)y
∥∥ ≤

≤ α
(
l, ∥x∥+ ∥y∥

)
for l ∈ Nm0 , x, y ∈ Rn, (14)

det
(
In×n + (−1)jGj(l)

)
̸= 0 for l ∈ Nm0 (j = 1, 2) (15)

and ∥∥ζ(y)− L(y)
∥∥ ≤ β

(
∥y∥m0

)
for y ∈ E(Ñm0 ,Rn) (16)
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hold, where G1, G2 ∈ E(Nm0 ,Rn); L : E(Ẽm0 ,Rn) → Rn is the linear con-
tinuous operator; and α ∈ Car(Ẽm0 ×R+,R+) is a function nondecreasing
in the second variable and β ∈ C(R,Rn

+) is a nondecreasing function such
that

lim
ρ→+∞

1

ρ

(
β(ρ) +

m0∑
l=1

α(l, ρ)

)
= 0. (17)

Let, moreover, the problem
∆y(l − 1) = G1(l)y(l) +G2(l)y(l − 1) (l ∈ Nm0),

L(y) = 0

have only the trivial solution. Then the problem (1), (2) is solvable.

Corollary 2. Let the conditions (14)–(16) and

L(y) ≡
n0∑
j=1

Ljy(kj) (18)

hold, where n0 is a fixed natural number; kj ∈ {0, . . . ,m0} and Lj ∈ Rn×n

(j = 1, . . . , n0); G1, G2 ∈ E(Nm0 ,Rn); and α ∈ Car(Ẽm0 × R+,R+) is
a function nondecreasing in the second variable and β ∈ C(R,Rn

+) is a
nondecreasing function such that the condition (17) holds. Let, moreover,

det
( n0∑

j=1

Lj

(
In +G2(kj + 1)

)−1 ·
kj+1∏
i=0

(
In −G1(i)

)−1(
In +G2(i)

))
̸= 0.

Then the problem (1), (2) is solvable.

On the set E(Ñm0 ,Rn×n)× E(Ñm0 ,Rn×) we introduce the operators as
follows. If G1, G2 ∈ E(Ñm0 ,Rn×n) and, in addition, det(In×n +G2(l)) ̸= 0
(l = 1, . . . ,m0), then we assume[

(G1, G2)(l)
]
0
≡ In,

[
(G1, G2)(l)

]
k
≡ −

m0∑
i=l+1

(
G1(i) +G2(i+ 1)

)
×

×
(
In +G2(i)

)−1[
(G1, G2)(i)

]
k−1

(k = 1, 2, . . . ),

(19)

and

V1(G1, G2)(l) ≡
m0∑

i=l+1

∣∣(G1(i) +G2(i+ 1)
)(
In +G2(i+ 1)

)−1∣∣,
Vk+1(G1, G2)(l) ≡

m0∑
i=l+1

∣∣(G1(i) +G2(i+ 1)
)(
In +G2(i+ 1)

)−1∣∣×
× Vk(G1, G2)(i) (k = 1, 2, . . . ).

(20)

Theorem 4. Let the conditions (14)–(16) and (18) hold, where n0 is a fixed
natural number, kj ∈ {1, . . . ,m0} and Lj ∈ Rn×n (j = 1, . . . , n0); G1, G2 ∈
E(Nm0 ,Rn); and α ∈ Car(Ẽm0 × R+,R+) is a function nondecreasing in
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the second variable and β ∈ C(R,Rn
+) is a nondecreasing function such that

the condition (17) holds. Let, moreover, there exist natural numbers k and
m such that

det(Mk) ̸= 0

and
r(Mk,m) < 1,

where

Mk =

n0∑
j=1

k−1∑
i=0

Lj

(
In +G2(kj + 1)

)−1[
(G1, G2)(kj)

]
i
,

Mk,m = Vm(G1, G2)(0)+

+
m−1∑
i=0

∣∣ [(G1, G2)( · )
]
i

∣∣
Ñm0

·
n0∑
j=1

|M−1
k Lj |

(
In +G2(kj + 1)

)−1
Vk(G1, G2)(kj),

and the matrix-functions [(G1, G2)(l)]i and Vi(G1, G2)(l) are defined by (19)
and (20), respectively. Then the problem (1), (18) is solvable.

Corollary 3. Let the conditions (14)–(16) and (18) hold, n0 is a fixed
natural number, where tj ∈ {1, . . . ,m0} and Lj ∈ Rn×n (j = 1, . . . , n0);
G1, G2 ∈ E(Nm0 ,Rn); and α ∈ Car(Ẽm0 × R+,R+) is a function non-
decreasing in the second variable and β ∈ C(R,Rn

+) is a nondecreasing
function such that the condition (17) holds. Let, moreover,

det
( n0∑

j=1

Lj

(
In +G2(kj + 1)

)−1
)
̸= 0

and
r(L0M0) < 1,

where

L0 = In +

∣∣∣∣( n0∑
j=1

L1j

(
In +G2(kj + 1)

)−1
)−1

∣∣∣∣ · n0∑
j=1

∣∣Lj

(
In +G1(kj)

)−1∣∣
and

M0 =

m0∑
i=1

∣∣(G1(i) +G2(i+ 1)
)(
In +G2(i+ 1)

)−1∣∣.
Then the problem (1), (2) is solvable.

