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Abstract. Hamiltonian reduction scheme based on the analysis of re-

stricted 1-forms in gauge-invariant variables is constructed. The method is

applied for several physically interesting gauge invariant models. For the

models of Yang-Mills theory a possible mechanism of the con�nement is ob-

tained. A quantization method (E-quantization) based on the extension of

phase space with further application of the constrained quantization tech-

nique is constructed. A problem of scalar product for the constrained sys-

tems is investigated. A possible solution to this problem is found. General-

ization of the Gupta-Bleuler conditions is done by minimization of quadratic

uctuations of quantum constraints. Connection of E-quantization to the

geometric quantization and Berezin quantization is found. The quantum

distribution function is introduced. For a pure state distribution the special

elliptic type equation is obtained. A possible experimental measuring of the

quantum distribution is discussed.
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reziume. agebulia Hamiltonuri reduqciis sqema, romelic da-

fuZnebulia 1-formebis analizze yaliburad invariantul cvladebSi.

es meTodi gamoyenebulia sxvadasxva, fizikuri TvalsazrisiT saintereso,

yaliburad invariantuli modelisaTvis. iang-milsis Teoriis mod-

elTaTvis napovnia konfainmentis SesaZlo meqanizmi. agebulia daq-

vantvis meTodi, romelic dafuZnebulia fazuri sivrcis gafarTovebaze

da romelic iyenebs bmebiani sistemebis daqvantvis teqnikas. bmebiani sis-

temebisaTvis SesCavlilia skalaruli namravlis problema. moZebnilia

am problemis SesaZlo gadaCyveta. qvanturi bmebis kvadratuli fluq-

tuaciebis minimizaciiT mocemulia gufTa-bleuleris pirobebis ganzo-

gadoeba. napovnia daqvantvis axali meTodis kavSiri geometriul da

berezinis daqvantvasTan. Semoyvanilia qvanturi ganaCilebis funqcia.

Cminda mdgomareobis ganaCilebisaTvis miGebulia specialuri elifsuri

tipis gantoleba. ganxilulia qvanturi ganaCilebis funqciis SesaZlo

eqsperimentuli gazomva.
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Introduction

The fundamental physical theories and many corresponding interesting

models are described by the gauge-invariant Lagrangians. The well known

examples are: electrodynamics, general relativity, Yang-Mills theory, stan-

dard model, string theory, etc. The gauge invariant Lagrangians are singu-

lar and in the Hamiltonian formulation lead to the constrained dynamical

systems [1-7].

For the constrained Hamiltonian systems there are, in principle, two

ways of quantization. The �rst is the Dirac method, in which one �rst

quantizes the system ignoring the constraints and then selects the admissible

physical states by demanding that they are annihilated by the constraint

operators. The second is the reduced phase space method where one �rst

eliminates all unphysical degrees of freedom and then quantizes the resulting

unconstrained system.

Unfortunately neither of these methods is universal and several problems

arise in practical applications. It should also be noted that the quantum

systems constructed by the indicated methods generally are not unitary

equivalent to each other [8-11].

In the Hamiltonian formulation of gauge theories one has the �rst class

constraints, which are the generators of the gauge transformations. The

constraint functions �

a

(a = 1; : : : ;M ) have the commutation relations of

the corresponding Lie algebra, and the key step of the Dirac quantization

method is a suitable representation of this algebra. The admissible quantum

states we call the physical states and they satisfy the Dirac conditions

^

�

a

j	

ph

i = 0 (a = 1; : : : ;M );

where

^

�

a

are the constraint operators. Sometimes these conditions are non-

trivial equations and description of the physical states is becoming problem-

atic [12]. Besides that, the Dirac conditions generally have no solutions in

the same Hilbert space where the �rst stage of quantization was performed.

Respectively, on the next stage of quantization the problem of scalar prod-

uct for the physical states arises [13]. Another principal problem of the

Dirac method is a problem of unitarity. The latter is connected with the

Hermiticity of the observable operators on the physical Hilbert space [14].

The classical reduction procedure of the reduced phase space method

implies restriction to the constraint surface

f

M : �

a

= 0 (a = 1; : : : ;M ),

with subsequent reduction to the physical phase space M =

f

M=G where

G is the gauge group and

f

M=G is the space of gauge orbits.

Theoretically the set of orbits (M =

f

M=G ) is a well de�ned manifold,

it possesses a symplectic structure and the coordinates on M are gauge-

invariant true physical degrees of freedom. But in practical applications,

this theoretical scheme also encounters the technical problems related to

the explicit construction of the physical phase space M supplied with a
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symplectic structure. Here, apart from the mathematical di�culties, the

physical content of the true degrees of freedom may be quite unpredictable.

