G. Berikelashvili, O. Jokhadze, S. Kharibegashvili, and
B. Midodashvili

FINITE-DIFFERENCE METHOD OF SOLVING THE DARBOUX PROBLEM FOR THE NONLINEAR KLEIN-GORDON EQUATION

Abstract

The first Darboux problem for cubic nonlinear Klein-Gordon equation is considered, with a nonhomogeneous condition on the characteristic line. Solvability and convergence of the proper difference scheme is investigated in Sobolev spaces.

2000 Mathematics Subject Classification. 65M06, 35L70. Key words and phrases. Klein-Gordon equation, difference scheme, convergence, Sobolev space.

1. Introduction

We consider the cubic nonlinear Klein-Gordon equation. This equation arises in the quantum theory of field [1], solid and high energy physics [2], radiation theory [3], investigation of thermal equilibrium properties of solitary wave solutions ("kinks") in the classical ϕ^{4} field theory [4].

Many works are dedicated to the investigation of boundary value problems for these equations, among which we mention [5]-[9]. The difference schemes of some problems for nonlinear wave equations have been studied in [10]-[13].

For the mentioned equation we consider the first Darboux problem with a non-homogeneous condition on the characteristic line. Note that such problems arise in mathematical modeling of various physical processes, e.g., in the study of harmonic oscillations of a chock in a supersonic flow [14], as well as in investigation of oscillation of a string with a piston beaded on it, which is immersed in a cylinder filled with viscous liquid [15].

2. Statement of the Problem and Main Results

Consider the nonlinear Klein-Gordon equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}+m^{2} u+\lambda u^{3}=0 \tag{2.1}
\end{equation*}
$$

where $\lambda>0, m \geq 0$ are constants.
Let $D_{\tau}:=\{(x, t) \mid 0<x<t, 0<t<\tau\}, \Gamma_{\tau}:=\{(x, \tau) \mid 0<x<\tau\}$.
In the domain D_{T} for the equation (2.1) consider the first Darboux problem with the following boundary conditions

$$
\begin{equation*}
u(0, t)=0, \quad u(t, t)=\varphi(t), \quad 0 \leq t \leq T \tag{2.2}
\end{equation*}
$$

By $W_{p}^{q}(D)$ we denote the Sobolev space with the norm defined by

$$
\begin{aligned}
\|u\|_{W_{p}^{q}(D)} & :=\left(\sum_{k=0}^{q}|u|_{W_{p}^{k}(D)}^{p}\right)^{1 / p}, \\
|u|_{W_{p}^{k}(D)} & :=\left(\sum_{\alpha+\beta=k}\left\|\frac{\partial^{\alpha+\beta} u}{\partial x^{\alpha} \partial t^{\beta}}\right\|_{L_{p}(D)}^{p}\right)^{1 / p} .
\end{aligned}
$$

In particular, for $q=0$ we have $W_{p}^{0}=L_{p}$. Moreover, let

$$
|u|_{W_{2}^{1}\left(\Gamma_{\tau}\right)}^{2}:=\int_{0}^{\tau}\left(\left(\frac{\partial u(x, \tau)}{\partial x}\right)^{2}+\left(\frac{\partial u(x, \tau)}{\partial t}\right)^{2}\right) d x .
$$

As in [16], one can prove that if $\varphi \in C^{1}$, then the problem (2.1), (2.2) has a classical solution. In the investigation of the difference scheme we require that the solution of the problem $(2.1),(2.2)$ belongs to the space W_{2}^{2}.

