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1. Introduction. Upper Bohl exponents of both solutions and sets of solutions to
differential systems were introduced as indices by Bohl in his basic work [1]. In that work
he proved that any solution to a system of differential equations satisfying some condi-
tions in a neighborhood of the given solution is stable under permanent perturbations if
and only if the system has negative upper general exponent (≡ upper Bohl exponent of
the whole totality of solutions) in variations of the system along the considered solution.
Later but independently, studying the notions of uniform and uniform asymptotic sta-
bility, Persidskĭı came to the notion of the upper general exponent. It appeared that the
necessary and sufficient condition for uniform asymptotic stability of a linear differential
system was negativeness of its upper general exponent [2], and the necessary and suffi-
cient condition for uniform stability by the first linear approximation was negativeness
of the upper general exponent of the linear approximation system [3].

Upper Bohl exponents play to some extent the same role with respect to the notion of
uniform stability as Lyapunov exponents do with respect to the notion of stability. The
necessity of building up an analogue of Lyapunov exponents theory for Bohl exponents
is imposed not only by that reason, but also by the fact that Bohl exponents carry
an important information about solutions’ behavior which could be used in Lyapunov
exponents theory as well. Thus Bohl exponents were applied by Bylov in his theory of
almost reducibility [4, 5] and by Millionshchikov in his investigations of linear differential
systems with almost periodic or uniformly continious coefficients [6–8], relations of almost
reducibility [9], and properties of systems with integral separation [10].

The review includes results obtained in the Bohl exponents theory.

2. Definitions and primary properties. Consider the linear differential system

ẋ = A(t)x, x ∈ R
n, t ≥ 0, (1)

with the piecewise continious coefficient matrix A(·) : [0,+∞) → End R
n. We denote the

class of all such systems by Mn, and by Dn we denote its subclass consisting of diagonal
systems (we shall write A ∈ Mn identifying system (1) with its coefficient matrix). Let
XA(·; ·) be the Cauchy matrix (operator) of the system (1). The upper and lower Bohl
exponents of of a nonzero solution to system (1) are defined, respectively, by the formulas
[1; 11, 171–172]:

β[x]
def
= lim

t−τ→+∞

1

t− τ
ln
‖x(t)‖

‖x(τ)‖
and β[x]

def
= lim

t−τ→+∞

1

t − τ
ln
‖x(t)‖

‖x(τ)‖
, (2)
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and the quantities

Ω0(A)
def
= lim

t−τ→+∞

1

t− τ
ln ‖XA(t; τ)‖,

ω0(A)
def
= − lim

t−τ→+∞

1

t− τ
ln ‖X−1

A
(t; τ)‖

(3)

are called, respectively, the senior upper and the junior lower general exponents of the
system (1). Replacing the upper limits in the formulas (3) by the lower ones, we obtain,
respectively, the definition of the senior lower Ω0(A) and the junior upper ω0(A) general
exponents. The relation between the Bohl exponents and the general ones is described
in [4] by Theorem 10. It should be noted that in comparison with [11] the limits in
definitions (2) and (3) are lacking an additional condition τ → +∞. It is easy to show
using the boundedness of the coefficient matrix that adding this condition doesn’t change
the values of the corresponding exponents. Since the coefficient matrix of the system (1)
is bounded, the Bohl and the general exponents are finite.

The exponents (2) determine the mappings βA and β
A

from R
n \ {0} to R acting

by the rule: βA(α) = β [x(·;α)] and β
A

= β[x(·;α)], with x(·;α) being a solution to

system (1) with initial vector α = x(0; α). We will call the functions βA and β
A

the

upper and lower Bohl functions of the system (1), respectively, and the vector-function

βA
def
= ( β

A
, β A) : R

n \ {0} → R
2 – the Bohl vector-function of the system (1).

We will mention below some primary properties of the Bohl exponents (2) and (3)
following from their definition.

10. Definitions (2) could be otherwise rewritten using passages to the limits by one
variable as:

β [x]
def
= lim

T→+∞

1

T
sup

∆≥0

ln
‖x(T + ∆)‖

‖x(∆)‖
and β[x]

def
= lim

T→+∞

1

T
inf

∆≥0

ln
‖x(T + ∆)‖

‖x(∆)‖
.

The same is true with respect to the general exponents.

20. The Bohl exponents and the general exponents are invariant under Lyapunov
transformations.

The Bohl exponents as Lyapunov transformations’ invariants can be included into the
common theory of asymptotic invariants for linear differential systems [12], the necessity
of developement of which was emphasized by Bogdanov.

30. As norms are equivalent norms in finite dimensional spaces, the values β[x] and
β[x] don’t depend on the choice of a norm. Regardless to the triviality of this statement it
is very useful for evaluations of the Bohl exponents of concrete solutions as the successfull
choice of a norm essentially simplifies the evaluation.