A commonly used classical reduction scheme is a gauge �xing procedure

when one introduces the additional constraints �

a

= 0 (a = 1; : : : ;M )

[1], [3]. In simple cases, the explicit form of the true physical variables is

obvious and this reduction scheme works perfectly well. But in general, as

it was shown in [15], the space of gauge orbits (

f

M=G) cannot be obtained

by some `simple' gauge �xing. This problem usually arises for non-abelian

gauge groups, and obviously, it is related to a possible non-trivial structure

of the physical phase space [16-17].

Another reduction scheme can be based on the introduction of gauge-

invariant variables [3], [7]. A complete set of gauge-invariant variables allows

us to describe the physical phase space M and obtain the corresponding

symplectic structure. But, from the structure of gauge transformations,

one can usually obtain only a part of gauge-invariant variables, and the

construction of the complete set, as a rule, is problematic. At the same

time, the obtained gauge-invariant variables are not canonically conjugated

to each other. For the non-canonical coordinates the Poisson brackets are

`non-linear' and there is no general method for their representation.

Interesting general reduction procedure was proposed in [18-19]. This

scheme is based on the analysis of restricted 1-forms in Darboux coordi-

nates, but unfortunately, these coordinates are not so e�ective in practical

applications.

After the classical reduction we arrive at the physical phase space M

with some de�nite symplectic structure. But, in general, the physical phase

spaceM could be a symplectic manifold without a global cotangent bundle

structure. In such cases, the canonical coordinates exist only locally and

the method of canonical quantization is not applicable.

Another drawback of canonical quantization is a crucial dependence of

the corresponding quantum theory on the initial choice of coordinates, since

a quantum system obtained by canonical quantization is not invariant under

the general canonical transformations.

For the generalization of canonical quantization, di�erent methods were

developed and geometric quantization [20-26] is accepted as the most gen-

eral one. This approach is indeed a powerful method for the quantization

on arbitrary symplectic manifolds, but its formulation looks like a set of

mathematical rules which are not directly derived from the basic physical

principles. Besides, the method of geometric quantization has signi�cant

di�culties for the �eld theory generalization. Therefore, in spite of 20 years

history, this method is not popular among physicists.

Similar problems arise for other interesting approaches [27-30] which use

various mathematical structures for the generalization of canonical quanti-

zation.

Rather di�erent method based on the extension of phase space was pro-

posed in [31] (see also [32]). The introduced extended system is equivalent
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to the initial one on the certain constraint surface. Further, for the quantiza-

tion of constrained extended system the BFV (BRST) [33-34] quantization

was used. The phase space extension method with rather di�erent physical

interpretations was considered in other recent papers as well (see [35-38]).

In [31] one can �nd a wide variety of references to di�erent quantization

methods, their analyses and a short review for the BFV (BRST) method.

The global Lie group symmetries play an important role for both classical

and quantum systems, and representations of the classical symmetries on

the quantum level is a key step for any quantization scheme. Symmetries of

the classical system provide conservation laws and integrability of some evo-

lution equations. The generators of symmetry group transformations of the

quantum system commute with the Hamilton operator, and investigation of

the eigen-value problem for these operators helps to obtain the Hamiltonian

spectrum and integrate the Schr�odinger equation.

If a symmetry group is su�ciently large, the classical system is com-

pletely integrable and one can introduce the action-angle variables. These

variables are convenient in the classical description, since the dynamics in

these variables is trivial. But in the quantum case the completely integrabil-

ity of the classical system is not so e�ective for the solution of the quantum

problem. The reason is again geometrical: the action-angle variables take

values in some restricted domain, and therefore, this variables cannot be

used for the canonical quantization, though formally they are canonical.

Obviously, the above mentioned quantization problems are related to

each other. The author worked on these problems during several years. The

main results obtained in collaboration with the colleagues are published in

the papers [39-57]. The present work is a review of those activities.

The work contains introduction, �ve chapters, conclusion and four ap-

pendices.

The �rst section of Chapter 1 is used for the introduction of notation and

de�nitions of symplectic geometry. Then we consider groups of canonical

transformations. In the �rst two sections we introduce some simple exam-

ples which are used in next chapters as a test for the described reduction

and quantization methods. In third section we give a probability description

of the classical statistical systems using a distribution function on a phase

space.

The second chapter is devoted to the Hamiltonian reduction procedure

for gauge invariant theories. The general reduction scheme is considered in

the �rst section. This scheme is based on the analysis of restricted 1-forms

in gauge-invariant variables. We also consider situations when only a part

of the gauge-invariant variables is known. The indicated analysis helps us

to obtain the remaining part of the gauge-invariant variables. Here, as an

illustration, some simple examples are considered. The additional examples

are given in the Appendices A and B.

