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Abstract. For higher order linear singular functional differential equa-
tions, the Agarwal–Kiguradze type theorems on the unique solvability of
two-point boundary value problems are proved.

îâäæñéâ. éŽôŽèæ îæàæï ûîòæãæ ïæêàñèŽîñèæ òñêóùæëêŽèñî-
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ùŽèïŽýŽá ŽéëýïêŽáëĲæï öâïŽýâĲ.
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Consider the functional differential equation

u(2m)(t) = p(t)u(τ(t)) + q(t) (1)

with the boundary conditions

u(i−1)(a) = 0, u(i−1)(b) = 0 (i = 1, . . . ,m),

b∫

a

|u(m)(s)|2ds < +∞ (2)

or

u(i−1)(a) = 0, u(m+i−1)(b) = 0 (i = 1, . . . , m),

b∫

a

|u(m)(s)|2ds < +∞. (3)

Here m is a natural number, −∞ < a < b < +∞, τ : [a, b] → [a, b] is
a measurable function, and the functions p and q :]a, b[→ R are Lebesgue
integrable on [a + ε, b − ε] for arbitrarily small ε > 0. However, these
functions may be non-integrable on [a, b], having singularities at the end-
points of that interval. In that sense, the equation (1) is singular.

For τ ≡ t, the equation (1) has the form

u(n)(t) = p(t)u(t) + q(t). (4)

Reported on the Tbilisi Seminar on Qualitative Theory of Differential Equations on
December 20, 2010.



135

From the results of the monographs [1, 4] and the papers [3, 5, 7–15]
it follow rather delicate conditions guaranteeing the existence of a unique
solution of the singular differential equation (4), satisfying the boundary
conditions

u(i−1)(a) = 0, u(i−1)(b) = 0 (i = 1, . . . ,m) (5)

or
u(i−1)(a) = 0, u(m+i−1)(b) = 0 (i = 1, . . . , m). (6)

However, all these results concern the cases, where the function p satisfies
either the condition

b∫

a

(t− a)2m−1(b− t)2m−1
(|p(t)|+ (−1)mp(t)

)
dt < +∞, (7)

or the condition
b∫

a

(t− a)2m−1
(|p(t)|+ (−1)mp(t)

)
dt < +∞. (8)

Note that if the condition (7) (the condition (8)) is satisfied, then (1), (2)
and (4), (5) ((1), (3) and (4), (6)) are equivalent problems. However, if

b∫

a

(t− a)2m−1(b− t)2m−1
(|p(t)|+ (−1)mp(t)

)
dt = +∞ (9)

or
b∫

a

(t− a)2m−1
(|p(t)|+ (−1)mp(t)

)
dt = +∞, (10)

then the above-mentioned problems are not equivalent. More precisely,
from the unique solvability of the problem (1), (2) (of the problem (1), (3)) it
does not follow the unique solvability of the problem (4), (5) (of the problem
(4), (6)). In that case we will say that the function p has strong singularities.

By I. Kiguradze and R. P. Agarwal [2, 6], unimprovable sufficient con-
ditions are found for the unique solvability of the problem (4), (2) (of the
problem (4), (3)), which cover the cases when the function p has strong sin-
gularities. In the present paper, the Agarwal–Kiguradze type results are
established for the equation (1).

Throughout the paper we use the following notation.
[x]+ is the positive part of a number x, i.e.,

[x]+ =
x + |x|

2
.

Lloc( ]a, b[) (Lloc( ]a, b])) is the space of functions y :]a, b[→ R which are
integrable on [a + ε, b− ε] (on [a + ε, b]) for arbitrarily small ε > 0.
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Lα,β( ]a, b[) is the space of integrable with the weight (t − a)α(b − t)β

functions y :]a, b[→ R with the norm

‖y‖Lα,β
=

b∫

a

(t− a)α(b− t)β |y(t)|dt.

h1(p)(t) = (2m− 1)
∣∣∣

t∫

c

[(−1)mp(s)]+ds
∣∣∣ for a < t < b, c =

a + b

2
,

h2(p)(t) = (2m− 1)

b∫

t

[(−1)mp(s)]+ds for a < t < b,

(2m−1)!! =
2m∏

i=1

(2i−1), µm =
( 2m

(2m−1)!!

)2

, νm = 2
(
(m−1)!(2m−1)

)− 1
2 .

Theorem 1. Let p ∈ Lloc( ]a, b[) and let there exist a nonnegative constant
` such that

(t− a)2m−1h1(p)(t) ≤ ` for a < t < c

and
(b− t)2m−1h1(p)(t) ≤ ` for c < t < b.

Let, moreover,

µm` +
(b− a

π

)m−1

νm

( c∫

a

(s− a)m− 1
2 |τ(s)− s| 12 |p(s)|ds+

+

b∫

c

(b− s)m− 1
2 |τ(s)− s| 12 |p(s)|ds

)
< 1. (11)

Then for every q ∈ Lm− 1
2 ,m− 1

2
( ]a, b[) the problem (1), (2) has one and only

one solution.

Corollary 1. Let p ∈ Lloc( ]a, b[) and let there exist a nonnegative
constant ` such that

(−1)mp(t) ≤ `(t− a)−2m for a < t < c

and
(−1)mp(t) ≤ `(b− t)−2m for c < t < b.

If, moreover, the inequality (11) holds, then for every q ∈ Lm− 1
2 ,m− 1

2
( ]a, b[)

the problem (1), (2) has one and only one solution.

Theorem 2. Let p ∈ Lloc( ]a, b]) and let there exist a nonnegative constant
` such that

(t− a)2m−1h2(p)(t) ≤ ` for a < t < b.
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Let, moreover,

µm` + 2m−1
(b− a

π

)m−1

νm

b∫

a

(s− a)m− 1
2 |τ(s)− s| 12 |p(s)|ds < 1. (12)

Then for every q ∈ Lm− 1
2 ,0( ]a, b[) the problem (1), (3) has one and only one

solution.

Corollary 2. Let p ∈ Lloc( ]a, b]) and let there exist a nonnegative
constant ` such that

(−1)mp(t) ≤ `(t− a)−2m for a < t < b.

If, moreover, the inequality (12) holds, then for every q ∈ Lm− 1
2 ,0( ]a, b[) the

problem (1), (3) has one and only one solution.
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15. B. Puža, On a singular two-point boundary value problem for the nonlinear m-th
order differential equations with deviating argument. Georgian Math. J. 4 (1997),
No. 6, 557–566.

(Received 22.12.2010)

Authors’ addresses:

S. Mukhigulashvili
Mathematical Institute
Academy of Sciences of the Czech Republic
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