40. The arguments t and τ in the formulas (2) and (3) may be assumed to be positive
integers. The same is true respectively to the general exponents. The above statement
is a simple implication of the boundedness of the coefficient matrix.

50. Let us accept some notation in order to formulate the following property . Let
{δk}k∈N be a sequence of nonnegative numbers monotone increasing to +∞ such that

δ1 = 0 and δk+1 − δk → +∞ as k → +∞. Let ∆ k
def
= [δk , δk+1), k ∈ N. We will write

t ∼ τ if t and τ belong to the same interval ∆ k for some k. Then

β [x] = lim

t−τ→+∞

t ∼ τ

1

t− τ
ln
‖x(t, α)‖

‖x(τ, α)‖
and β[x] = lim

t−τ→+∞

t ∼ τ

1

t− τ
ln
‖x(t, α)‖

‖x(τ, α)‖
.

An analogous statement concerning the general exponents is also valid.
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3. Description of the functions β A and β
A

and their ranges.

3.1. What are the functions β A and β
A

and their ranges ?

The answer to that question being restricted to the class Dn of diagonal systems is
given by Theorems 1 and 2; more precisely, those theorems give a complete description
of the following classes of functions

D n
def
= {βA : A ∈ Dn} and D n

def
= { β

A
: A ∈ Dn}.

Let I(ξ) be the set of numbers i ∈ {1, . . . , n} of the nonzero components of a vector
ξ = (ξ1, . . . , ξn) ∈ Rn \ {0} .

Theorem 1 ([13]). A function f : R
n \ {0} → R belongs to the class D n if and only

if it satisfies the following conditions:

1) f(ξ) = f(η) if I(ξ) = I(η);

2) for any ξ ∈ R
n \{0} there exists a number iξ ∈ I(ξ) such that for any η ∈ R

n \{0}
with I(η) ⊂ I(ξ) and iξ ∈ I(η), the inequality f(ξ) ≤ f(η) holds.

Theorem 2 ([13]). A function f : Rn \ {0} ∈ R belongs to the class D n if and only

if it satisfies the following conditions:

1) f(ξ) = f(η) if I(ξ) = I(η);

2) for any ξ ∈ Rn \{0} there exists a number iξ ∈ I(ξ) such that for any η ∈ Rn \{0}
with I(η) ⊂ I(ξ) and iξ ∈ I(η), the inequality f(ξ) ≥ f(η) holds.

Theorems 1 and 2 imply an important corollary directly proved in [14].

Corollary 1 ([14]). The range of the upper (respectively, lower) Bohl function of a

diagonal system (1) has no more than 2 n − 1 different elements.

For any positive integers n and m ≤ 2n − 1 there exists a system from Dn such that

the range of its function βA (respectively, β
A

) contains exactly m different elements.

A complete description of the function classes

B n
def
= {βA : A ∈ Mn} and B

n

def
= { β

A
: A ∈ Mn}

is given by the following two theorems.

Theorem 3 ([15]). A function f : R
n \ {0} → R belongs to the class B n if and only

if it satisfies the following three conditions:

1) the function f is bounded;

2) f(α) = f(rα) for any nonzero r ∈ R and any α ∈ R
n \ {0};

3) for any q ∈ R the Lebesgue set [f ≥ q] of f is a G δ– set.

Theorem 4 ([15]). A function f : Rn \ {0} → R belongs to the class B
n

if and only

if it satisfies the following three conditions:

1) the function f is bounded;

2) f(α) = f(rα) for any nonzero r ∈ R and any α ∈ Rn \ {0};

3) for any q ∈ R the Lebesgue set [f > q] of f is a Fσ– set.

Theorems 3 and 4 allow us to find easily the range structure for the Bohl exponents
of the system (1).

Corollary 2 ([15]). The set is the range of the upper (respectively, lower) exponent

of some system from the class Mn if and only if it is a bounded Souslin set of the real

axis.
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Note that although the upper Bohl exponent is an analogue of the characteristic
Lyapunov exponent, their properties differ essentially, as it is shown in Theorem 3 and
Corollary 2.

3.2. As well as ‖XA(t, τ)‖ = max

{

‖xA(t; α)‖

‖xA(τ ; α)‖
: α ∈ R

n \ {0}

}

, the following in-

equalities are obvious due to the definitions (3) of the upper and lower general exponents:

Ω 0(A) ≥ sup{βA(α) :α ∈ R
n \ {0}} and ω 0(A) ≤ inf{β

A
(α) :α ∈ R

n \ {0}} .