In Appendix A we consider the reduction scheme for a 6-dimensional

model with the rotation symmetry. By reduction procedure we obtain the
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two dimensional sphere.

In Appendix B we investigate the reduction procedure and a boundary

behaviour for (2 + 1)-dimensional massive photodynamics.

In subsequent sections the described method is applied to other more

complicated gauge invariant models. In particular, in Section 2.2 we con-

sider the relativistic particle on SL(2; R) group manifold. Here we �rst

consider general manifolds and summarize how the Lagrangian and Hamil-

tonian formalism is implemented for the reparametrization invariant theory.

Then we specialize to manifolds corresponding to semi-simple Lie groups,

where there is a left-right Noether symmetry with conserved currents L and

R. Here we �nd that the constraint corresponding to the Minkowski mass-

shell condition has a simple form through these conserved quantities. This

stipulates our Hamiltonian reduction, and also provides the general solu-

tion of the reduced classical equations. We then consider the special group

SL(2; R) which is a three dimensional Lorentzian manifold. This group has

the property that the above Hamiltonian reduction leads to a split reduced

system consisting of two chiral (`left' and `right') sectors, which are both

coadjoint orbits of the group.

In Section 2.3 the reduction scheme is applied to a �nite-dimensional

system with SU (2) as the gauge group of symmetry. This system can be

considered as a toy model for the Yang-Mills theory with fermions. We

show the essential di�erence between the SU (2) and the corresponding U (1)

model. The structure of gauge-invariant variables in the case of SU (2) can

be interpreted as the con�nement phenomenon.

In the last section of the second chapter we study the �eld theory model

with a semi-simple gauge group. The �elds take values in the correspond-

ing semi-simple Lie group, and the model is essentially non-linear. For this

model one can easily construct the gauge-invariant variables. Respectively,

the reduction procedure is rather trivial. We show that the model is equiv-

alent to the Yang-Mills theory with some boundary conditions.

In Chapter 3 we start with the formulation of Dirac quantization princi-

ples. Then we give the examples for the partial realization of these princi-

ples and describe general problems of quantization. We discuss a possible

generalization of canonical quantization based on Mackey-Isham approach.

In the next section we give the corresponding examples. In particular,

we consider the quantization on a cylinder and a torus. A quantum system

obtained for a cylinder is unitary equivalent to the canonically quantized

model. We �nd that a consistent quantization on a torus requires quanti-

zation of the phase space volume. Note that the obtained Hilbert space is

�nite dimensional. The next example is a reduced system for the particle

on SL(2; R) manifold, where quantization is associated with a symmetry

group representation.

In Section 3.3 we consider another example of non canonical quantization.

Here we study the roots of the phase operators. Correct de�nition of the

corresponding operators leads to the extension of the Hilbert space. In the
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case of square root the fermionic extension arises. For the k-th root we

introduce the new `particles' whose statistics depends on k. It is shown

that the described quantization can be associated with a quantization on

k-sheet manifolds.

In Chapter 4 we introduce the scheme of E-quantization. This scheme is

based on the extension of the phase space and it uses the technique of the

constrained quantization.

The phase space of the extended system, is a cotangent bundle over the

initial symplectic manifold. For the quantization of the extended system

the canonical method is used and the pre-quantization operators arise as a

result of some natural operator ordering. This extension scheme is described

in Section 4.1.

In the next section we introduce a constrained surface of the extended

system. The constraint functions are characterized by some complete set of

observables of the initial system, and they form the set of the second class

constraints. Further, the corresponding constraint operators are introduced,

and for the restriction of the extended quantum system the Dirac, or the

Gupta-Bleuler like, conditions are used. Certainly, the Dirac conditions are

used only for a half of commuting constraints. The same number of complex

conditions is used in Gupta-Bleuler case as well.

After reduction to the physical Hilbert space, the standard problems of

constrained quantization arise. The problem of the correct de�nition of

the observable operators is connected with the deformation procedure. We

describe this procedure for the constant symplectic matrix in Appendix C.

In Section 4.3, illustrating the quantization scheme described above, we

consider two examples. The �rst one is a quantization on a plane and the

second one on a cylinder.

When we use the Dirac conditions, the problem of scalar product arises.

A possible solution to this problem is considered in Section 4.4, where the

limiting procedure with normalized physical states is used. Here, the so-

lutions of Dirac conditions are interpreted as the vectors of the space of

unbounded functionals on the Hilbert space, and then, the limiting proce-

dure is accomplished in this dual space.

Using the E-quantization method, in Section 4.5 we describe a possible

realization of the classical symmetries on the quantum level. For illustration

we consider the rotation group on a sphere and its quantum realization.

