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Abstract. The investigation of differential equations of the type

∂nω

∂zn + an−1
∂n−1ω

∂zn−1 + an−2
∂n−2ω

∂zn−2 + · · ·+ a0ω = 0

with sufficiently smooth coefficients a0, a1, . . . , an−1 (the theory of meta-
analytic functions) traces back to the work of G. Kolosov [6]. Subsequently,
a vast number of papers in this direction were published by many authors.
The present work deals with some singular cases of the above-given equation.
Correct boundary value problems are pointed out, and their in a sense
complete analysis is given.
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In Memory of Professor G. Manjavidze

10. In the domain G containing the origin of the plane of a complex
variable z = x+ iy we consider a differential equation of the type

Eνω ≡ z2ν ∂
2ω

∂z2 +Azν ∂ω

∂z
+Bω = 0, (1)

where A and B are given complex numbers, ν ≥ 2 is a given natural number

and, as usual, ∂
∂z

≡ 1
2

(
∂
∂x

+ i ∂
∂y

)
. To avoid a more simple case we assume

that
B 6= 0. (2)

The function ω(z) is said to be a solution of the equation (1), if it belongs
to the class C2(G\{0}) and satisfies (1) at every point of the domain G\{0}.
We denote by K the set of such functions; it should be noted that it is wide
enough.

Every non-trivial (not identically equal to zero) function from the set K,
being a classical solution of an elliptic differential equation in the neighbor-
hood of any non-zero point of the domain G, has an isolated singularity at
the point z = 0. The analysis of the structure of the functions ω ∈ K shows
highly complicated nature of their behaviour (in the vicinity of the singular
point z = 0) and, undoubtedly, is of independent interest because it allows
one to obtain a priori estimates of solutions and of their derivatives which
in turn are necessary for the correct statement and for the investigation
of boundary value problems. A highly complicated nature of behaviour of
solutions in the vicinity of the origin can be explained first by the fact that
the equation (1) at the point z = 0 degenerates up to the zero order.

For every function ω(z) ∈ K we introduce into consideration the following
natural characteristic, i.e., the function of the real argument ρ > 0,

Tω(ρ) ≡ max
0≤ϕ≤2π

{∣∣∣ω(ρeiϕ)
∣∣∣ +

∣∣∣
∂ω

∂z
(ρeiϕ)

∣∣∣
}
. (3)

According to Theorem 1 proven below, we in particular conclude that for
every non-trivial solution ω(z) the function (3) increases more rapidly not
only than an arbitrary power of 1

ρ
as ρ → 0, but more rapidly than the

function exp{ δ
ρν−1 } for certain positive numbers δ.

With the equation (1) is tightly connected the characteristic equation

λ2 +Aλ+B = 0,

where λ is an unknown complex number, which, by (2), has two non-zero,
possibly coinciding, roots; we denote them by λ1 and λ2, and in what follows
it will be assumed that

|λ1| ≤ |λ2|. (4)

Having in hand the roots λ1 and λ2, we can factorize the operator Eν in
the form

Eν =
(
zν ∂

∂z
− λ1I

)
◦

(
zν ∂

∂z
− λ2I

)
,
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and immediately obtain that every function ω(z) ∈ K under the condition

λ1 6= λ2

is representable as

ω(z) = φ(z) exp
{λ1z

zν

}
+ ψ(z) exp

{λ2z

zν

}
, (5)

and under the condition

λ0 ≡ λ1 = λ2

as

ω(z) = [φ(z)z + ψ(z)] exp
{λ0z

zν

}
, (6)

where φ(z) and ψ(z) are arbitrary holomorphic functions in the domain
G\{0}; z = 0 is an isolated singular point for φ(z) and ψ(z).

20. Below we will need the following two statements whose proof is based
on the well-known Fragman–Lindelöf principle (see, e.g., [1], [2], and also
[3]).

Lemma 1. Let φ(z) be a function holomorphic in the deleted neighborhood
of the point z = 0 and such that

φ(z) = 0 (exp{g(z)}), z → 0, (7)

where

g(z) =
1

|z|k−2
{δ + a cos (k arg z) + b sin (k arg z)},

k ≥ 3 is natural, δ, a, b are real numbers, and

δ =
√
a2 + b2 cosπβ, β = max

{
0,

k − 4

2k − 4

}
.

Then the function φ(z) is identically equal to zero.

Lemma 2. Let φ a function holomorphic in the deleted neighborhood of
the point z = 0 and such that the condition (7) is fulfilled with

g(z) =
1

|z|
{
√
a2 + b2 + a cos(3 arg z) + b sin(3 arg z)}

and a, b real numbers. Then the function φ(z) has the removable singularity
at the point z = 0.