Denote $h:=T / n$. Using the straight lines $t \pm x=2 i h, i=0,1,2, \ldots$, let us cover \bar{D}_{T} by a mesh \bar{Q}_{n}. Denote by Q_{n} the set of internal nodes
(including the nodes lying on the line $t=T$), and by γ_{i} the set of the internal nodes lying on the layers $t=i h, \quad i=3,4, \ldots$:

$$
\begin{aligned}
\gamma_{2 k} & :=\left\{\left(x_{2 \alpha}, t_{2 k}\right) \mid \alpha=1,2, \ldots, k-1\right\} \\
\gamma_{2 k-1} & :=\left\{\left(x_{2 \alpha-1}, t_{2 k-1}\right) \mid \alpha=1,2, \ldots, k-1\right\}, \quad x_{i}=i h, \quad t_{j}=j h .
\end{aligned}
$$

Let

$$
\gamma^{+}:=\{(j h, j h) \mid j=0,1, \ldots, n\}, \quad \gamma^{-}:=\{(0,2 j h) \mid j=0,1, \ldots,[n / 2]\}
$$

where [.] denotes the integer part of a number.

Figure 1. Meshes
For summing up on subsets of Q_{n}, we use the identities

$$
\sum_{Q_{2 k}} f=\sum_{j=1}^{k-1} \sum_{i=1}^{2 k-2 j} f_{i}^{i+2 j}, \quad \sum_{Q_{2 k-1}} f=\sum_{j=1}^{k-1} \sum_{i=1}^{2 k-2 j-1} f_{i}^{i+2 j}
$$

For mesh functions we use the notation $U_{i}^{j}:=U\left(x_{i}, t_{j}\right)$.

Let us approximate the problem (2.1), (2.2) by the difference scheme

$$
\begin{gather*}
\mathcal{L} U:=\mathcal{L}_{0} U+m^{2} \mathcal{L}_{m} U+\lambda \mathcal{L}_{\lambda} U=0, \quad(x, t) \in Q_{n} \tag{2.3}\\
\left.U\right|_{\gamma^{+}}=\Phi,\left.\quad U\right|_{\gamma^{-}}=0 \tag{2.4}
\end{gather*}
$$

where

$$
\begin{gathered}
\left(\mathcal{L}_{0} U\right)_{i}^{j}:=\left(U_{i}^{j}+U_{i}^{j-2}-U_{i-1}^{j-1}-U_{i+1}^{j-1}\right) / h^{2}, \quad\left(\mathcal{L}_{m} U\right)_{i}^{j}:=0.5\left(U_{i}^{j}+U_{i}^{j-2}\right), \\
\left(\mathcal{L}_{\lambda} U\right)_{i}^{j}:=\left(U_{i}^{j}+U_{i}^{j-2}\right)\left(\left(U_{i-1}^{j-1}\right)^{2}+\left(U_{i+1}^{j-1}\right)^{2}\right) / 4, \quad \Phi_{i}:=\varphi(i h)
\end{gathered}
$$

Denote by $\partial_{1}, \partial_{2}, \partial_{t}$ difference quotients along lines $x-t=0, x+t=0$ and t, respectively:

$$
\begin{gathered}
\left(\partial_{1} U\right)_{i}^{j}:=\frac{1}{\sqrt{2} h}\left(U_{i}^{j}-U_{i-1}^{j-1}\right), \quad\left(\partial_{2} U\right)_{i}^{j}:=\frac{1}{\sqrt{2} h}\left(U_{i}^{j}-U_{i+1}^{j-1}\right) \\
\left(\partial_{t} U\right)_{i}^{j}:=\frac{1}{2 h}\left(U_{i}^{j}-U_{i}^{j-2}\right)
\end{gathered}
$$

Let

$$
\begin{gathered}
|U|_{W_{2}^{1}\left(\gamma_{2 k}\right)}^{2}:=h \sum_{\alpha=1}^{k}\left(\partial_{1} U_{2 \alpha}^{2 k}\right)^{2}+h \sum_{\alpha=0}^{k-1}\left(\partial_{2} U_{2 \alpha}^{2 k}\right)^{2}, \\
|U|_{W_{2}^{1}\left(\gamma_{2 k-1}\right)}^{2}:=h \sum_{\alpha=1}^{k}\left(\partial_{1} U_{2 \alpha-1}^{2 k-1}\right)^{2}+h \sum_{\alpha=1}^{k-1}\left(\partial_{2} U_{2 \alpha-1}^{2 k-1}\right)^{2}, \quad k \geq 2, \\
(U, V)_{Q_{s}}:=h^{2} \sum_{(x, t) \in Q_{s}} U(x, t) V(x, t) \\
\|U\|_{Q_{s}}^{2}:=(U, U)_{Q_{s}}, \quad\|U\|_{C(Q)}:=\max _{Q}|U|
\end{gathered}
$$