The last chapter starts with a generalization of the Gupta-Bleuler like

conditions, where we use the minimization principle for quadratic uctua-

tions of quantum constraints. The corresponding technique is described in

Appendix D. The obtained generalized condition contains constraint oper-

ators of second order, and for a physical wave function it is an elliptic type

equation on the phase space.

In Section 5.2 we introduce the coherent states, which are related to some

complete set of observables. Coherent states are constructed as the functions

on the phase space and, at the same time, they are parametrized by the
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points of the phase space. Such coherent states minimize uncertainties of

those observables to which they are related to. At the end of the section we

construct the special coherent states on a cylinder and study their behavior

in the limit when the squeezing parameter tends to zero. In this limit we

get the eigenstates of the angular-momentum operator.

In the last section we introduce the quantum distribution functions,

which are smooth non-negative distributions on the phase space. The cor-

responding functions satisfy some elliptic type equations. This equation

speci�es the distribution functions for the pure states. Generalization to the

mixed states is done as a convex combination of the pure ones. There are

di�erent classes of quantum distribution functions and each class is related

to a certain complete set of observables of the system in consideration. We

discuss the physical interpretation of these distribution functions. Namely,

we interpret them as the distributions obtained in the experiment where

we simultaneously measure the indicated complete set of observables. At

the end of the paper we discuss a possibility of the formulation of quantum

mechanics in terms of quantum distribution functions without referring to

the Hilbert space formalism.

In conclusion, we present the main results of the paper.

1. Hamiltonian Dynamics

In this chapter we give a brief review of the Hamiltonian dynamics. We

use notations of [20]. For more details see also [58-59] and [23].

1.1. Symplectic manifolds. The Hamiltonian system is described by the

phase space, a set of observables, the Poisson structure and the Hamilton

function.

The phase space is an even (2N ) dimensional manifoldM with smooth,

second order tensor �eld !

ij

(�), and this tensor �eld should satisfy the

following three conditions:

1. The matrix !

ij

(�) is antisymmetric: !

ij

= �!

ji

2. It is invertible in each point � 2 M: det !

ij

6= 0.

3. The identities

!

il

@

l

!

jk

+ !

jl

@

l

!

ki

+ !

kl

@

l

!

ij

= 0 (1.1)

are satis�ed for any free three indices i; j; k. Here @

l

denotes the derivatives

in some local coordinates (�

1

; : : : ; �

2N

).

The observables f(�); g(�); h(�); : : : are smooth functions onM and the

space of observables is denoted by O(M).

The tensor �eld !

ij

de�nes the Poisson bracket of two observables f and g

ff; gg � �@

i

f!

ij

@

j

g: (1.2)

It is easy to check that the Jacobi identity

fff; gg; hg+ ffh; fg; gg+ ffg; hg; fg = 0 (1.3)
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follows from the condition (1.1).

Since the Poisson brackets (1.2) are linear, antisymmetric and satisfy the

Jacobi identity, the set of all observables has a structure of Lie algebra,

which is called the Poisson-Lie structure.

The Hamiltonian vector �eld constructed for an observable f(�) has the

components

V

i

f

� !

ij

@

j

f (1.4)

and we associate with this �eld the �rst order di�erential operator V

h

V

h

:= V

i

h

@

i

(1.5)

acting on the space of observables O(M).

The Hamilton function H = H(�) is a generator of dynamics. It de-

�nes the phase trajectories (phase ow) as the solutions of the Hamilton

equations

_

�

i

= V

i

H

(�): (1.6)

Respectively, the evolution of any observable f takes the form

_

f = fH; fg (1.7)

The inverse of the matrix !

ij

is the co-tensor �eld !

ij

(!

ij

!

jk

= �

i

k

), and

from (1.1) we obtain

@

i

!

jk

+ @

j

!

ki

+ @

k

!

ij

= 0: (1.8)

Using the co-tensor !

ij

, one can construct the 2-form ! = 1=2!

ij

d�

i

^d�

j

which is non-degenerated, antisymmetric and, due to (1.8), closed (d! = 0).

Such a 2-form is called the symplectic form and the corresponding manifold

M is a symplectic manifold.