30. The following theorem holds (cf. [3]).

Theorem 1. Let δ be a real number such that δ < |λ1| cosπβ, where

β = max
{
0,

ν − 3

2ν − 2

}
. (8)

Then for every non-trivial solution ω(z) ∈ K

lim
ρ→0+

Tω(ρ)

exp
{

δ
ρν−1

} = +∞. (9)
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Proof. First, let λ1 6= λ2. Then differentiating the general solution (5) with
respect to z, we have

∂ω

∂z
=
λ1

zν
φ(z) exp

{λ1z

zν

}
+
λ2

zν
ψ(z) exp

{λ2z

zν

}
,

which together with (5) provides us with

φ(z) exp
{λ1z

zν

}
=

1

λ1 − λ2

(
λ1ω − zν ∂ω

∂z

)
,

ψ(z) exp
{λ2z

zν

}
=

1

λ1 − λ2

(
λ2ω − zν ∂ω

∂z

)
.

(10)

Let for some solution ω(z) ∈ K the condition (9) be violated; this means
that there exist positive numbers M and ρ0 such that

Tω(ρ) ≤M exp
{ δ

ρν−1

}
, 0 < ρ < ρ0,

whence, with regard for (3), we obtain

|w(ρeiϕ)| ≤M · exp{
δ

ρν−1
},

∥∥∥
∂ω

∂z
(ρeiϕ)

∥∥∥ ≤M · exp
{ δ

ρν−1

}
, 0 < ρ < ρ0, 0 ≤ ϕ ≤ 2π.

(11)

In its turn, from (11) and (10) it follows the existence of a positive number
M0 such that

|φ(z)| ≤M0 exp
{ 1

|z|ν−1
[δ − |λ1| cos(ψ1 − (ν + 1)ϕ)]

}
,

|ψ(z)| ≤M0 exp
{ 1

|z|ν−1
[δ − |λ2| cos(ψ2 − (ν + 1)ϕ)]

}
,

(12)

0 < |z| < ρ0, 0 ≤ ϕ ≤ 2π,

where ϕ = arg z, ψk = argλk , k = 1, 2.
From the inequalities (12) by virtue of Lemma 1 we find that φ(z) ≡

ψ(z) ≡ 0, i.e., the solution ω(z) is trivial.
Let now λ0 ≡ λ1 = λ2. Then differentiating the general solution (6) with

respect to z, we have

∂ω

∂z
=

[
φ(z)

(
1 +

λ0z

zν

)
+
λ0

zν
ψ(z)

]
exp

{λ0z

zν

}
,

which together with (6) provides us with

zνφ(z) exp
{λ0z

zν

}
= zν ∂ω

∂z
− λ0ω,

zνψ(z) exp
{λ0z

zν

}
= (zν + λ0z)ω − zzν ∂ω

∂z
.

(13)

The formulas (13) obtained above are analogous to the formulas (10)
which makes it possible to repeat our reasoning and conclude that the non-
trivial solutions ω(z) ∈ K are unable to violate the condition (9). �
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From the above-proven theorem it immediately follows that for every
non-trivial solution ω(z) ∈ K

lim
ρ→0+

Tω(ρ)

exp
{

δ
ρσ

} = +∞,

where δ is any real number, and the real number σ < ν − 1.
40. Theorem 1 admits generalizations to more general systems of differ-

ential equations of the type
m∑

k=0

zνkAk

∂kω

∂zk
= 0, (14)

where ν ≥ 2, m ≥ 1 are given natural numbers, Ak, k = 0, 1, . . . ,m, are
given complex square matrices of dimension n× n, and

detA0 6= 0, detAm 6= 0, (15)

AkAj = AjAk, j, k = 0, 1, . . . ,m. (16)

Under a solution of the system (14) we mean the vector function ω(z) =
(ω1(z), ω2(z), . . . , ωn(z)) belonging to the class Cm(G\{0}) and satisfying
(14) at every non-zero point of the domain G.

By Λ we denote the set of all possible complex roots of the polynomial
m∑

k=0

τkλ
k = 0,

where the coefficient τk is some eigenvalue of the matrix Ak, k = 0, 1, . . . ,m.
Introduce the number

δ0 ≡ min
λ∈Λ

|λ|,

which by (15) satisfies the inequality δ0 > 0.
The following theorem holds.

Theorem 1∗. Let ψ(z) be a function analytic in some deleted neighbor-
hood of the point z = 0 and having possibly arbitrary isolated singularities
(concentration of singularities of the function ψ(z) at the point z = 0 is not
excluded). Further, let δ, σ be real numbers such that either σ < ν − 1 (σ
is arbitrary) or σ = ν − 1, δ < δ0 cosπβ where the number β is given by
the formula (8). Then there are no non-trivial solutions of the system (14)
satisfying the asymptotic condition

T̃ω(|z|) = 0
(
|ψ(z)| exp

{ δ

|z|σ

})
, z → 0,

where

T̃ω(ρ) ≡ max
0≤ϕ≤2π

n∑

k=1

m−1∑

p=0

∣∣∣
∂pωk

∂zp (ρeiϕ)
∣∣∣ , ρ > 0.

50. Everywhere below G will denote a finite domain (containing the
origin of coordinates of the complex plane) with the boundary Γ consisting
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of a finite number of simple, closed, non-intersecting Lyapunov contours. In
the sequel, we will consider a special case of the equation (1), when ν = 2,
i.e., we consider the equation

z4 ∂
2ω

∂z2 +Az2 ∂ω

∂z
+Bω = 0, (17)

and study the following two boundary value problems.