Theorem 5. Let the conditions (10), (11),∣∣g(l, x, u)− g(l, y, v)− P1(l)(x− y)− P2(l)(u− v)
∣∣ ≤

≤ Q1(l)|x− y|+Q2(l)|u− v| for l ∈ Nm0 , x, y, u, v ∈ Rn,∣∣Il(x)− Il(y)− J0l · (x− y)
∣∣ ≤

≤ Hk · |x− y| for x, y ∈ Rn (k = l, . . . ,m0)
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and ∣∣ζ(x)− ζ(y)− L(x− y)
∣∣ ≤ L0(x− y) for y ∈ E(Ñm0 ,Rn)

hold, where P1, P2 ∈ E(Nm0 ,Rn); Q1, Q2 ∈ E(Nm0 ,Rn
+); L : E(Ẽm0 ,Rn) →

Rn and L0 : E(Ẽm0 ,Rn) → Rn
+ are, respectively, the linear continuous and

the positive homogeneous continuous operators. Let, moreover, the problem
(12), (13) has only the trivial solution. Then the problem (1), (2) is uniquely
solvable.

Acknowledgement

The present was supported by the Shota Rustaveli National Science Foun-
dation (Grant No. FR/182/5-101/11).

References
1. R. P. Agarwal, A. Cabada, V. Otero-Espinar, and S. Dontha, Existence and

uniqueness of solutions for anti-periodic difference equations. Arch. Inequal. Appl. 2
(2004), No. 4, 397–411.

2. R. P. Agarwal and D. O’Regan, Infinite interval problems for differential, difference
and integral equations. Kluwer Academic Publishers, Dordrecht, 2001

3. Sh. Akhalaia, M. Ashordia, and N. Kekelia, On the necessary and sufficient
conditions for the stability of linear generalized ordinary differential, linear impulsive
and linear difference systems. Georgian Math. J. 16 (2009), No. 4, 597–616.

4. M. Ashordia, On difference multipoint boundary value problems. Rep. Enlarged
Sess. Semin. I. Vekua Appl. Math. 14 (1999), No. 3, 6–11.

5. M. Ashordia, Lyapunov stability of systems of linear generalized ordinary differential
equations. Comput. Math. Appl. 50 (2005), No. 5-6, 957–982.

6. M. Ashordia, On the general and multipoint boundary value problems for linear
systems of generalized ordinary differential equations, linear impulse and linear dif-
ference systems. Mem. Differential Equations Math. Phys. 36 (2005), 1–80.

7. M. Ashordia and N. Kekelia, On linear boundary value problems for multidimen-
sional regular difference systems. Semin. I. Vekua Inst. Appl. Math. Rep. 38 (2012),
1–9, 69.

8. W.-S. Cheung, Some discrete nonlinear inequalities and applications to boundary
value problems for difference equations. J. Difference Equ. Appl. 10 (2004), No. 2,
213–223.

9. R. Conti, Problèmes linéaires pour les équations différentielles ordinaires. (French)
Math. Nachr. 23 (1961), 161–178.

10. P. Drábek, H. B. Thompson, and C. Tisdell, Multipoint boundary value problems
for discrete equations. Comment. Math. Univ. Carolin. 42 (2001), No. 3, 459–468.

11. J. Henderson and H. B. Thompson, Existence of multiple solutions for second-
order discrete boundary value problems. Comput. Math. Appl. 43 (2002), No. 10-11,
1239–1248.

12. I. T. Kiguradze, Boundary value problems for systems of ordinary differential equa-
tions. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259–-2339. Itogi
Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Rus-
sian), 3–103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform.,
Moscow, 1987.

13. I. Kiguradze and B. P �uža, Conti–Opial type existence and uniqueness theorems for
nonlinear singular boundary value problems. Funct. Differ. Equ. 9 (2002), No. 3-4,
405–422.



162

14. I. Kiguradze and B. P �uža, On the solvability of nonlinear boundary value problems
for functional-differential equations. Georgian Math. J. 5 (1998), No. 3, 251–262.

15. A. Lasota, A discrete boundary value problem. Ann. Polon. Math. 20 (1968),
183–190.

16. M. Marini, S. Matucci, and P. Řehák, Boundary value problems for functional
difference equations on infinite intervals. Adv. Difference Equ. 2006, Art. 31283,
1–14.

17. Z. Opial, Linear problems for systems of nonlinear differential equations. J. Differ-
ential Equations 3 (1967), 580–594.

18. A. C. Peterson, Existence and uniqueness theorems for nonlinear difference equa-
tions. J. Math. Anal. Appl. 125 (1987), No. 1, 185–191.

19. I. Rach �unková and C. C. Tisdell, Existence of non-spurious solutions to discrete
boundary value problems. Aust. J. Math. Anal. Appl. 3 (2006), No. 2, Art. 6, 9 pp.

20. J. Rodriguez, Nonlinear discrete systems with global boundary conditions. J. Math.
Anal. Appl. 286 (2003), No. 2, 782–794.

21. C. C. Tisdell, On first-order discrete boundary value problems. J. Difference Equ.
Appl. 12 (2006), No. 12, 1213–1223.

(Received 15.12.2013)

Authors’ addresses:

Malkhaz Ashordia
1. A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State

University, 6 Tamarashvili St., Tbilisi 0177, Georgia.
2. Sokhumi State University, 12 Politkovskaia St., Tbilisi 0186, Georgia.
E-mail: ashord@rmi.ge

Goderdzi Ekhvaia, Nino Topuridze
Sokhumi State University, 12 Politkovskaia St., Tbilisi 0186, Georgia.
E-mail: goderdzi.ekhvaia@mail.ru, topurnino@yahoo.com