The co-tensor �eld !

ij

(locally) has the form

!

ij

= @

i

�

j

� @

j

�

i

(1.9)

with some co-vector �eld �

i

(see (1.8)). Then, the Hamilton equations (1.6)

can be obtained from the variation of the action

S =

Z

[�

i

(�)

_

�

i

�H(�)]dt: (1.10)

If the covector �eld �

i

is global, it de�nes the 1-form � = �

i

d�

i

and from

(1.9) we have

! = d�: (1.11)

Note, that the Poisson structure and the evolution equations (1.1)-(1.6)

can be considered for a degenerated matrix w

ij

as well. But in that case the

dynamical equation (1.6) cannot be obtained from the Hamilton's principle

of the action (1.10).
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De�nition (1.2) gives

!

ij

(�) = �f�

i

; �

j

g; (1.12)

and a choice of the tensor �eld !

ij

(�) in some coordinates �

i

is equivalent

to the postulation of Poisson brackets of those coordinates. Note that, in

general, the coordinates �

i

are not global (sometimes there is no global

coordinate system on M) and therefore, in such cases, the relation (1.12)

has only a formal meaning.

It is clear that the relations (1.1) are automatically satis�ed if at least

two indices from (i; j; k) coincide. Therefore, for 2-dimensional manifolds

any antisymmetric tensor �eld with nonvanishing !

12

is suitable.

Let us consider some simple examples.

A. M = R

2

. The phase space is a plane with the `at' coordinates

(�

1

� p; �

2

� q). For !

21

= �!

12

= 1, we get the standard form of Poisson

brackets

ff; gg =

@f

@p

@g

@q

�

@f

@q

@g

@p

; (1.13)

and p and q can be interpreted as the momentum and the coordinate of a

particle moving on the axis q.

B.M = R

1


 S

1

. The phase space is a cylindre with the coordinates

�

1

� S 2 R

1

; �

2

� ' 2 S

1

and the natural Poisson structure is given by

ff; gg =

@f

@S

@g

@'

�

@f

@'

@g

@S

: (1.14)

This system describes a rotator where the variable S has a meaning of the

angular momentum.

It should be noted that the coordinate S is a global one, and therefore it

can be considered as an observable as well, while the second coordinate ' is

only local, and it is not an observable. Observables are periodic functions

of '.

C.M = S

1


 S

1

. The phase space is a torus with the coordinates �

1

2

S

1

; �

2

2 S

1

. If a

1

and a

2

are the periods of the corresponding coordinates

�

1

and �

2

, then any observable f should be periodic: f(�

1

; �

2

) = f(�

1

+

a

1

; �

2

+ a

2

). For the Poisson brackets we choose again !

21

= 1.

D.M = S

2

. The phase space is a sphere. If r is a radius of the sphere

and #, ' are the corresponding spherical angles, then the natural Poisson

structure (see the example below) is given by

ff; gg =

1

r sin#

�

@f

@'

@g

@#

�

@f

@#

@g

@'

�

: (1.15)

The last two examples have no direct analog in classical mechanics since

they can not be obtained by the Hamiltonization of regular Lagrangian

systems. But such systems can be considered for the description of the

internal degrees of freedom [43-49], [60-63]. The corresponding quantum
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versions are especially interesting, where, due to the compactness of the

phase spaces, the `Hilbert space' of quantum states is �nite dimensional

(see Chapters 3 and 4).

Examples A and B have a natural generalization for a symplectic mani-

fold which is the cotangent bundleM = T

�

Q of an N-dimensional manifold

Q. In this case M is a set of pairs (p; q), where q 2 Q and p is a covector

at q. On T

�

Q there is the canonical 1-form p

a

dq

a

(a = 1; : : : ; N ) and the

corresponding canonical 2-form

! = dp

a

^ dq

a

: (1.16)

Such systems with the global canonical symplectic structure are most well

investigated both on classical and quantum level. In particular, due to the

global canonical structure, one can use the standard canonical quantization.

At the same time, the systems with the cotangent bundle structure have

some fundamental character since all symplectic manifolds locally have the

canonical form. More precisely, according to Darboux's theorem, for an

arbitrary point m 2 M there is a neighbourhood U of m and a coordinate

system p

a

, q

b

(a; b = 1; : : : ; N ) on U such that ! = dp

a

^ dq

a

in U . The

proof of this theorem can be found in [19] or [20].

Investigation of integrability is the main problem of the classical me-

chanics. The Hamiltonian system is called completely integrable if one can

�nd the canonical coordinates I

a

; '

b

(a; b = 1; : : : ; N ), � = I

a

d'

a

, such that

H = H(I

1

; : : : ; I

N

). We call the coordinates I

a

and '

a

the action and

the angle variables respectively. The dynamics of a completely integrable

system in the action-angle variables is trivial

I

a

(t) = I

a

'

a

(t) = !

a

t+ '

0

where !

a

=

@H

@I

a

:

Note that the integrability is always related to the symmetry groups, and,

in general, a Hamiltonian system is not a completely integrable one.