Problem R(δ, σ). On the contour Γ there are prescribed Hölder con-
tinuous functions a(t), γ(t) where the function γ(t) is real and a(t) 6= 0,
t ∈ Γ. Real positive numbers δ, σ are also given. It is required to find a
continuously extendable to G\{0} solution of the equation (17) satisfying
both the asymptotic condition

lim
ρ→0

Tω(ρ)

exp
{

δ
ρσ

} < +∞ (18)

and the boundary condition

Re{a(t)ω(t)} = γ(t), t ∈ Γ. (19)

Problem Q(δ, σ). On the contour Γ there are prescribed Hölder con-
tinuous functions γk(t), ak,m(t), k,m = 1, 2, where γ1(t), γ2(t) are real
and

det ‖ak,m(t)‖ 6= 0, t ∈ Γ.

Real positive numbers δ, σ are also given. It is required to find a continu-
ously extendable (together with its derivative ∂ω

∂z
) to G\{0} solution of the

equation (17) satisfying both the condition (18) and the boundary condition

Re{ak,1(t)ω(t) + ak,2(t)
∂ω

∂z
(t)} = γk(t), t ∈ Γ, k = 1, 2. (20)

Along with the problems formulated above, let us consider the following
boundary value problems.

Problem R0(p). Given an integer p, it is required to find a function φ0(z)
holomorphic in the domain G, continuously extendable to G and satisfying
the boundary condition

Re{α(t)φ0(t)} = γ(t), t ∈ Γ, (21)

where α(t) = a(t)t2−p exp{λ1t
t2
}.

Problem Q′0(p). Given an integer p, it is required to find a vector func-
tion (φ0(z), ψ0(z)) holomorphic in the domain G, continuously extendable
to G and satisfying the boundary condition

Re{αk,1(t)φ0(t) + αk,2(t)ψ0(t)} = γk(t), t ∈ Γ, k = 1, 2, (22)

where

αk,m(t) =
[
ak,1(t)t

2−p +
λmak,2(t)

tp

]
exp

{λmt

t2

}
, k,m = 1, 2.
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Problem Q′′0(p). Given an integer p, it is required to find a vector func-
tion (φ0(z)), ψ0(z) holomorphic in the domain G, continuously extendable
to G and satisfying the boundary condition

Re{βk,1(t)φ0(t) + βk,2(t)ψ0(t)} = γk(t), t ∈ Γ, k = 1, 2, (23)

where

βk,1(t) =
[ak,1(t)

tp
|t2|+ ak,2(t)

(
t1−p +

λ0t

t2+p

)]
exp

{λ0t

t2

}

βk,2(t) =
[
ak,1(t)t

2−p +
λ0

tp
ak,2(t)

]
exp

{λ0t

t2
}.

On the basis of the following obvious relations

α(t) 6= 0, t ∈ Γ,

det ‖βk,m(t)‖ = −t3−2p det ‖ak,m(t)‖e
2λ0t

t2 = 0, t ∈ Γ,

det ‖αk,m(t)‖ = (λ2 − λ1)t
2−2p det ‖ak,m(t)‖e

λ1+λ2

t2
t 6= 0, t ∈ Γ,

if only λ1 6= λ2, we conclude that for every integer p the problems R0(p),
Q′0(p), Q

′′
0(p) refer to those boundary value problems which are well-studied

(see, e.g., [4], [5]). In particular, it is known that the corresponding homo-
geneous problems (γ(t) ≡ γ1(t) ≡ γ2(t) ≡ 0) have finite numbers of linearly
independent solutions1 (and, as it is not difficult to see, these numbers be-
come arbitrarily large as p→ +∞). Also formulas for index calculation and
criteria for the solvability of the problems are available.

60. We have the following

Theorem 2. Let |λ1| < |λ2|. Then the boundary value problems R(|λ1|, 1)
and R0(0) are simultaneously solvable (unsolvable), and in case of their
solvability the relation

ω(z) = z2φ0(z) exp
{λ1z

z2

}
, z ∈ G\{0}, (24)

establishes a bijective relation between the solutions of these problems.

Proof. First we have to find a general representation of solutions of the
equation (17) which are continuously extendable to G\{0} and satisfy the
condition (18), where δ = |λ1|, σ = 1. Towards this end, we use the
equalities (10) and find that the functions φ(z) and ψ(z), holomorphic in
the domain G\{0}, satisfy the conditions

φ(z) = 0
(

exp
{ |λ1|

|z|

[
1− cos(ψ1 − 3 arg z)

]})
, z → 0,

ψ(z) = 0
(

exp
{ |λ1|

|z|

[
1−

|λ2|

|λ1|
cos(ψ2 − 3 arg z)

]})
, z → 0,

ψk = argλk, k = 1, 2.

