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Abstract. Unimprovable effective sufficient conditions are established
for the unique solvability of the periodic problem

u′′′(t) =

2∑

i=0

`i(u
(i))(t) + q(t) for 0 ≤ t ≤ ω,

u(j)(0) = u(j)(ω) (j = 0, 1, 2),

where ω > 0, `i : C
(
[0, ω]

)
→ L

(
[0, ω]

)
are linear bounded operators, and

q ∈ L
(
[0, ω]

)
.
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1. Introduction

Consider the equation

u′′′(t) =

2∑

i=0

`i(u
(i))(t) + q(t) for 0 ≤ t ≤ ω (1.1)

with the periodic boundary conditions

u(j)(0) = u(j)(ω) (j = 0, 1, 2), (1.2)

where ω > 0, `i : C
(
[0, ω]

)
→ L

(
[0, ω]

)
are linear bounded operators, and

q ∈ L
(
[0, ω]

)
.

By a solution of the problem (1.1), (1.2) we understand a function u ∈

C̃2
(
[0, ω]

)
which satisfies the equation (1.1) almost everywhere on [0, ω] and

fulfils the conditions (1.2).
There are many works and interesting results on the existence and unique-

ness of solution for the periodic boundary value problem for higher order
ordinary differential equations (see, e.g., [1], [2], [4]– [6], [11]– [15], [17], [18],
[25], [26], [29], [30] and the references therein). But an analogous problem
for functional differential equations, even in the case of linear equations,
remains still little investigated.

In 1972 H. H. Schaefer (see [28, Theorem 4]) proved that there exists
a linear bounded operator ` : C

(
[0, ω]

)
→ L

(
[0, ω]

)
which is not strongly

bounded, that is, it does not have the following property: there exists a
summable function η : [0, ω] → [0, +∞[ such that

|`(x)(t)| ≤ η(t)‖x‖C for 0 ≤ t ≤ ω, x ∈ C
(
[0, ω]

)
.

It is well–known (see, e.g., [16]) that the general boundary value prob-
lem for linear functional differential equations with a strongly bounded
linear operator has the Fredholm property, i.e., it is uniquely solvable iff
the corresponding homogeneous problem has only the trivial solution. The
same property (Fredholmity) for functional differential equations with a
nonstrongly bounded linear operator was not investigated till 2000. The
first step was made in [3], [8] for scalar first order functional differential
equations. Those results were generalized for the n-th order functional dif-
ferential systems in [10].

Thus, in the present paper, we study the problem (1.1), (1.2) under the
assumptions that `0 is a strongly bounded operator and `i (i = 1, 2) are
bounded, not necessarily strongly bounded, operators. We establish new
unimprovable integral conditions sufficient for the unique solvability of the
problem (1.1), (1.2).

Note that in [12], unlike the earlier known results, there are investigated,
among others, the existence and uniqueness of an ω-periodic solution of the
nonautonomous ordinary differential equation

u(n)(t) =
n−1∑

k=0

pk(t)u(k)(t) + q(t) for 0 ≤ t ≤ ω
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without the requirement on the function p0 to be of constant sign. In
this paper we improve the result of [12] for n = 3 in a certain way (see
Corollary 2.3). Consequently, the obtained results are also new even if (1.1)
is an ordinary differential equation

u′′′(t) =

2∑

i=0

pi(t)u
(i)(t) + q(t) for 0 ≤ t ≤ ω. (1.3)

For functional differential equations, one can name only a few papers
devoted to the study of the periodic boundary value problem (see, e.g., [7],
[19]– [24], [27]).

All the results will be formulated for the differential equation with devi-
ating arguments

u′′′(t) =

2∑

i=0

pi(t)u
(i)(τi(t)) + q(t) for 0 ≤ t ≤ ω, (1.4)

which is a particular case of the equation (1.1). Here pi, q ∈ L
(
[0, ω]

)
and

τi : [0, ω] → [0, ω] (i = 0, 1, 2) are measurable functions.
The method used for the investigation of the considered problem is based

on the method developed in our previous papers (see [7], [19]– [21], [23]). In
particular, the results presented in the paper generalize the results obtained
in [7], [23].