At a formal level, much of the symplectic geometry that underlies the

Hamiltonian formulation of the classical mechanics extends to �eld theories

and can be used as the starting point for quantization. The Poisson brack-

ets in a �eld theory are de�ned through the variational derivatives of the

observables. Note that the symplectic structure can be introduced for the

singular �elds as well. For example, the phase space of N-singular solutions

of the Liouville �eld theory [39-41]

�

tt

(t; x)� �

xx

(t; x) + exp�(t; x) = 0 (1.17)

is described by the class of two functions �(x); �(x) �

_

�(x) with certain

singularities. One can show (see [40-41]) that the corresponding singular

solutions of (1.17) can be constructed by the consequent actions of Backlund

transformations and the corresponding class is uniquely parametrized by two

regular functions �

0

(x); �

0

(x) �

_

�

0

(x) and a set of 2N variables p

a

; q

b

(a; b =
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1; : : : ; N ). The symplectic form, calculated in regular variables, has the

standard canonical form

! =

Z

dx d�

0

(x) ^ �

0

(x) +

N

X

a=1

dp

a

^ dq

a

:

1.2. Groups of canonical transformations. The �rst order di�erential oper-

ator (1.5) is invariant under any choice of coordinates �

i

and its action on

the observable f(�) is given by the Poisson bracket

V

h

: f(�) 7! fh; fg: (1.18)

Using the Jacobi identity (1.3), we get

[V

h

1

; V

h

2

] = V

fh

1

;h

2

g

; (1.19)

where [ ; ] denotes the standard commutator of two operators.

The operator V

h

generates the group of one parameter transformations

T

�

h

acting on the space of observables O(M)

T

�

h

: f(�) 7! exp(�V

h

) f(�) �

f + �fh; fg+

�

2

2!

fh; fh; fg+ � � �+ : (1.20)

In particular, T

t

H

is the operator for the time evolution of observables.

We call a transformation T canonical if it preserves the Poisson brackets.

From the Jacobi identity (1.3) we obtain that the transformations (1.20)

are canonical

fT

�

h

f; T

�

h

gg = T

�

h

ff; gg: (1.21)

Let h

�

(�) (� = 1; : : : ;M ) be a set of functions which satisfy the relations

fh

�

; h

�

g = C



��

h



; (1.22)

where C



��

are the structure constants of some Lie group G.

The operators V

h

�

generate the M -parameter transformations of O(M)

U

�

:= exp(�

�

V

h

�

) : f 7! f + �

�

fh

�

; fg +

�

�

�

�

2!

fh

�

fh

�

; fgg+ � � �+; (1.23)

and from (1.19) and the Backer-Campel-Hausdor� formula [66] we see that

(1.23) is a representation of the group G.

If, in addition to (1.22), all h

�

are integrals of motion (see (1.7)),

fH;h

�

g = 0; (1.24)

then G is a symmetry group of the classical system since in that case the

operators U

�

and T

t

H

commute with each other.

Generalization of (1.24) is given by

fH;h

�

g = d

�

�

h

�

; (1.25)
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where d

�

�

are constants. In that case we have an extension of the Lie algebra

(1.22), and the evolution equations for the observables h

�

(1.7) become

linear.

Let us consider some examples:

a. The translation group on a plane (see Example A).

The functions

h

0

= 1; h

1

= p; h

2

= q (1.26)

have the commutation relations

fh

0

; h

1

g = 0; fh

0

; h

2

g = 0; fh

1

; h

2

g = h

0

(1.27)

and according to (1.20), h

1

and h

2

generate the translations on a plane:

h

1

: (p; q) 7! (p; q+ �) h

2

: (p; q) 7! (p� �; q): (1.28)

Note that the constant function h

0

does not generate any transformation.

b. The symplectic group on a plane Sp(1; R) (see Example A).

The functions

l

0

=

1

4

(p

2

+ q

2

); l

1

=

1

4

(p

2

� q

2

); l

2

=

1

2

pq (1.29)

satisfy the commutation relations

fl

0

; l

1

g = �l

2

; fl

0

; l

2

g = l

1

; fl

1

; l

2

g = l

0

(1.30)

and they generate the following global linear transformations

2l

0

: (p; q) 7! (p cos �� q sin �; q cos �+ p sin �)

2l

1

: (p; q) 7! (p cosh �+ q sinh �; q cosh �+ p sinh �)

2l

2

: (p; q) 7! (e

��

p; e

�

q):

(1.31)

The group of linear transformations which preserve the canonical Poisson

brackets (1.13) is the de�nition of the group Sp(1; R).

The commutation relations (1.30) have the form

fl

�

; l

�

g = "

���

g

��

l

�

; (1.32)

where g

��

= diag(+;�;�) is the metric tensor of 3-dimensional Minkowski

space and "

���

is the corresponding antisymmetric 3-tensor (with "

012

= 1).