The following theorems show that the first (respectively, second) of those inequlities and
its corollaries completely describe the relation between the upper (respectively, lower)
general and upper (respectively, lower) Bohl exponents for all the systems of the class
Mn.

Theorem 5 ([15]). For any pair (b, β), where β : R
n \ {0} → R is a function sat-

isfying the conditions 1)–3) of Theorem 3 and b is a number satisfying the inequality

b ≥ sup { β(α) : α ∈ R
n \ {0}} , there exists a system (1) such that Ω 0(A) = b for its

upper general exponent, and βA ≡ β for its upper Bohl exponent.

Theorem 6 ([15]). For any pair (b, β), where β : R
n \ {0} → R is a function sat-

isfying the conditions 1)–3) of Theorem 4 and b is a number satisfying the inequality

b ≤ inf { β(α) : α ∈ Rn \ {0}} , there exists a system (1) such that ω 0(A) = b for its

lower general exponent, and β
A
≡ β for its lower Bohl exponent.

Statements similar to theorems 5 and 6 hold also for the senior lower Ω0(A) and the
junior upper ω0(A) general exponents.

3.3. Theorems 3 and 4 give the complete description of the upper and lower Bohl
functions classes, respectively, considered separately. A complete description of the class
of the Bohl vector functions βA = ( β

A
, β A) of both general (A ∈Mn) and diagonal (A ∈

Dn) systems remains unknown, and only partial results on that problem are obtained.
In particular, the following theorem completely describes the range of the Bohl vector
function of the general system.

Theorem 7 ([16]). A set B ⊂ R2 is the range of the Bohl vector function of some

system (1) if and only if for some q ∈ {1, . . . , n} the set B can be represented as the

union of q separated sets Bi, i = 1, . . . , q, such that their projections prkBi to each

component (k = 1, 2) are bounded Souslin sets and inf pr2Bi < sup pr1Bi+1 for every

i ∈ {1, . . . , q − 1}; moreover, if q > [n/2], then the above representation can be chosen

so that there are at least 2q − n singletons among those q sets.

It is interesting to note that the functions β
A

and βA, considered separately, are,

as follows from Theorems 3 and 4, just specific functions of the second Baire class and
neither of them determines any linear structure on R

n, but when considered together, they
determine some flag on R

n as well as the Lyapunov exponent does. To be more precise,
[16], every Bohl vector function βA naturally defines some flag F : {0} ≡ L0 ⊂ L1 ⊂
. . . ⊂ Lq−1 ⊂ ⊂ Lq ≡ R

n on R
n such that for every i ∈ {2, . . . , q} there is a vector αi

0 ∈
∈ Li \Li−1 and there exists a basis {αi

1, . . . , αi
d(i)

}, where d(i) = dim Li−1, of the lineal

Li−1 for which the inequalities βA(αi
l
) < β

A
(αi

0) (l = 1, . . . , d(i)) hold. Then the sets

Bi = βA(Li\Li−1) can be chosen as the sets Bi from Theorem 7. Let Li = Li−1

⊕

L∗
i

for
each of the lineals Li, i ∈ {2, . . . , q}, of the flag F . Then an equality βA(α) = βA(α + ε)
holds for any vector ε ∈ Li−1 and for almost all (in the sense of lnν |ln|- Hausdorf measure,
where the constant ν can be taken of any value less than −1) vectors α ∈ L∗

i
[16].



155

4. The general and Bohl exponents under the coefficient matrix perturba-
tions.

4.1. We will consider the system (1) and the perturbed system

ẏ = (A(t) + Q(t))y, y ∈ R
n, t ≥ 0,

with piecewise continious matrix Q(·) : [0,+∞) → End Rn satisfying some conditions of
smallness to be defined below. It is proved [11, c. 180] that the upper general exponent
Ω0(A) cannot strongly increase and the lower general exponent ω0(A) cannot strongly
decrease under a small (by norm) variation of the matrix A, i. e.:

Theorem 8 ([11]). The equalities

lim
ε→0

sup
‖Q‖≤ε

Ω0(A + Q) = Ω0(A) and lim
ε→0

inf
‖Q‖≤ε

ω0(A + Q) = ω0(A).

are valid.

Analogous relations are valid for the senior lower Ω0(A) and junior upper ω0(A)
general exponents, respectively.

At the same time, the exponents Ω0(A) and ω0(A) may undergo a constant jump
downwards and upwards, respectively, under an arbitrarily small variation of, the matrix
A.

Theorem 9 ([9]). There exists such system (1) that for every ε > 0 a matrix Qε(t)
can be found satisfying the estimate sup

t≥0
Qε(t) ≤ ε, so that the relations

Ω0(A) −Ω0(A + Qε) > δ and ω0(A + Qε)− ω0(A) > δ

are valid for any (independent of ε) number δ > 0.