Let $Z:=u-U$, where u is the exact solution of the problem (2.1), (2.2) and U is the solution of the finite difference scheme (2.3), (2.4). For the discretization error Z we obtain the following problem

$$
\begin{equation*}
\mathcal{L}_{0} Z+m^{2} \mathcal{L}_{m} Z=\lambda\left(\mathcal{L}_{\lambda} U-\mathcal{L}_{\lambda} u\right)+\mathcal{L} u \tag{2.5}
\end{equation*}
$$

Theorem 2.1. For the error of the solution of the difference scheme (2.3), (2.4) the following estimate

$$
\begin{equation*}
|U-u|_{W_{2}^{1}\left(\gamma_{s}\right)} \leq c\|\mathcal{L} u\|_{Q_{s}} \tag{2.6}
\end{equation*}
$$

is valid, where the constant $c>0$ does not depend on h.
Theorem 2.2. The solution of the difference scheme (2.3), (2.4) converges to the solution of the problem (2.1), (2.2) and the following estimates

$$
\begin{equation*}
|U-u|_{W_{2}^{1}\left(\gamma_{n}\right)} \leq c h^{2}\|u\|_{W_{2}^{2}\left(Q_{T}\right)}, \quad\|U-u\|_{C\left(Q_{n}\right)} \leq c h^{2}\|u\|_{W_{2}^{2}\left(Q_{T}\right)} \tag{2.7}
\end{equation*}
$$

are valid, where the constant $c>0$ does not depend on h.

3. Auxiliary Results

Lemma 3.1. For any mesh function V defined on \bar{Q}_{s} and satisfying $\left.V\right|_{\gamma^{-}}=0$, the following identity

$$
\left(\mathcal{L}_{0} V, \partial_{t} V\right)_{Q_{s}}=0.5|V|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2}-0.5 h \sum_{i=1}^{s}\left(\partial_{1} V_{i}^{i}\right)^{2}
$$

is valid.
Lemma 3.2. For any mesh function V defined on \bar{Q}_{s} and satisfying $\left.V\right|_{\gamma^{-}}=0$, the following inequality

$$
\left(\mathcal{L}_{m} V, \partial_{t} V\right)_{Q_{s}} \geq-\frac{h}{4} \sum_{i=1}^{s-2}\left(V_{i}^{i}\right)^{2}, s \geq 3
$$

is valid.
Lemma 3.3. If $\left.V\right|_{\gamma^{-}}=0$, then

$$
\left(\mathcal{L}_{\lambda} V, \partial_{t} V\right)_{Q_{s}} \geq-\frac{h}{8} \sum_{i=2}^{s-1}\left(V_{i}^{i} V_{i-1}^{i-1}\right)^{2}
$$

Lemma 3.4. For the solutions of the difference scheme (2.3), (2.4) and the problem (2.1), (2.2), the following estimates

$$
\|U\|_{C\left(Q_{n}\right)} \leq \delta, \quad\|u\|_{C\left(\bar{D}_{T}\right)} \leq \delta
$$

are valid, where $\delta:=\left(\left(1+m^{2} T^{2}+0,5 \lambda T^{3} \varphi_{*}\right) T \varphi_{*}\right)^{1 / 2}, \varphi_{*}:=\int_{0}^{T}\left(\varphi^{\prime}(t)\right)^{2} d t$.
Lemma 3.5. For any function V defined on \bar{Q}_{n} and satisfying $\left.V\right|_{\gamma^{-}}=$ $\left.V\right|_{\gamma^{+}}=0$, the following inequality