The following notation is used throughout:
N is the set of all natural numbers;
R is the set of all real numbers, R+ = [0, +∞[ ;
C

(
[0, ω]

)
is the Banach space of continuous functions u : [0, ω] → R with

the norm ‖u‖C = max{|u(t)| : 0 ≤ t ≤ ω};

C̃2
(
[0, ω]

)
is the set of functions u : [0, ω] → R which are absolutely

continuous together with their first and second derivatives;
L

(
[0, ω]

)
is the Banach space of Lebesgue integrable functions p : [0, ω] →

R with the norm ‖p‖L =
ω∫
0

|p(s)| ds;

If ` : C
(
[0, ω]

)
→ L

(
[0, ω]

)
is a linear operator, then

‖`‖ = sup
{
‖`(x)‖L : ‖x‖C ≤ 1

}
.

Definition 1.1. We will say that a linear operator ` : C
(
[0, ω]

)
→

L
(
[0, ω]

)
is nonnegative if for any nonnegative x ∈ C

(
[0, ω]

)
the inequality

`(x)(t) ≥ 0 for 0 ≤ t ≤ ω

is fulfilled.
We will say that a linear operator ` : C

(
[0, ω]

)
→ L

(
[0, ω]

)
is monotone

if either ` or −` is nonnegative.
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2. Main Results

Theorem 2.1. Let nonnegative operators `01, `02 : C
(
[0, ω]

)
→ L

(
[0, ω]

)

and bounded operators `1, `2 be such that

`01(1)(t) 6≡ `02(1)(t), (2.1)

ω2

32

ω∫

0

`01(1)(s) ds < β1, (2.2)

ω∫
0

`01(1)(s) ds

β1 −
ω2

32

ω∫
0

`01(1)(s) ds

≤

ω∫

0

`02(1)(s) ds, (2.3)

and

ω∫

0

`02(1)(s) ds ≤
64β1

ω2

(
1 +

√√√√√1−
ω2

32β1

ω∫

0

`01(1)(s) ds

)
, (2.4)

where

β1 = 1−
ω

4
‖`1‖ − ‖`2‖.

Then the problem (1.1), (1.2) with both

`0 = `01 − `02 and `0 = `02 − `01

has a unique solution.

Theorem 2.2. Let `i1, `i2 : C
(
[0, ω]

)
→ L

(
[0, ω]

)
(i = 0, 1, 2) be non-

negative operators, `1, `2 admit the representations

`1 = `11 − `12, `2 = `21 − `22,

and let

β1 = 1−
ω

4
max

{
‖`11‖, ‖`12‖

}
−max

{
‖`21‖, ‖`22‖

}
. (2.5)

Let, moreover, the conditions (2.1)–(2.4) be fulfilled. Then the problem

(1.1), (1.2) with both

`0 = `01 − `02 and `0 = `02 − `01

has a unique solution.

If the operator `0 is monotone, then from Theorem 2.2 we get the follow-
ing assertion which is nonimprovable in a certain sense (see Example 2.1).

Corollary 2.1. Let a monotone operator `0 and strongly bounded oper-

ators `1, `2 be such that

`0(1)(t) 6≡ 0, `i = `i1 − `i2 (i = 1, 2),
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where `i1, `i2 : C
(
[0, ω]

)
→ L

(
[0, ω]

)
are nonnegative operators, and let

ω

4
max

{
‖`11‖, ‖`12‖

}
+ max

{
‖`21‖, ‖`22‖

}
< 1.

Let, moreover,
ω∫

0

|`0(1)(s)| ds ≤
128β1

ω2
, (2.6)

where β1 is given by (2.5). Then the problem (1.1), (1.2) has a unique

solution.

Now consider the equation with deviating arguments (1.4), where q, pi ∈
L

(
[0, ω]

)
and τi : [0, ω] → [0, ω] are measurable functions.

Corollary 2.2. Put

β2 = 1−
ω

4
max

{ ω∫

0

[p1(s)]+ ds,

ω∫

0

[p1(s)]− ds

}
−

−max

{ ω∫

0

[p2(s)]+ ds,

ω∫

0

[p2(s)]− ds

}
.

(2.7)

Let, moreover, p01, p02 ∈ L
(
[0, ω]

)
be nonnegative functions such that

p01(t) 6≡ p02(t), (2.8)

ω2

32

ω∫

0

p01(s) ds < β2, (2.9)

ω∫
0

p01(s) ds

β2 −
ω2

32

ω∫
0

p01(s) ds

≤

ω∫

0

p02(s) ds, (2.10)

ω∫

0

p02(s) ds ≤
64β2

ω2

(
1 +

√√√√√1−
ω2

32β2

ω∫

0

p01(s) ds

)
. (2.11)

Then the problem (1.4), (1.2) with both

p0(t) = p01(t)− p02(t) and p0(t) = p02(t)− p01(t) for 0 ≤ t ≤ ω

has a unique solution.