1 Here and everywhere below, the linear independence is understood over the field of
real numbers.
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The first of the above conditions on the basis of Lemma 2 shows that
z = 0 is a removable singular point for the function φ(z). Next, if we take

into account the inequality
∣∣∣λ2

λ1

∣∣∣ > 1, then by virtue of Lemma 1 the second

condition shows that the function ψ(z) ≡ 0. This immediately implies that
the relation

∂ω

∂z
=
λ1

z2
φ(z) exp

{λ1z

z2

}

is valid. Consequently,
∣∣∣
λ1

z2

∣∣∣ |φ(z)| = 0
(

exp
{ |λ1|

|z|
(1− cos(ψ1 − 3 arg z))

})
, z → 0. (25)

In turn, (25) yields
∣∣∣
λ1

z2

∣∣∣ |φ(z)| = 0(1), z → 0, arg z =
ψ1

3
. (26)

Considering the Taylor series expansion of the holomorphic function
λ1φ(z)

λ1φ(z) = a0 + a1z + a2z
2 + · · · ,

and substituting this expansion in (26), we obtain
∣∣∣
a0 + a1z

z2

∣∣∣ = 0(1), z → 0, arg z =
ψ1

3
,

and hence a0 = a1 = 0. From the above–said it follows that

ω(z) = z2φ0(z) exp
{λ1z

z2

}
, z ∈ G\{0}, (27)

where φ0(z) is a function holomorphic in the domain G. Further, if the
solution ω(z) is continuously extendable to G\{0}, then the function φ0(z)
is likewise continuously extendable to G.

Conversely, it is obvious that any function of the type (27) provides us
with a solution of the equation (17), which is continuously extendable to
G\{0} and satisfies the condition (18), where δ = |λ1|, σ = 1.

It remains to take into account the boundary conditions (19) and (21)
(where p = 0) which immediately leads us to the validity of the theorem. �

Since any linearly independent system of functions φ0(z) by means of the
relation (24) transforms into that of the functions ω(z) (and conversely), on
the basis of the above proven Theorem 2 it is possible to carry out the
complete investigation of the boundary value problem R(|λ1|, 1) under the
assumption |λ1| < |λ2|.

We have the following

Theorem 3. Let at least one of the relations

δ = |λ1|, σ = 1, |λ1| < |λ2|, (28)

be violated. Then either the homogeneous problem R(δ, σ) has an infinite
set of linearly independent solutions, or the inhomogeneous problem is un-
solvable for any right-hand side γ(t) 6≡ 0.
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Proof. By the inequality (4), violation at least of one of the relations (28)
means the fulfilment of one of the following conditions:

δ 6= |λ1|, σ = 1, |λ1| < |λ2|, (29)

or

σ 6= 1 (σ is arbitrary), |λ1| < |λ2|, (30)

or

δ = |λ1|, σ = 1, |λ1| = |λ2|, (31)

or

δ 6= |λ1|, σ = 1, |λ1| = |λ2|, (32)

or

σ 6= 1 (δ is arbitrary) |λ1| = |λ2|. (33)

We consider these cases separately. Let (29) be fulfilled. In its turn, this
case splits into the following two cases: either

δ < |λ1|, σ = 1, |λ1| < |λ2|, (29∗)

or

δ > |λ1|, σ = 1, |λ1| < |λ2|. (29∗∗)

Let the case (29∗) be fulfilled, and let ω(z) be a solution of the equation
(17) satisfying the condition (18). Since ν = 2, the number β given by
the formula (8) is equal to zero. On the basis of Theorem 1, this implies
that the solution ω(z) ≡ 0, and hence the inhomogeneous boundary value
problem R(δ, 1) is unsolvable for any right-hand side γ(t) 6≡ 0.

Let now the condition (29∗∗) be fulfilled. We call an arbitrary real num-
ber N and prove that the number of linearly independent solutions of the
homogeneous boundary value problem R(δ, 1) is greater than N . Indeed,
we select a natural number p so large that the number of linearly indepen-
dent solutions of the homogeneous boundary value problem R0(p) be greater

than N . Denote these solutions by φ
(1)
0 (z), φ

(2)
0 (z) · · · , φ

(m)
0 (z), (m > N)

and introduce the functions

ωk(z) = z2−pφ
(k)
0 exp

{λ1z

z2

}
, k = 1, 2, . . . ,m. (34)

It is clear that the system of functions (34) is likewise independent.
By the representation (5), every function from (34) is a continuously ex-

tendable to G\{0} solution of the equation (17) which by virtue of (21)
satisfies the homogeneous boundary condition (19). Further, since the con-
dition (29∗∗) is fulfilled, on the basis of the obvious relation

∂ωk

∂z
=
λ1

zp
φ

(k)
0 (z) exp

{λ1z

z2

}
= 0

(
exp

{ δ

|z|

})
, z → 0,

we immediately can conclude that every function of the system (34) satisfies
the asymptotic condition (18), and hence the homogeneous boundary value
problem R(δ, 1) has infinitely many linearly independent solutions.
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Let now the condition (30) be fulfilled. This case in its turn falls into
two cases: either

σ < 1 (δ is arbitrary), |λ1| < |λ2|, (30∗)

or
σ > 1 (δ is arbitrary), |λ1| < |λ2|. (30∗∗)

It is evident that in the case (30∗) (analogously to the case (29∗)) the
inhomogeneous boundary value problem R(δ, σ) is unsolvable for any right-
hand side γ(t) 6≡ 0, and in the case (30∗∗) (analogously to the case (29∗∗) the
homogeneous boundary value problem R(δ, σ) has infinitely many linearly
independent solutions.

