
Mem. Differential Equations Math. Phys. 63 (2014), 151–156

Nino Partsvania and Bedřich P
◦
uža

ON POSITIVE SOLUTIONS OF
NONLINEAR BOUNDARY VALUE PROBLEMS FOR

SINGULAR IN PHASE VARIABLES
TWO-DIMENSIONAL DIFFERENTIAL SYSTEMS

Abstract. For the singular in phase variables differential system
ui = fi(t, u1, u2) (i = 1, 2),

sufficient conditions are found for the existence of a positive on ]0, a[ solu-
tion satisfying the nonlinear boundary conditions

φ(u1) = 0, u2(a) = ψ(u1(a)),

where φ : C([0, a];R+) → R is a continuous functional, while ψ : R+ → R+

is a continuous function.
ÒÄÆÉÖÌÄ. ×ÀÆÖÒÉ ÝÅËÀÃÄÁÉÓ ÌÉÌÀÒÈ ÓÉÍÂÖËÀÒÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
ÓÉÓÔÄÌÉÓÀÈÅÉÓ

ui = fi(t, u1, u2) (i = 1, 2)

ÍÀÐÏÅÍÉÀ ]0, a[ ÛÖÀËÄÃÛÉ ÉÓÄÈÉ ÃÀÃÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÀÒÓÄÁÏÁÉÓ
ÓÀÊÌÀÒÉÓÉ ÐÉÒÏÁÄÁÉ, ÒÏÌÄËÉÝ ÀÊÌÀÚÏ×ÉËÄÁÓ ÀÒÀßÒ×ÉÅ ÓÀÓÀÆÙÅÒÏ
ÐÉÒÏÁÄÁÓ

φ(u1) = 0, u2(a) = ψ(u1(a)),

ÓÀÃÀÝ φ : C([0, a];R+) → R ÀÒÉÓ ÖßÚÅÄÔÉ ×ÖÍØÝÉÏÍÀËÉ, áÏËÏ ψ :
R+ → R+ ÀÒÉÓ ÖßÚÅÄÔÉ ×ÖÍØÝÉÀ.
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Let a > 0, R− = ]−∞, 0], R+ = [0,+∞[ , R0+ = ]0,+∞[ , C([0, a];R) be
the Banach space of continuous functions u : [0, a] → R with the norm

∥u∥ = max
{
∥u(t)∥ : a ≤ t ≤ b

}
,

and C([0, a];R+) be the set of all non-negative functions from C([0, a];R).
Consider the two-dimensional differential system

dui
dt

= fi(t, u1, u2) (i = 1, 2) (1)

with the nonlinear boundary conditions

φ(u1) = 0, u2(a) = ψ(u1(a)), (2)
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where fi : ]0, a[×R2
0+ → R− (i = 1, 2) and ψ : R+ → R+ are continuous

functions, while φ : C([0, a];R+) → R+ is a continuous functional.
A continuous vector function (u1, u2) : [0, a] → R2

+ is said to be a po-
sitive solution of the differential system (1) if it is continuously dif-
ferentiable on an open interval ]0, a[ and in this interval along with the
inequalities

ui(t) > 0 (i = 1, 2) (3)
satisfies the system (1).

A positive solution of the system (1) satisfying the conditions (2) is said
to be a positive solution of the problem (1), (2).

We investigate the problem (1), (2) in the case where the functions fi
(i = 1, 2) on the set ]0, a[×R2

0+ admit the estimates

g10(t) ≤ −xλ1y−µ1f1(t, x, y) ≤ g1(t),

g20(t) ≤ −xλ2yµ2f2(t, x, y) ≤ g2(t),
(4)

where λi and µi (i = 1, 2) are non-negative constants, and gi0 : ]0, a[→ R0+

(i = 1, 2), gi : ]0, a[→ R0+ (i = 1, 2) are continuous functions such that∫ a

0

gi0(t) dt < +∞,

∫ a

0

gi(t) dt < +∞ (i = 1, 2).

If λi > 0 for some i ∈ {1, 2}, then in view of (4) we have

lim
x→0

fi(t, x, y) = +∞ for x > 0, 0 < t < a.

And if µ2 > 0, then
lim
y→0

f2(t, x, y) = +∞.

Consequently, in both cases the system (1) has the singularity in at least
one phase variable.

Boundary value problems for singular in phase variables second order
nonlinear differential equations arise in different fields of natural science and
are the subject of numerous studies (see e.g. [1–4, 7–14] and the references
therein). In the recent paper by I. Kiguradze [5], optimal conditions are
obtained for the solvability of the Cauchy–Nicoletti type nonlinear problems
for singular in phase variables differential systems. As for the problems of
the type (1), (2), they still remain unstudied in the above-mentioned singular
cases. In the present paper, the attempt is made to fill this gap.

Along with the system (1) we consider the systems of differential inequal-
ities

−uλ1
1 (t)u−µ1

2 (t)u′1(t) ≥ g10(t),

−uλ2
1 (t)uµ2

2 (t)u′2(t) ≥ g20(t),
(5)

and
g10(t) ≤ −uλ1

1 (t)u−µ1

2 (t)u′1(t) ≤ g1(t),

g20(t) ≤ −uλ2
1 (t)uµ2

2 (t)u′2(t) ≤ g2(t).
(6)
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Let
ν0 =

µ1

1 + µ2
, ν = 1 + λ1 + λ2ν0.