If τi(t) = t (i = 0, 1, 2), then we get the following assertion.

Corollary 2.3. Let p01, p02, p1, p2 ∈ L
(
[0, ω]

)
be such that all the as-

sumptions of Corollary 2.2 are fulfilled. Let, moreover, either

|p1(t)|+ |p2(t)| 6≡ 0, (2.12)
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or

p01(t) 6≡ 0 and p02(t) 6≡ 0. (2.13)

Then the problem (1.3), (1.2) with both

p0(t) = p01(t)− p02(t) and p0(t) = p02(t)− p01(t) for 0 ≤ t ≤ ω

has a unique solution.

Remark 2.1. In the paper [13] (see Proposition 1.1 therein), there was
proved that if p0 does not change its sign, then the problem u′′′ = p0(t)u +
q(t), u(j)(0) = u(j)(ω) (j = 0, 1, 2) is uniquely solvable iff p0(t) 6≡ 0. Hence it
follows that if the conditions (2.12) and (2.13) in Corollary 2.3 are violated,
i.e., if the function p0 = p01 − p02 does not change its sign and pi(t) ≡ 0
(i = 1, 2), then other conditions dealing with the smallness of p0 in the
integral sense are not important.

If `1 ≡ 0 and `2 ≡ 0, then from Theorem 2.1 we get the following assertion
which has been published in [7].

Corollary 2.4. Let nonnegative operators `01, `02 : C
(
[0, ω]

)
→ L

(
[0, ω]

)

be such that

`01(1)(t) 6≡ `02(1)(t),
ω∫

0

`01(1)(s) ds <
32

ω2
,

ω∫
0

`01(1)(s) ds

1− ω2

32

ω∫
0

`01(1)(s) ds

≤

ω∫

0

`02(1)(s) ds,

and
ω∫

0

`02(1)(s) ds ≤
64

ω2

(
1 +

√√√√√1−
ω2

32

ω∫

0

`01(1)(s) ds

)
.

Then the problem (1.1), (1.2) with both

`0 = `01 − `02 and `0 = `02 − `01

has a unique solution.

If the operator `0 is monotone, then from Theorem 2.1 we get the follow-
ing assertion which has been published in [23].

Corollary 2.5. Let a monotone operator `0 and bounded operators `1,

`2 be such that

`0(1)(t) 6≡ 0

and
ω

4
‖`1‖+ ‖`2‖ < 1.
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Let, moreover,

ω∫

0

|`0(1)(s)| ds ≤
128

ω2

(
1−

ω

4
‖`1‖ − ‖`2‖

)
. (2.14)

Then the problem (1.1), (1.2) has a unique solution.

It is shown in [23] that Corollary 2.5 is unimprovable in a certain sense.
We present an appropriate example here for the sake of completeness.

Example 2.1. The example below shows that the conditions (2.6) and
(2.14) in Corollaries 2.1 and 2.5, respectively, are optimal and they cannot
be weakened.

Let ω = 1, αk = 1
32 + 1

16π2k2 −
1

128k2 , βk = 1
8k
− 1

4 , k ∈ N , and let the

function u0 ∈ C̃2
(
[0, 1]

)
be defined by the equality

u0(t) =

{
ũ(t) for 0 ≤ t ≤ 1/2

−ũ(t− 1/2) for 1/2 < t ≤ 1
,

where

ũ(t) =





1−
t2

2αk0

for 0 ≤ t ≤
1

4
−

1

8k0

1+
βk0

αk0

t+
β2

k0

2αk0

−
1−sinπk0(1−4t)

16π2k2
0αk0

for
1

4
−

1

8k0
<t≤

1

4
+

1

8k0

−1−
t(1− t)

2αk0

+
1

8αk0

for
1

4
+

1

8k0
< t ≤

1

2

,

and k0 ∈ N is such that

4

(128 + ε)αk0

< 1. (2.15)

Then it is clear that u
(j)
0 (0) = u

(j)
0 (1) (j = 0, 1, 2), and there exist constants

λ1 > 0, λ2 > 0 such that

(λ1

4
+ λ2

) 1∫

0

|u′′′0 (s)| ds = 1−
4

(128 + ε)αk0

. (2.16)