Let now the condition (31) be fulfilled. This case in its turn splits into
two cases: either

δ = |λ1|, σ = 1, |λ1| = |λ2|, λ1 6= λ2, (31∗)

or
δ = |λ1|, σ = 1, λ1 = λ2. (31∗∗)

Let us prove that in both cases (31∗) and (31∗∗) the homogeneous boundary
value problemR(δ, 1) has infinitely many linearly independent solutions. We
start with the case (31∗). Evidently, every function of the type

ω(z) = z2φ0(z)e
λ1z

z2 + z2ψ0(z)e
λ2z

z2 , z ∈ G\{0} (35)

(where φ0(z), ψ0(z) are holomorphic in the domainG functions) is a solution
of the equation (17) satisfying the condition (18), where σ = |λ1|, σ = 1 (in
proving Theorem 5 below we will show that the converse statement is valid,
i.e., every solution of the equation (17) satisfying the condition (18) with δ =
|λ1|, σ = 1 has the form (35)). Next, if the holomorphic functions φ0(z) and
ψ0(z) are continuously extendable to G, then the solution ω(z) is likewise
continuously extendable toG\{0}. Consider the following problem: find two
functions φ0(z) and ψ0(z), holomorphic in the domain G and continuously
extendable to G by the boundary condition

Re
{
a(t)t2φ0(t)e

λ1t

t2 + a(t)t2ψ0(t)e
λ2t

t2

}
= 0, t ∈ Γ. (36)

It follows from the above said that every solution of the problem (36) pro-
vides us by the formula (35) with a solution of the homogeneous boundary
value problem R(|λ1|, 1).

On the other hand, the problem (36) has infinitely many linearly inde-
pendent solutions. Indeed, let

φ∗1(z), φ
∗
2(z), . . . , φ

∗
l (z)

be a complete system of solutions of the conjugate boundary value prob-
lem: given a real Hölder continuous function β(t), find the function φ0(z)
holomorphic in the domain G and continuously extendable to G by the
boundary condition

Re [α(t)φ0(t)] = β(t), t ∈ Γ, (37)



126 G. Makatsaria

where

α(t) = a(t)t2 exp
{λ1t

t2

}
.

Take an arbitrary natural number N0 and consider a natural number N
such that

N + 1− 2l > N0.

Introduce now the polynomial

ψ0(z) = C0 + C1z + · · ·+ Cnz
N , (38)

where Cj , j = 0, 1, . . . , N , are yet undefined real coefficients. Further,
taking the right-hand side of the problem (37) in the form

β(t) = −Re
[
a(t)t2 exp

{λ2t

t2

}
ψ0(t)

]
, t ∈ Γ,

we obtain a boundary value problem which will certainly be solvable if
∫

Γ

α(t)β(t)φ∗k(t)dt = 0, 1 ≤ k ≤ l.

Thus if real constants Cj are chosen such that

N∑

j=0

DkjCj = 0, k = 1, 2, . . . , l, (39)

where

Dkj =

∫

Γ

α(t)φ∗k(t) Re
[
a(t)t2+je

λ2t

t2

]
dt,

then the problem (37) is solvable. In turn, the conditions (39) form a system
consisting of 2l linear algebraic homogeneous equations with N + 1 real
unknowns, of which at least N + 1− 2l we can take arbitrarily. This means
that in the decomposition (38) we can take N + 1 − 2l real coefficients.
Substituting this decomposition in the boundary condition (36), we can
find the function φ0(z). It is obvious that the problem (36) has an infinite
number of linearly independent solutions.

If the condition (31∗∗) is fulfilled, then any function of the type

ω(z) = (zzφ0(z) + z2ψ0(z))e
λ1z

z2 , z ∈ G\{0} (40)

(where φ0(z) and ψ0(z) are functions holomorphic in G), is a solution of the
equation (17) satisfying the condition (18), where δ = |λ1|, σ = 1 (in proving
Theorem 6 below, we will establish the validity of the converse statement,
i.e., any solution of the equation (17) satisfying the condition (18), where
δ = |λ1|, σ = 1, has the form (40)). Moreover, if the holomorphic functions
φ0(z) and ψ0(z) are continuously extendable to G, then the solution ω(z)
is likewise continuously extendable to G\{0}.
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Let us consider the following boundary value problem. Find two functions
φ0(z) and ψ0(z), holomorphic in the domain G and continuously extendable
to G by the boundary condition

Re
[
a(t)(ttφ0(t) + t2ψ0(t))e

λ1t

t2

]
= 0, t ∈ Γ. (41)

Any solution of the problem (41) provides us by the formula (40) with a
solution of the boundary value problem R(|λ1|, 1). But the problem (41),
just as the problem (36), has an infinite number of linearly independent
solutions. Hence the homogeneous problem R(|λ1|, 1) has an infinite number
of linearly independent solutions.