$$
\left\|\partial_{t} V\right\|_{Q_{s}}^{2} \leq h \sum_{l=3}^{s}|V|_{W_{2}^{1}\left(\gamma_{l}\right)}^{2}-0.5 h|V|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2}
$$

is valid.
Lemma 3.6 (Discrete Gronwall's lemma). Let w_{s}, g_{s} be nonnegative sequences of numbers and g_{s} be nondecreasing. Then from the inequalities

$$
w_{s} \leq c \sum_{i=k}^{s-1} w_{i}+g_{s}, \quad s=k+1, k+2, \ldots, n, \quad w_{k} \leq g_{k}, \quad c>0
$$

it follows

$$
w_{s} \leq g_{s} \exp (c(s-k)), \quad s=k, k+1, \ldots, n
$$

Lemma 3.7. Let u be the exact solution of the problem (2.1), (2.2) and U be the solution of the finite difference scheme (2.3), (2.4). Then the equality

$$
\left\|\mathcal{L}_{\lambda} U-\mathcal{L}_{\lambda} u\right\|_{Q_{s}}^{2} \leq
$$

$$
\leq c_{1} h \sum_{l=3}^{s-1}|U-u|_{W_{2}^{1}\left(\gamma_{l}\right)}^{2}+\left(2 / \lambda^{2}\right)\|\mathcal{L} u\|_{Q_{s}}^{2}, \quad s \geq 4, \quad c_{1}:=18 \delta^{4}(s h)^{2}
$$

is valid.

4. Proof of Main Results

Proof of Theorem 2.1. Multiplying the equation (2.5) by $\partial_{t} Z$ and summing up on Q_{s}, we obtain

$$
\left(\mathcal{L}_{0} Z+m^{2} \mathcal{L}_{m} Z, \partial_{t} Z\right)_{Q_{s}}=\left(\mathcal{L} u, \partial_{t} Z\right)_{Q_{s}}+\lambda\left(\mathcal{L}_{\lambda} U-\mathcal{L}_{\lambda} u, \partial_{t} Z\right)_{Q_{s}},
$$

whence using Lemmas 3.1, 3.2 and the equality $Z_{i}^{i}=0$, we receive

$$
\begin{aligned}
& 0.5|Z|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2} \leq\|\mathcal{L} u\|_{Q_{s}}\left\|\partial_{t} Z\right\|_{Q_{s}}+\lambda\left\|\mathcal{L}_{\lambda} U-\mathcal{L}_{\lambda} u\right\|_{Q_{s}}\left\|\partial_{t} Z\right\|_{Q_{s}} \leq \\
& \quad \leq \frac{\varepsilon_{1}}{2}\left\|\partial_{t} Z\right\|_{Q_{s}}^{2}+\frac{1}{2 \varepsilon_{1}}\|\mathcal{L} u\|_{Q_{s}}^{2}+\frac{\varepsilon_{2}}{2}\left\|\partial_{t} Z\right\|_{Q_{s}}^{2}+\frac{\lambda^{2}}{2 \varepsilon_{2}}\left\|\mathcal{L}_{\lambda} U-\mathcal{L}_{\lambda} u\right\|_{Q_{s}}^{2} .
\end{aligned}
$$

Choose $\varepsilon_{1}=4 /(3 T), \varepsilon_{2}=8 /(3 T)$ and use Lemma 3.7:

$$
0.5|Z|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2} \leq \frac{3 T}{4}\|\mathcal{L} u\|_{Q_{s}}^{2}+\frac{2}{T}\left\|\partial_{t} Z\right\|_{Q_{s}}^{2}+\frac{3 T \lambda^{2} c_{1} h}{16} \sum_{l=3}^{s-1}|Z|_{W_{2}^{1}\left(\gamma_{l}\right)}^{2}
$$