Now, let the measurable function τ : [0, 1] → [0, 1] and the linear operators
`i : C([0, 1]) → L([0, 1]), (i = 0, 1, 2) be given by the equalities

τ(t) =

{
0 for u′′′0 (t) > 0

1/2 for u′′′0 (t) ≤ 0
,

`0(x)(t) = |u′′′0 (t)|x(τ(t)), `i(x)(t) = λi|u
′′′

0 (t)|x
( i− 1

4

)
(i = 1, 2).
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From (2.15) and (2.16) it follows that

1−
1

4
‖`1‖ − ‖`2‖ = 1−

(λ1

4
+ λ2

) 1∫

0

|u′′′0 (s)| ds =
4

(128 + ε)αk0

and
1∫

0

`0(1)(s) ds =

1∫

0

|u′′′0 (s)| ds =
4

αk0

=

= 128
4

(128 + ε)αk0

+
4ε

(128 + ε)αk0

< 128
(
1−

1

4
‖`1‖ − ‖`2‖

)
+ ε.

Thus, all the assumptions of Corollaries 2.1 and 2.5 are satisfied except
(2.6), resp. (2.14), instead of which the condition

ω∫

0

|`0(1)(s)| ds ≤
128

ω2

(
1−

ω

4
‖`1‖ − ‖`2‖

)
+ ε

is fulfilled.
On the other hand, from the definition of the functions u0, τ and the

operators `i it follows that

u′′′0 (t) = |u′′′0 (t)| sgnu′′′0 (t) = |u′′′0 (t)|u0(τ(t)) = `0(u0)(t),

`1(u
′

0)(t) + `2(u
′′

0)(t) =
(
λ1u

′

0(0) + λ2u
′′

0(1/4)
)
|u′′′0 (t)| = 0,

that is, u0 and u1(t) ≡ 0 are different solutions of the problem (1.1), (1.2)
with ω = 1, q(t) ≡ 0.

3. Proofs

Let v ∈ C̃2
(
[0, ω]

)
. Then for j = 0, 1, 2 put

Mj = max
{
v(j)(t) : t ∈ [0, ω]

}
, mj = max

{
− v(j)(t) : t ∈ [0, ω]

}
. (3.1)

The following lemma is a consequence of a more general result obtained
in [9] (see Theorem 1.1 and Remark 1.1 therein).

Lemma 3.1. Let k ∈ {0, 1}, v ∈ C̃2
(
[0, ω]

)
, and

v(t) 6= const, v(j)(0) = v(j)(ω) (j = 0, 1, 2).

Then the estimate

Mk + mk <
ω2−k

d2−k

(M2 + m2)

holds, where d1 = 4 and d2 = 32.

Lemma 3.2. Let ` : C
(
[0, ω]

)
→ L

(
[0, ω]

)
be a nonnegative linear ope-

rator. Then for an arbitrary v ∈ C
(
[0, ω]

)
the inequalities

−m0`(1)(t) ≤ `(v)(t) ≤ M0`(1)(t) for 0 ≤ t ≤ ω

are fulfilled, where M0 and m0 are defined by (3.1).
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Proof. It is clear that

v(t) −M0 ≤ 0, v(t) + m0 ≥ 0 for 0 ≤ t ≤ ω.

Then from nonnegativity of ` we get

`(v −M0)(t) ≤ 0, `(v + m0)(t) ≥ 0 for 0 ≤ t ≤ ω,

whence follows the validity of our lemma. �

The next lemma on the Fredholm property, in the case where `1 and
`2 are bounded operators (not necessarily strongly bounded), immediately
follows from [10, Theorem 1.1].

Lemma 3.3. The problem (1.1), (1.2) is uniquely solvable iff the corre-

sponding homogeneous problem

v′′′(t) =

2∑

i=0

`i(v
(i))(t), (3.2)

v(j)(0) = v(j)(ω) (j = 0, 1, 2) (3.3)

has only the trivial solution.