The case (32) splits into the following two cases: either

δ < |λ1|, σ = 1, |λ1| = |λ2|, (32∗)

or

δ > |λ1|, σ = 1, |λ1| = |λ2|. (32∗∗)

In the case (32∗), just as in the case (29∗), on the basis of Theorem 1 we
immediately find that the equation (17) has no non-trivial solution satisfying
the condition (18), and hence the inhomogeneous boundary value problem
R(δ, 1) is unsolvable for any right-hand side γ(t) 6≡ 0.

In the case (32∗) it is obvious that any solution of the boundary value
problem R(|λ1|, 1) is also a solution of the problem R(δ, 1). But the ho-
mogeneous boundary value problem R(|λ1|, 1) has an infinite number of
linearly independent solutions (see the case (31) above), consequently the
homogeneous problem R(δ, 1) has an infinite number of linearly independent
solutions, as well.

The case (33) splits into the following two cases: either

σ < 1 (δ is arbitrary), |λ1| = |λ2| (33∗)

or

σ > 1 (δ is arbitrary), |λ1| = |λ2|. (33∗∗)

In the case (33∗), just as in the case (32∗), on the basis of Theorem 1 we
immediately find that the inhomogeneous boundary value problem R(δ, σ)
is unsolvable for any right-hand side γ(t) 6≡ 0, t ∈ Γ, and in the case (33∗∗)
(just as in the case (32∗∗)) the homogeneous boundary value problem R(δ, σ)
has an infinite number of linearly independent solutions. �

On the basis of the above proven Theorems 2 and 3 we have

Theorem 4. The boundary value problem R(δ, σ) is Noetherian if and
only if the relations (28) are fulfilled.

70. In the foregoing section we have investigated the boundary value
problem R(δ, σ). As we have found out, this problem is correct only under
the condition (28). The last of those relations allows one to exclude from
the consideration a wide class of equations of the type (17).
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In the present section, not mentioning it specially, we assume that

|λ1| = |λ2|,

and for equations of the type (17) we give the correct statement and inves-
tigation of the boundary value problems.

Everywhere below, by δ0 we denote the number δ0 = |λ1|. We have the
following

Theorem 5. If
argλ1 6= argλ2,

then the boundary value problems Q(δ0, 1) and Q′0(0) are simultaneously
solvable (unsolvable), and in case they are solvable, the relation (35)
allows us to establish a bijective correspondence between the solutions of
these problems.

Proof. First we have to find a general representation of those solutions of
the equation (17) which (together with its derivative with respect to z)
are continuously extendable to G\{0} and satisfy the condition (18), where
δ = δ0, σ = 1. To this end, we again use the equalities (10) and find that
the functions φ(z) and ψ(z), holomorphic in the domain G\{0}, satisfy the
conditions

φ(z) = 0
(

exp
{ δ0
|z|

[1− cos(ψ1 − 3 arg z)]
})
, z → 0,

ψ(z) = 0
(

exp
{ δ0
|z|

[1− cos(ψ2 − 3 arg z)]
})
, z → 0,

ψk = argλk, k = 1, 2.

Thus on the basis of Lemma 2 we conclude that z = 0 is a removable singular
point for the functions φ(z) and ψ(z). Further, it is obvious that

∂ω

∂z
=
λ1φ(z)

z2
exp

{λ1z

z2

}
+
λ2ψ(z)

z2
exp

{λ2z

z2

}
=

= 0
(

exp
{ δ0
|z|

})
, z → 0.

Hence we obtain the following two relations:

δ0

r2

∣∣∣φ
(
r exp

{ iψ1

3

})∣∣∣ ≤ const +

+
δ0

r2

∣∣∣ψ
(
r exp

{ iψ1

3

})∣∣∣ exp
{δ0
r

[cos(ψ2 − ψ1)− 1]
}
,

δ0

r2

∣∣∣ψ
(
r exp

{ iψ2

3

})∣∣∣ ≤ const+

+
δ0

r2

∣∣∣φ
(
r exp

{ iψ1

3

})∣∣∣ exp
{δ0
r

[cos(ψ2 − ψ1)− 1]
}
,

whence it respectively follow
∣∣∣
φ(z)

z2

∣∣∣ = 0(1), z → 0, arg z =
ψ1

3
,
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and ∣∣∣
ψ(z)

z2

∣∣∣ = 0(1), z → 0, arg z =
ψ2

3
.

This implies that the functions φ(z) and ψ(z) admit the representations

φ(z) = z2φ0(z), ψ(z) = z2ψ0(z),

where φ0(z) and ψ0(z) are functions holomorphic in the domain G.
Consequently, any solution of the equation (17) satisfying the condition

(18) (δ = δ0, σ = 1) is representable in the form

ω(z) = z2φ0(z) exp
{λ1z

z2

}
+ z2ψ0(z) exp

{λ2z

z2

}
, (42)

and hence

∂ω

∂z
= λ1φ0(z) exp

{λ1z

z2

}
+ λ2ψ0(z) exp

{λ2z

z2

}
. (43)

Next, if the solution (42) (together with its derivative (43)) is continu-
ously extendable to G\{0}, then we find that the functions φ0(z) and ψ0(z)
are likewise continuously extendable to G.