Due to Lemma 3.5, we have

$$
\begin{gathered}
0.5|Z|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2} \leq \\
\leq\left(\frac{2 h}{T}+\frac{3 T \lambda^{2} c_{4} h}{16}\right) \sum_{l=3}^{s-1}|Z|_{W_{2}^{1}\left(\gamma_{l}\right)}^{2}+\frac{h}{T}|Z|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2}+\frac{3 T}{4}\|\mathcal{L} u\|_{Q_{s}}^{2}, \quad s \geq 4
\end{gathered}
$$

Since $h / T=h /(n h) \leq 1 / 4$ for $4 \leq s \leq n$, we find

$$
\begin{gather*}
|Z|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2} \leq \\
\leq\left(\frac{8}{T}+\frac{3 T \lambda^{2} c_{1}}{4}\right) h \sum_{l=3}^{s-1}|Z|_{W_{2}^{1}\left(\gamma_{l}\right)}^{2}+3 T\|\mathcal{L} u\|_{Q_{s}}^{2}, \quad s=4,5, \ldots, n \tag{4.1}
\end{gather*}
$$

Now let us show that

$$
\begin{equation*}
|Z|_{W_{2}^{1}\left(\gamma_{3}\right)}^{2} \leq 3 T\|\mathcal{L} u\|_{Q_{3}}^{2} . \tag{4.2}
\end{equation*}
$$

Indeed, first note that $|Z|_{W_{2}^{1}\left(\gamma_{3}\right)}^{2}=(1 / h)\left(Z_{1}^{3}\right)^{2}$. The equation (2.5) on the grid Q_{3} (consisting from one grid point only) can be rewritten as follows

$$
\left(\frac{1}{h^{2}}+\frac{m^{2}}{2}+\frac{\lambda}{4}\left(u_{2}^{2}\right)^{2}\right) Z_{1}^{3}=\mathcal{L} u_{1}^{3}
$$

whence $\left(Z_{1}^{3}\right)^{2} \leq h^{4}\left(\mathcal{L} u_{1}^{3}\right)^{2}$.
Therefore

$$
|Z|_{W_{2}^{1}\left(\gamma_{3}\right)}^{2} \leq h\|\mathcal{L} u\|_{Q_{3}}^{2} \leq 3 T\|\mathcal{L} u\|_{Q_{3}}^{2} .
$$

Applying Lemma 3.6 to the inequalities (4.1), (4.2), we obtain the estimate (2.6) with $c=\sqrt{3 T \exp \left(8+14 \lambda^{2} T^{4} \delta^{4}\right)}$, where δ is defined in Lemma 3.4.

Proof of Theorem 2.2. Let

$$
l(u):=\frac{1}{2 h^{2}} \int_{e_{i j}} u(x, t) d x d t
$$

By introducing the notation

$$
\begin{gather*}
\psi_{1}(u):=l(u)-0.5\left(u_{i}^{j}+u_{i}^{j-2}\right), \\
\psi_{2}(u):=l(u)-0.5\left(u_{i-1}^{j-1}+u_{i+1}^{j-1}\right), \tag{4.3}\\
\psi_{3}(u):=l\left(u^{2}\right) \psi_{1}(u)+0.5\left(u_{i}^{j}+u_{i}^{j-2}\right) \psi_{2}\left(u^{2}\right),
\end{gather*}
$$

we write the truncation error in the form

$$
\begin{equation*}
\mathcal{L} u=-m^{2} \psi_{1}(u)-\lambda\left(l\left(u^{3}\right)-l(u) l\left(u^{2}\right)+\psi_{3}(u)\right) . \tag{4.4}
\end{equation*}
$$

The expressions for $\psi_{\alpha}(u), \alpha=1,2$, can be rewritten as follows:

$$
\begin{aligned}
\psi_{\alpha}(u)= & \frac{1}{4 h^{2}} \int_{e_{i j}}\left(\left(x-x_{i+\alpha-2}\right)\left(x-x_{i-\alpha+2}\right) \frac{\partial^{2} u}{\partial t^{2}}+\right. \\
& \left.+\left(t-t_{j+\alpha-2}\right)\left(t-t_{j-\alpha}\right) \frac{\partial^{2} u}{\partial x^{2}}+2\left(x-x_{i}\right)\left(t-t_{j-1}\right) \frac{\partial^{2} u}{\partial x \partial t}\right) d x d t
\end{aligned}
$$