Lemma 3.4. Let there exist α1, α2 ∈ R+ such that for every x ∈
C

(
[0, ω]

)
assuming both positive and negative values, the inequality

∣∣∣
∫

E

`j(x)(s) ds
∣∣∣ ≤ αj max

{
x(s1)−x(s2) : 0 ≤ s1, s2 ≤ ω

}
(j = 1, 2) (3.4)

holds, where E ⊆ [0, ω] is an arbitrary measurable set. Let, moreover, `01,

`02 : C
(
[0, ω]

)
→ L

(
[0, ω]

)
be nonnegative operators such that

`01(1)(t) 6≡ `02(1)(t), (3.5)

β = 1− ωα1/4− α2, and

ω2

32

ω∫

0

`01(1)(s) ds < β, (3.6)

ω∫
0

`01(1)(s) ds

β − ω2

32

ω∫
0

`01(1)(s) ds

≤

ω∫

0

`02(1)(s) ds, (3.7)

ω∫

0

`02(1)(s) ds ≤
64β

ω2

(
1 +

√√√√√1−
ω2

32β

ω∫

0

`01(1)(s) ds

)
. (3.8)

Then the problem (3.2), (3.3) with both

`0 = `01 − `02 and `0 = `02 − `01

has only the trivial solution.
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Proof. First suppose that `0 = `01−`02 and assume on the contrary that the
problem (3.2), (3.3) has a nontrivial solution v. Let Mj and mj (j = 0, 1, 2)
be defined by (3.1) and t1, t2 ∈ [0, ω[ be such that

v′′(t1) = M2, v′′(t2) = −m2. (3.9)

By virtue of (3.5) we have that v(t) 6≡ const. Therefore, in view of (3.3), it
is clear that v′ and v′′ assume both positive and negative values, and thus

Mj > 0, mj > 0 (j = 1, 2). (3.10)

According to (3.10), Lemma 3.1 with k = 1, and (3.4) we have
∣∣∣∣
∫

E

`1(v
′)(s) + `2(v

′′)(s) ds

∣∣∣∣ ≤ (1− β)(M2 + m2) (3.11)

for an arbitrary measurable set E ⊆ [0, ω].
Assume that t1 < t2 and let I = [0, t1] ∪ [t2, ω]. Then, in view of (3.9)

and (3.3), it is clear that

∫

I

v′′′(s) ds = M2 + m2,

t2∫

t1

v′′′(s) ds = −(M2 + m2).

Hence, on account of (3.2) and (3.11), we get

β(M2 + m2) ≤

∫

I

(
`01(v)(s) − `02(v)(s)

)
ds, (3.12)

β(M2 + m2) ≤

t2∫

t1

(
`02(v)(s) − `01(v)(s)

)
ds. (3.13)

From (3.6) it follows that β > 0, and, in view of the fact that v(t) 6≡ const,
we have β(M0 +m0) > 0. Now the inequalities (3.12) and (3.13), according
to Lemma 3.1 with k = 0, yield

0 < β(M0 + m0) <
ω2

32

∫

I

(
`01(v)(s)− `02(v)(s)

)
ds, (3.14)

0 < β(M0 + m0) <
ω2

32

t2∫

t1

(
`02(v)(s)− `01(v)(s)

)
ds, (3.15)

respectively.
On the other hand, integration of (3.2) from 0 to ω, on account of (3.3)

and (3.11), results in

0 ≤ (−1)k−1

ω∫

0

(
`01(v)(s) − `02(v)(s)

)
ds + (1− β)(M2 + m2), (3.16k)

where k = 1, 2.



38 R. Hakl and S. Mukhigulashvili

Now we will show that v assumes both positive and negative values.
Assume on the contrary that v does not change its sign. It is sufficient to
discuss the following two cases:

t1 < t2, (−1)k−1v(t) ≥ 0 for 0 ≤ t ≤ ω (k = 1, 2). (3.17k)

If (3.171) is satisfied, then from (3.12), (3.14), and (3.161), in view of
Lemma 3.2 (since `01 and `02 are nonnegative operators), we obtain

β(M2 + m2) ≤ M0

ω∫

0

`01(1)(s) ds, (3.18)

M0

(
β −

ω2

32

ω∫

0

`01(1)(s) ds

)
< −m0β, (3.19)

−m0

ω∫

0

`02(1)(s) ds ≤ M0

ω∫

0

`01(1)(s) ds + (1− β)(M2 + m2). (3.20)

From (3.18) and (3.20) we get

−m0β

ω∫

0

`02(1)(s) ds ≤ M0

ω∫

0

`01(1)(s) ds,

which, together with (3.19), contradicts (3.7).
If (3.172) is satisfied, from (3.13), (3.15), and (3.162) we can obtain a

contradiction to (3.7) in an analogous way.
Consequently, the contradictions obtained guarantee that v changes its

sign and thus
M0 > 0, m0 > 0. (3.21)