Conversely, it is evident that any function of the type (42) provides us
with a continuously extendable (together with its derivative ∂ω

∂z
) solution of

the equation (17), satisfying the condition (18), where δ = δ0, σ = 1. It
remains to take into account the boundary conditions (20) and (22) (where
p = 0) which directly leads to the conclusion of our theorem.

On the basis of the above proven Theorem 5 in particular it follows that
the number of linearly independent solutions of the homogeneous boundary
value problem Q(σ0, 1) is finite. This number coincides with that of the
linearly independent solutions of the homogeneous boundary value prob-
lem Q′0(0), because any linearly independent system of holomorphic vector
functions

(φk(z), ψk(z)), 1 ≤ k ≤ m, (44)

transforms by the relation

ωk(z) = φk(z) exp
{λ1z

z2

}
+ ψk(z) exp

{λ2z

z2

}
, k = 1, 2, . . . ,m, (45)

into a linearly independent system of functions ωk(z), k = 1, 2, . . . ,m, and
vice versa. Indeed, let the system of holomorphic vector functions (44) be
independent, and

m∑

k=1

Ckωk(z) ≡ 0,

where Ck are complex (in particular, real) coefficients. Then

m∑

k=1

Ckφk(z) ≡ −e
λ2−λ1

z2 z
m∑

k=1

Ckψk(z). (46)
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Differentiating both parts of the equality (46) with respect to z, we obtain

λ2 − λ1

z2
e

λ2−λ1

z2 z
m∑

k=1

Ckψk(z) ≡ 0.

Hence (since λ2 6= λ1)
m∑

k=1

Ckψk(z) ≡ 0. (47)

It follows from (46) and (47) that
m∑

k=1

Ckφk(z) ≡ 0, (48)

while (48) and (47), by virtue of the fact that the system (44) is linearly
independent, yield Ck = 0, k = 1, 2, . . . ,m. �

The converse statement is obvious because the linear dependence of the
system of vector functions (44) immediately implies that of the system of
functions (45).

We have the following

Theorem 6. If
ψ1 ≡ argλ1 = argλ2,

then the boundary value problems Q(δ0, 1) and Q′′0(0) are simultaneously
solvable (unsolvable), and if they are solvable, then the relation (40) allows
us to establish the bijective correspondence between the solutions of these
problems.

Proof. First of all, just as in the proof of Theorems 2 and 5, we have to
find a general representation of those solutions of the equation (17) which
(together with the derivative ∂ω

∂z
) are continuously extendable to G\{0} and

satisfy the condition (18), where δ = δ0, σ = 1. Towards this end, we use
the equalities (13) and find that the functions φ(z) and ψ(z), holomorphic
in G\{0}, satisfy the conditions

z2φ(z) = 0(g(z)), z2ψ(z) = 0(g(z)), z → 0, (49)

where

g(z) = exp
{ δ0
|z|

(1− cos(ψ1 − 3 arg z))
}
.

By virtue of the relations (49) and Lemma 2, we obtain that z = 0 is a
removable singular point for the functions z2φ and z2ψ, i.e., the solution ω
is representable in the form

ω(z) = H(z) exp
{λ1z

z2

}
, z ∈ G\{0}, (50)

where

H(z) = z
φ̃(z)

z2
+
ψ̃(z)

z2
,



Correct Boundary Value Problems 131

and φ̃ and ψ̃ are functions holomorphic in G. In turn, from the representa-
tion (50) it follows

∂ω

∂z
= H1(z) exp

{λ1z

z2

}
, z ∈ G\{0},

where

H1(z) =
φ̃(z)

z2

(
1 +

λ1z

z2

)
+
λ1

z4
ψ̃(z).

Further, taking into account the condition (18), we get

H(z) = 0(1), z → 0, arg z =
1

3
(ψ1 + 2πk), (51)

H1(z) = 0(1), z → 0, arg z =
1

3
(ψ1 + 2πk), (52)

k = 0, 1, 2, . . . .

Expanding the holomorphic functions φ̃ and ψ̃ into their Taylor series

φ̃(z) = a0 + a1z + a2z
2 + · · · ,

ψ̃(z) = b0 + b1z + b2z
2 + · · · ,

(53)

and substituting them in (51), we have

a0z + b1z + b0

z2
= 0(1), arg z =

ψ1 + 2πk

3
, (54)

where the coefficient b0 = 0. Taking this into account and using the relation
(54) for the coefficients a0 and b1, we obtain the following equalities

a0e
−2iϕ0 + b1 = 0, ϕ0 =

ψ1

3
,

a0e
−2iϕ0 + b1 = 0, ϕ1 =

ψ1 + 2π

3
,

which (with regard for e−2iϕ0 − e−2iϕ1 6= 0) show that the coefficients a0 =
b1 = 0.