These are the commutation relations of the Lie algebra so(2; 1) (or sl(2; R))

and we see the isomorphism of these Lie algebras to sp(1; R) (see [67]).

Note that the functions (1.29) and (1.27) together also form the extended

Lie algebra with 6 generators.

c. The translation group on a cylindre (see Example B).

Let us consider two di�erent translations on a cylindre:

T

�

1

: f(S; ') 7! f(S; ' + �);

T

�

2

: f(S; ') 7! f(S + �; '):

(1.33)
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These transformations are canonical and they are generated by the operators

V

1

= @

'

; V

2

= @

S

; (1.34)

respectively. Note that the �rst operator V

1

is constructed from the Hamil-

tonian vector �eld of the observable S: V

1

= V

S

, while there is no corre-

sponding global observable for the second one V

2

.

Since any observable f(S; ') is periodic in ': f(S; ') = f(S; '+2�), the

corresponding transformations T

�

1

should be periodic (in �) as well

T

�

1

= T

�+2�

1

: (1.35)

It is necessary to stress, that any consistent quantization should take

into account geometric peculiarities of the phase space and corresponding

transformation groups.

d. The translation group on a torus (see Example C).

In this case the translation of �

1

and �

2

coordinates are again the canon-

ical ones. They are periodic with periods a

1

and a

2

respectively, but these

transformations are not generated by any observables.

e. The rotation group on a sphere (see Example D).

There is no any global coordinate system on a sphere, but the following

three functions

J

1

= r sin# cos'; J

2

= r sin# sin'; J

3

= r cos# (1.36)

are well de�ned observables. They are, respectively, the X, Y and Z coordi-

nates of a point on the sphere. Note that J

i

(i = 1; 2; 3) are not independent

and they are related by

J

2

1

+ J

2

2

+ J

2

3

= r

2

: (1.37)

From (1.15) we get the commutation relations of the rotation group

fJ

k

; J

l

g = "

klm

J

m

; ("

123

= 1); (1.38)

and the observables (1.36) generate the action of the rotation group SO(3)

on the sphere. It is easy to see that these are the ordinary rotations on the

sphere.

f. The Poincar�e group for spinless particle with the mass m.

The phase space is R

6

with the canonical coordinates (~p; ~q), where ~p :=

(p

k

; k = 1; 2; 3) and ~q := (q

k

; k = 1; 2; 3) are 3-dimensional vectors.

Ten generators of the Poincare group have the form:

P

0

=

p

~p

2

+m

2

and P

k

= p

k

are the translation generators,

J

k

= "

klm

q

l

p

m

are the rotation generators and

L

k

=

p

~p

2

+m

2

q

k

(1.39)

generate the boosts.
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One can easily check that these generators satisfy the commutation re-

lations of the Poincare group Lie algebra. Note that the global transforma-

tions generated by (1.39) are nonlinear.

g. A nonlinear realization of the group SL(2; R) (see Example A).

Let us consider the following three functions on a plane

I

0

=

p

2

+ q

2

2

+ r;

I

1

=

r

r +

1

4

(p

2

+ q

2

) p; I

2

=

r

r +

1

4

(p

2

+ q

2

) q; (1.40)

where r is a positive parameter (r > 0), and p; q are the canonical coordi-

nates. The functions I

�

(� = 0; 1; 2) have the commutation relations (1.32)

of sl(2; R) Lie algebra (see Example b), but it is clear that the corresponding

transformations now are nonlinear.

Investigation of Hamiltonian's symmetries is the main problem of both

classical and quantum mechanics. But this problem can be inverted, and

one can try to obtain the Hamilton function with a given group of sym-

metry. When the symmetry group G is generated by the set of functions

h

�

with the commutation relations (1.22), then the suitable Hamiltonian

should satisfy the equations (1.24) (or (1.25)). If the action of the group G

on the phase space M is transitive (as in all above mentioned examples),

then the equations (1.24) have only the trivial (constant) solution for the

Hamilton function H. Of course, a possibility for (1.25) always remains if

the Hamiltonian is equal to one of the generators h

�

, as, for example,

H =

p

~p

2

+m

2

(1.41)

for the relativistic particle.

1.3. Pure and mixed states in classical mechanics. We usually consider

the `regular' Hamiltonian systems when the Hamilton equations (1.6) have

unique global solutions �(t) for arbitrary initial conditions �(0) = �

0

and

the phase trajectories de�ne the global one-parameter transformations of

the phase spaceM

T

t

H

: � 7!

e

�(�; t): (1.42)

Since the initial data are given by the points of the phase space M, these

points are associated with the classical states: each point � describes certain

state of the classical system. In such description, there is a unique prediction

for the evolution of the classical system.