Without loss of generality we can assume that t1 < t2, and therefore the
inequalities (3.12)–(3.16k) hold. Now, from (3.14) and (3.15), according to
(3.21) and Lemma 3.2, we obtain

βM0 + βm0 < M0
ω2

32

∫

I

`01(1)(s) ds + m0
ω2

32

∫

I

`02(1)(s) ds, (3.22)

βM0 + βm0 < M0
ω2

32

t2∫

t1

`02(1)(s) ds + m0
ω2

32

t2∫

t1

`01(1)(s) ds. (3.23)

The inequalities (3.22) and (3.23), by virtue of (3.6) and (3.21), yield

0 < M0

(
β −

ω2

32

∫

I

`01(1)(s) ds

)
< m0

(
ω2

32

∫

I

`02(1)(s) ds− β

)
,

0 < m0

(
β −

ω2

32

t2∫

t1

`01(1)(s) ds

)
< M0

(
ω2

32

t2∫

t1

`02(1)(s) ds− β

)
.
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Multiplying the last two inequalities, on account of the inequality 4AB ≤
(A + B)2, we get

β2 − β
ω2

32

ω∫

0

`01(1)(s) ds <
1

4

(
ω2

32

ω∫

0

`02(1)(s) ds− 2β

)2

,

which contradicts (3.8). Therefore our assumption is invalid and the prob-
lem (3.2), (3.3) with `0 = `01 − `02 has only the trivial solution.

Now let `0 = `02 − `01. Put for every x : [0, ω] → R

ϑ(x)(t)
def
= x(ω − t) for 0 ≤ t ≤ ω,

and

˜̀
0i(x)(t)

def
= ϑ

(
`0i(ϑ(x))

)
(t), ˜̀

i(x)(t)
def
= (−1)i−1ϑ

(
`i(ϑ(x))

)
(t) (i=1, 2).

Then, obviously, the operators ˜̀
0i (i = 1, 2) are also nonnegative and

‖˜̀0i‖ = ‖`0i‖, ‖˜̀i‖ = ‖`i‖ (i = 1, 2). (3.24)

On the other hand, v1 is a solution of (3.2), (3.3) iff

v2(t)
def
= ϑ(v1)(t)

is a solution of the problem

v′′′(t) =

2∑

i=0

˜̀
i(v

(i))(t), v(j)(0) = v(j)(ω) (j = 0, 1, 2) (3.25)

with

˜̀
0 = ˜̀

01 − ˜̀
02.

From (3.24) it follows that all the assumptions of the lemma are fulfilled
for the problem (3.25). However, (3.25) has only the trivial solution, as was
shown in the first part of this proof. Consequently, the problem (3.2), (3.3)
has also only the trivial solution. �

Proof of Theorem 2.1. Put α1 = ‖`1‖, α2 = ‖`2‖. Then all the assump-
tions of Lemma 3.4 are fulfilled, and the conclusion of theorem follows from
Lemma 3.3. �

Proof of Theorem 2.2. Put

α1 = max
{
‖`11‖, ‖`12‖

}
, α2 = max

{
‖`21‖, ‖`22‖

}
.

Then all the assumptions of Lemma 3.4 are fulfilled, and the conclusion of
theorem follows from Lemma 3.3. �

Corollary 2.1 follows immediately from Theorem 2.2 with `01 ≡ 0.
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Proof of Corollary 2.2. Let

`i(x)(t)
def
= pi(t)x(τi(t)) (i = 0, 1, 2),

`01(x)(t)
def
= p01(t)x(τ0(t)), `02(x)(t)

def
= p02(t)x(τ0(t)),

`i1(x)(t)
def
= [pi(t)]+x(τi(t)), `i2(x)(t)

def
= [pi(t)]−x(τi(t)) (i = 1, 2).

Then

‖`i1‖ =

ω∫

0

[pi(t)]+dt, ‖`i2‖ =

ω∫

0

[pi(t)]−dt (i = 1, 2)

and the conditions (2.7)–(2.11) yield the conditions (2.1)–(2.4) with β1

defined by (2.5). Consequently, the assumptions of Theorem 2.2 are ful-
filled. �
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Žižkova 22, 616 62 Brno
Czech Republic
E-mail: mukhig@ipm.cz

Permanent address:

A. Razmadze Mathematical Institute
1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: smukhig@rmi.acnet.ge