This important fact was established by Millionshchikov [9] was applied by him for the
proof of nonsymmetry of the relation of almost reducibility of linear differential systems.

Rachimberdiev [17, 18], using Cauchy matrix, carried out evaluations of the upper
and lower general exponents under small perturbations of the coefficient matrix, i. e. of
the values

lim
ε→0

sup
‖Q‖≤ε

Ω0(A + Q) and lim
ε→0

inf
‖Q‖≤ε

ω0(A + Q).

We will not state Rachimberdiev’s theorem here as we would need a whole range of
definitions and notation.

Nevertheless, the general exponents of the system (1) are stable under decreasing to
zero (as t → +∞) perturbations of the coefficient matrix [11, p. 181], i. e.

Ω0(A + Q) = Ω0(A) and ω0(A + Q) = ω0(A),

if ‖Q(t)‖ → 0 as t → +∞. An analogous statement for the senior lower Ω0(A) and junior
upper ω0(A) general exponents is also valid.

4.2. Now consider the question on the behavior of the Bohl exponents of the system
(1) under its coefficient matrix perturbations. Vinograd [19] proved a theorem establish-
ing relations between the Bohl and general exponents.

Theorem 10 ([19]). The relations

Ω0(A) = lim
ε→0

sup
‖Q‖≤ε

β(A + Q), ω0(A) = lim
ε→0

inf
‖Q‖≤ε

β(A + Q),

Ω0(A) = lim
ε→0

sup
‖Q‖≤ε

β(A + Q), ω0(A) = lim
ε→0

inf
‖Q‖≤ε

β(A + Q)

are valid.
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The first of the above relations is proved in [19], the others can be proved similarly.

We denote the extreme Bohl exponents of the system (1) – the senior: upper β1(A)
def
=

sup β[x] and lower β
1
(A)

def
= sup β[x], and the junior: upper β 0(A)

def
= inf β[x] and

lower β
0
(A)

def
= inf β[x] (sup and inf are evaluated by all nonzero solutions to the

system (1)). It is well known that upwards and downwards unstability of the (extreme)
characteristic Lyapunov exponents under decreasing to zero (as t → +∞) perturbations
of the coefficient matrix is achieved even on diagonal systems (1). The following simple
statement shows that the above property is not valid for the extreme (upper and lower)
Bohl exponents of a diagonal system (1).

Theorem 11 ([20]). The senior upper and lower Bohl exponents of a diagonal sys-

tem (1) are upwards stable and the junior ones are downwards stable under the decreasing

to zero (as t → +∞) coefficient matrix perturbations, i. e.,

β1(A + Q) ≤ β1(A), β
1
(A + Q) ≤ β

1
(A),

and

β 0(A + Q) ≥ β 0(A), β
0
(A + Q) ≥ β

0
(A)

for diagonal matrix A(·) and any matrix Q(·) with ‖Q(t)‖ → 0 as t → +∞.

Nevertheless, it is easy to bring examples showing that the extreme Bohl exponents
of the diagonal system (1) can be unstable under decreasing to zero (as t → +∞) pertur-
bations of the coefficient matrix in the direction opposite to the corresponding direction
from Theorem 11.

As a consequence of Theorem 11, the following question naturally arises. Can the
extreme Bohl exponents at all vary in the corresponding directions determined in The-
orem 11 under decreasing to zero (as t → +∞) perturbations of the coefficient ma-
trix? Considering the whole class of decreasing to zero (as t → +∞) perturbations,
the positive answer to the stated question trivially follows from Theorem 10 and The-
orems 5 and 6. The answer stays positive even if we restrict the class of decreas-
ing to zero (as t → +∞) perturbations to an important in asymptotic theory class
of exponentially decreasing perturbations [20]. It means in particular that a quantity

Bσ(A)
def
= sup

{

β1(A + Q) : ‖Q(t)‖ ≤ const · exp(−σt)
}

being an analogue of the se-

nior σ-exponent ∇σ(A) [21] is in general a nonconstant function σ > 0. By analogy with
the corresponding property of the σ-exponent the exponent Bσ(A) ≡ β1(A) for all big
enough σ. That fact directly follows from a theorem [22, 23] on kinematic similarity of the
systems (1) and (2) if ‖Q(t)‖ ≤ const · exp(−σt) and σ is big enough. Nevertheless, the
following theorem shows that in all other respects, the properties of the function Bσ(A)
essentially differ from those [24] of the function ∇σ(A).

Theorem 12 ([20]). There exists a system (1) for which the function Bσ(A) is a

different from β1(A) constant with respect to all suffuciently small σ.

To conclude the review, we note that we haven’t stated unsolved problems as far as
they could be easily found comparing the Bohl and Lyapunov exponents theory.
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