Hence it follows

$$
\left|\psi_{\alpha}(u)\right| \leq \frac{1}{4} \int_{e_{i j}}\left(\left|\frac{\partial^{2} u}{\partial t^{2}}\right|+\left|\frac{\partial^{2} u}{\partial x^{2}}\right|+2\left|\frac{\partial^{2} u}{\partial x \partial t}\right|\right) d x d t, \quad \alpha=1,2
$$

whence, using the Cauchy-Schwartz inequality and the algebraic inequality $(a+b+2 c)^{2} \leq 4\left(a^{2}+b^{2}+2 c^{2}\right)$, we have

$$
\begin{equation*}
\left|\psi_{1}(u)\right| \leq \frac{h}{\sqrt{2}}|u|_{W_{2}^{2}\left(e_{i j}\right)}, \quad\left|\psi_{2}\left(u^{2}\right)\right| \leq \frac{h}{\sqrt{2}}\left|u^{2}\right|_{W_{2}^{2}\left(e_{i j}\right)} \tag{4.5}
\end{equation*}
$$

Since

$$
l\left(u^{2}\right) \leq\|u\|_{C\left(\bar{D}_{T}\right)}^{2}, \quad 0.5\left|u_{i}^{j}+u_{i}^{j-2}\right| \leq\|u\|_{C\left(\bar{D}_{T}\right)}
$$

we have

$$
\left|\psi_{3}(u)\right| \leq\|u\|_{C\left(\bar{D}_{T}\right)}\left(\left|\psi_{1}(u)\right|\|u\|_{C\left(\bar{D}_{T}\right)}+\psi_{2}\left(u^{2}\right)\right) .
$$

Therefore from (4.3) it follows

$$
\begin{equation*}
\left|\psi_{3}(u)\right| \leq \frac{h}{\sqrt{2}}\|u\|_{C\left(\bar{D}_{T}\right)}\left(\|u\|_{C\left(\bar{D}_{T}\right)}|u|_{W_{2}^{2}\left(e_{i j}\right)}+\left|u^{2}\right|_{W_{2}^{2}\left(e_{i j}\right)}\right) \tag{4.6}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
\left|l\left(u^{3}\right)-l(u) l\left(u^{2}\right)\right| \leq 4 h|u|_{W_{4}^{1}\left(e_{i j}\right)}^{2}\|u\|_{C\left(\bar{D}_{T}\right)} \tag{4.7}
\end{equation*}
$$

According to the estimates (4.5), (4.6), (4.7) from (4.4), we obtain

$$
\left|(\mathcal{L} u)_{i}^{j}\right| \leq c_{2} h\left(|u|_{W_{2}^{2}\left(e_{i j}\right)}+|u|_{W_{4}^{1}\left(e_{i j}\right)}^{2}+\left|u^{2}\right|_{W_{2}^{2}\left(e_{i j}\right)}\right),
$$

where $c_{2}:=m^{2}+\lambda \delta^{2}+4 \lambda \delta$ and δ is defined in Lemma 3.4.

Therefore

$$
\|\mathcal{L} u\|_{Q_{s}}^{2}=h^{2} \sum_{Q_{s}}(\mathcal{L} u)^{2} \leq 3 c_{2}^{2} h^{4}\left(|u|_{W_{4}^{1}\left(D_{s}\right)}^{4}+|u|_{W_{2}^{2}\left(D_{s}\right)}^{2}+\left|u^{2}\right|_{W_{2}^{2}\left(D_{s}\right)}^{2}\right)
$$

i.e., as we note that

$$
\left|u^{2}\right|_{W_{2}^{2}\left(D_{s}\right)}^{2} \leq 8\left(\delta^{2}|u|_{W_{2}^{2}\left(D_{s}\right)}^{2}+|u|_{W_{4}^{1}\left(D_{s}\right)}^{4}\right),
$$

we have

$$
\begin{equation*}
\|\mathcal{L} u\|_{Q_{s}}^{2} \leq 3 c_{2}^{2} h^{4}\left(9|u|_{W_{4}^{1}\left(D_{s}\right)}^{4}+\left(1+8 \delta^{2}\right)|u|_{W_{2}^{2}\left(D_{s}\right)}^{2}\right) \tag{4.8}
\end{equation*}
$$