On the set
{
(t, x, y) : 0 ≤ t ≤ a, x ≥ 0, y ≥ 0

}
we introduce the functions

w10(t, x, y) =

[
xν+ν

∫ a

t

g10(s)

(
xλ2y1+µ2+(1+µ2)

∫ a

s

g20(τ) dτ

)ν0

ds

] 1
ν

,

w2(t, x, y) =

[
y1+µ2 + (1 + µ2)

∫ a

t

w−λ2
10 (s, x, y)g2(s) ds

] 1
1+µ2

,

w1(t, x, y) =

[
x1+λ1 + (1 + λ1)

∫ a

t

wµ1

2 (s, x, y)g1(s) ds

] 1
1+λ1

,

w20(t, x, y) =

[
y1+µ2 + (1 + µ2)

∫ a

t

w−λ2
1 (s, x, y)g20(s) ds

] 1
1+λ2

.

Note that the functions w1, w2, and w20 are defined on the set{
(t, 0, y) : 0 ≤ t ≤ a, y ≥ 0

}
only in the case, where∫ a

0

w−λ2
10 (s, 0, 0)g2(s) ds < +∞. (7)

A continuous vector function (u1, u2) : [0, a] → R2
+ is said to be a po-

sitive solution of the system of differential inequalities (5) (of the
system of differential inequalities (6)) if it is continuously differentiable
on an open interval ]0, a[ and in this interval along with the inequalities (3)
satisfies the system (5) (the system (6)).

The following statements are valid.

Lemma 1. If the system of differential inequalities (5) has a positive
solution (u1, u2), then

u1(t) > w10(t, x, y) for 0 ≤ t ≤ a,

where
x = u1(a), y = u2(a). (8)

Lemma 2. If the system of differential inequalities (6) has a positive
solution (u1, u2), then

wi0(t, x, y) < ui(t) < wi(t, x, y) for 0 ≤ t ≤ a (i = 1, 2),

where x and y are numbers given by the equalities (8).

On the basis of these lemmas we establish conditions guaranteeing, re-
spectively, the existence or non-existence of at least one positive solution of
problem (1), (2).

As this has already been said above, the theorems proven by us concern
the case where the functions fi (i = 1, 2) admit the estimates (4). Moreover,
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everywhere below it is assumed that the functional φ is non-decreasing, i.e.
for any u ∈ C([0, a];R+) and u0 ∈ C([0, a];R+), it satisfies the inequality

φ(u+ u0) ≥ φ(u).

For any non-negative constant x, we put φ(x) = φ(u), where u(t) ≡ x.

Theorem 1. Let
lim

x→+∞
φ(x) = +∞,

and let for some δ > 0 the inequality
φ
(
w1( · , δ, ψ(δ))

)
≤ 0

hold. Then the problem (1), (2) has at least one positive solution.

Theorem 2. If
φ
(
w10( · , 0, 0)

)
> 0,

then the problem (1), (2) has no positive solution.

The particular cases of (2) are the nonlocal boundary conditions∫ a

0

ψ0(u(s)) dσ(s) = c, u2(a) = ψ(u1(a)), (9)

where c ∈ R, ψ0 : R+ → R+ is a continuous, nondecreasing function,
ψ : R+ → R+ is a continuous function, and σ : [0, a] → R is a nondecreasing
function such that

σ(a)− σ(0) = 1. (10)
Theorems 1 and 2 imply the following corollary.

Corollary 1. If
lim

x→+∞
ψ0(x) = +∞

and for some δ > 0 the inequality

c ≥
∫ a

0

ψ0

(
w1(s, δ, ψ(δ))

)
dσ(s) (11)

holds, then the problem (1), (9) has at least one positive solution. And if

c <

∫ a

0

ψ0

(
w10(s, 0, 0)

)
dσ(s),

then the problem (1), (9) has no positive solution.

Note that due to the condition (10), for the inequality (11) to be fulfilled
it is sufficient that

c ≥ ψ0

(
w1(0, δ, ψ(δ))

)
.

Corollary 2. For an arbitrary c > 0, the differential system (1) has at
least one positive solution satisfying the conditions

u1(a) = c, u2(0) = 0. (12)
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For c = 0, the problem (1), (12) becomes much more complicated, and to
guarantee its solvability we have to impose additional restrictions of func-
tions gi0 and gi. More precisely, the following theorem is valid.

Theorem 3. If ∫ a

0

w−λ2
10 (s, 0, 0)g2(s) ds < +∞, (13)

then the differential system (1) has at least one positive solution satisfying
the conditions

u1(a) = 0, u2(a) = 0. (14)

The condition (13) in Theorem 3 is unimprovable in a certain sense.
Moreover, the following theorem is true.

Theorem 4. If

sup
{
gi(t)/gi0(t) : 0 < t < a

}
< +∞ (i = 1, 2),

then for the existence of at least one positive solution of the problem (1), (14)
it is necessary and sufficient the condition (13) to be fulfilled.

Corollary 3. Let

inf
{
t−αi(a− t)−βigi0(t) : 0 < t < a

}
> 0 (i = 1, 2)

and
sup

{
t−αi(a− t)−βigi(t) : 0 < t < a

}
< +∞ (i = 1, 2).

Then for the existence of at least one positive solution of the problem (1), (14)
it is necessary and sufficient the inequalities

αi > −1, βi > −1 (i = 1, 2), (α2 + 1)(1 + λ1) > (α1 + 1)λ2

to be satisfied.

Theorems 3, 4 and Corollary 2 are analogs of the theorems by I. Kigu-
radze [6] for two-dimensional differential systems.
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