Substituting now the expansions (53) and (52), we have

1

r3
[λ1a1e

−4iϕk + λ1b2re
−iϕk + r2(a1 + λ1a2e

−2iϕk+

+λ1b3)] = 0(1), r → 0, ϕk =
ψ1 + 2πk

3
, k = 0, 1, 2, . . . ,

which immediately give us a1 = 0. Taking this fact into account, we obtain

1

r2
[λ1b2e

−iϕk + λ1r(a2e
−2iϕk + b3)] = O(1), r → 0,

and therefore b2 = 0. In its turn, we have

a2e
−2iϕ0 + b3 = 0, ϕ0 =

ψ1

3
,

a2e
−2iϕ1 + b3 = 0, ϕ1 =

ψ1 + 2π

3
,
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by virtue of which a2 = b3 = 0.

Thus the holomorphic functions φ̃ and ψ̃ have the form

φ̃(z) = z3φ0(z), ψ̃(z) = z4ψ0(z), (55)

where the functions φ0 and ψ0 are holomorphic in the domain G. Substitut-
ing (55) and (50), we obtain the representation (40). Next, if the solution
(40) together with its derivative

∂ω

∂z
=

[
φ0(z)

(
z +

λ1z

z2

)
+ λ1ψ0(z)

]
e

λ1z

z2 (56)

is continuously extendable to G\{0}, we will find that the holomorphic
functions φ0 and ψ0 are continuously extendable to G.

Conversely, any function of the type (40) provides us with a continuously
extendable (together with its derivative (56)) to G\{0} solution of the equa-
tion (17), satisfying the condition (18) with δ = δ0, σ = 1. It remains to
take into account the boundary conditions (20) and (23) (with p = 0) which
immediately leads us to the conclusion of our theorem. �

It is not difficult to see that any linearly independent system of holomor-
phic vector functions (44) transforms by the relation

ωk(z) =
(
zzφk(z) + z2ψk(z) exp

{λ1z

z2

})
, z ∈ G\{0}

(analogously to the relation (45)), into a linearly independent system of
functions ωk(z), k = 1, 2, . . . ,m, and vice versa. Therefore the numbers of
linearly independent solutions of homogeneous boundary problems Q(δ0, 1)
and Q′′0(0) coincide.

We have the following

Theorem 7. Let at least one of the equalities

δ = δ0, σ = 1, (57)

be violated. Then either the homogeneous boundary value problem Q(δ, σ)
has an infinite number of linearly independent solutions, or the inhomoge-
neous problem is unsolvable for any right-hand side (γ1(t), γ2(t)) 6≡ 0.

Proof. The violation of at least of one of the equalities (57) implies that one
of the following conditions is fulfilled:

δ < δ0, σ = 1, (58)

or
δ > δ0, σ = 1, (59)

or
σ < 1 (σ is arbitrary), (60)

or
σ > 1 (σ is arbitrary). (61)

Under the condition (58) (and under the condition (60)), on the ba-
sis of Theorem 1 it immediately follows that the equation (17) has no
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non-trivial solution satisfying the condition (18), and hence the inhomo-
geneous boundary value problem Q(δ, σ) is unsolvable for any right-hand
side (γ1(t), γ2(t)) 6≡ 0.

Let us prove that under the condition (59) the homogeneous boundary
value problem Q(δ, 1) has an infinite number of linearly independent solu-
tions. Indeed, let the condition (59) be fulfilled and, moreover, argλ1 6=
argλ2. We take an arbitrary natural number N and choose a natural num-
ber p so large that the number of linearly independent solutions of the ho-
mogeneous boundary value problem Q′0(p) be greater than N . We denote
these solutions by

(φ
(k)
0 (z), ψ

(k)
0 (z)), k = 1, 2, . . . ,m, m > N. (62)

It is not difficult to see that the system of functions (62) transforms by
the relation

ωk(z) = z2φ
(k)
0 (z) exp

{λ1z

z2

}
+

+z2ψ
(k)
0 (z) exp

{λ2z

z2

}
, z ∈ G\{0},

into a linearly independent system of solutions of the homogeneous bound-
ary value problem Q(δ, σ). Therefore this problem has an infinite number
of linearly independent solutions.

Let now the condition (59) be fulfilled, and argλ1 = argλ2. We take an
arbitrary natural number N and choose a natural number p so large that
the number of linearly independent solutions of the homogeneous boundary
value problem Q′′0 (p) be greater than N . We denote again these solutions by
(62). It is not difficult to see that the system of functions (62) transforms
by the relation

ωk(z) = (zzφ
(k)
0 (z) + z2ψ

(k)
0 (z)) exp

{λ1z

z2

}
,

z ∈ G\{0}, k = 1, 2, . . . ,m,

into a linearly independent system of solutions of the homogeneous bound-
ary value problem Q(δ, σ). Therefore this problem has an infinite number
of linearly independent solutions.

It remains to consider the case (61). But any solution of the homogeneous
boundary value problem Q(δ, 1) (for δ > δ0) is likewise a solution of the
homogeneous boundary value problem Q(δ, σ) (for σ > 1). Therefore the
latter problem has an infinite number of linearly independent solutions. �

On the basis of the above-proven Theorems 6 and 7 we have the following

Theorem 8. The boundary value problem Q(δ, σ) is Noetherian if and
only if the condition (57) is fulfilled.
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