Since $W_{2}^{2} \subset W_{4}^{1}$, then from (4.8) follows the validity of the first estimate in (2.7). The validity of the second estimate in (2.7) can be easily obtained using $\|Z\|_{C\left(\gamma_{s}\right)}^{2} \leq 2 s h|Z|_{W_{2}^{1}\left(\gamma_{s}\right)}^{2}, s=3,4, \ldots$

Acknowledgment

This paper has been supported by GNSF of Georgia (project ST06/3005).

References

1. M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975.
2. A. R. Bishop, J. A. Krumhansl, and S. E. Trullinger, Solitons in condensed matter: a paradigm. Phys. D 1 (1980), No. 1, 1-44.
3. M. Flato, J. C. H. Simon, and E. Taflin, Asymptotic completeness, global existence and the infrared problem for the Maxwell-Dirac equations. Mem. Amer. Math. Soc. 127 (1997), No. 606.
4. F. J. Alexander and S. Habib, Statistical mechanics of kincs in $1+1$ dimensions. Phys. Rev. Lett. 71 (1993), 955-958.
5. A. Inoue, Sur $\square u+u^{3}=f$ dans un domaine noncylindrique. J. Math. Anal. Appl. 46 (1974), 777-819.
6. K. Jörgens, Über die nichtlinearen Wellengleichungen der mathematischen Physik. Math. Ann. 138 (1959), 179-202.
7. H. Lindblad and A. Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation. Lett. Math. Phys. 73 (2005), No. 3, 249-258.
8. J. SATHER, The existence of a global classical solution of the initial-boundary value problem for $\square u+u^{3}=f$. Arch. Rational Mech. Anal. 22 (1966), 292-307.
9. C. W. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys. 127 (1990), No. 3, 479-528.
10. T. Cazenave, A. Haraux, L. Vazquez, and F. B. Weissler, Nonlinear effects in the wave equation with a cubic restoring force. Comput. Mech. 5 (1989), 49-72.
11. B. N. Lu and S. M. Fang, Convergence on finite difference solution of semilinear wave equation in one space variable. Chin. Q. J. Math. 12 (1997), 35-40.
12. J. K. Perring and T. H. R. Skyrme, A model unified field equation. Nuclear Phys. 31 (1962), 550-555.
13. Y. L. ZHOU, Applications of discrete functional analysis to the finite difference method. International Academic Publishers, Beijing, 1991.
14. O. G. Goman, The equation of a reflected wave. (Russian) Vestn. Mosk. Univ., Ser. I 23 (1968), 84-87.
15. S. D. Troitskaya, On a boundary value problem for hyperbolic equations. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 62 (1998), No. 2, 193-224; English transl.: Izv. Math. 62 (1998), No. 2, 399-428.
16. G. K. Berikelashvili, O. M. Jokhadze, S. S. Kharibegashvili, and B. G. MidoDASHVILI, On the existence and nonexistence of global solutions of the first Darboux problem for nonlinear wave equations. (Russian) Differ. Uravn. 44 (2008), No. 3, 359-372.
(Received 15.09.2008)
Authors' addresses:
G. Berikelashvili, O. Jokhadze, S. Kharibegashvili
A. Razmadze Mathematical Institute

1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: bergi@rmi.acnet.ge
ojokhadze@yahoo.com
kharib@rmi.acnet.ge
B. Midodashvili

Gori University
53, Chavchavadze St., Gori 1400
Georgia