But sometimes, even in the classical mechanics, we consider the proba-

bility description as well. In general, we assume that the points of the phase

space M describe the pure states of the system and an arbitrary (mixed)

state is given by the distribution function �(�) onM. The physical meaning
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of �(�) is a probability density that the system is in the pure state �. This

means that if 
 is any domain of the phase space M and

d�(�) �

p

!(�) d

2N

� with !(�) � det !

ij

(�) (1.43)

is the invariant measure onM, then

P




=

Z




�(�) d�(�) (1.44)

is a probability that the system is in some pure state � 2 
. Respectively

P

M

= 1.

We use such probability description for the statistical ensemble of the

systems. The distribution functions �(�) can also be used in the case of

possible experimental errors of a measurement procedure.

By de�nition, the distribution function �(�) is nonnegative, but, in gen-

eral, it is a generalized function (rather than the ordinary one). For example,

the pure state �

0

is described by the �-function distribution

�

�

0

(�) =

p

det(!

ij

) �(� � �

0

): (1.45)

Using the de�nition (1.44), we can calculate the mean value of the ob-

servable f(�) in the state �(�)

�

f =

Z

M

f(�)�(�) d�(�): (1.46)

In the dynamical description of the mean values (1.46), the observable

f(�) is assumed to be time independent, and obviously, the time evolution

of �(�) takes the form

�(�; t) = �

0

(T

�t

H

�); (1.47)

where T

�t

H

is the transformation (1.42). Then from (1.6) we obtain the

Liouville equation for the distribution function �(�; t)

_� = f�;Hg: (1.48)

The equations (1.46)-(1.48) de�ne the Liouville picture of statistical sys-

tems.

Another description of the statistical systems can be done by a time inde-

pendent distribution function �(�) considering the dynamics of the observ-

ables f according to (1.7). We call such description the Hamilton picture.

It is clear that the Liouville and the Hamilton pictures are, respectively,

analogous to the Schr�odinger and the Heisenberg pictures of quantum me-

chanics. One can check that both of these pictures give the same dynamics

for the mean values of the observables f(�) (see [23]).
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2. Hamiltonian Reduction of Gauge Theories

In this chapter we investigate the Hamiltonian reduction procedure of

gauge invariant theories. We construct a general reduction scheme and

considere several non-trivial examples. The content of this chapter is based

on the papers [53-54] and [56].

2.1. Reduction scheme with gauge invariant variables. Any non-singular

Lagrangian leads to the standard Hamiltonian description considered in

the previous chapter. But if we start from the gauge-invariant Lagrangian

L = L(q

k

; _q

k

) (k = 1; : : : ; N ) and use the Dirac procedure [1], or the �rst

order formalism [18]-[19], we arrive at the extended phase space � with

coordinates (p

k

; q

k

) and the action

S =

Z

p

k

dq

k

� [H(p; q) + �

a

�

a

(p; q)]dt; (2.1)

k = 1; : : : ; N ; a = 1; : : : ;M ; (N > M );

where �

a

(p; q) are the constraints, H(p; q) is the canonical Hamiltonian, and

�

a

are the Lagrange multipliers. The constraint surfaceM

c

is de�ned by

�

a

(p; q) = 0 (2.2)

and the following relations are ful�lled

fH;�

a

g

�

= d

b

a

�

b

; f�

a

; �

b

g

�

= f

c

ab

; �

c

(2.3)

where f

c

ab

are the structure constants of the corresponding gauge group.

The index � on the left hand side indicates that the Poisson brackets are

calculated on the extended phase space �.

A function � = �(p; q) is called a gauge-invariant variable if �j

M

c

6= const

and

f�; �

a

g

�

=

e

d

b

a

�

b

; (2.4)

where j

M

c

denotes the restriction toM

c

. The functions

e

d

b

a

, as well as d

b

a

in (2.3), are assumed to be regular in the neighborhood ofM

c

. Note that

the below described reduction scheme can be generalized for arbitrary �rst

class constraints �

a

with non-constant coe�cients f

c

ab

in (2.3).

Each gauge-invariant variable � possesses the class f�g of equivalent

gauge-invariant variables on �. A gauge-invariant function

e

� is equivalent

to � if

e

�j

M

c

= �j

M

c

. On the other hand, the function �j

M

c

is constant along

the gauge orbit (onM

c

) and it de�nes the function

e

e

� on the physical space

M =M

c

=G. Thus, f�g, �j

M

c

and

e

e

� denote the gauge-invariant variable �

in di�erent context. If there is no ambiguity, we will use the notation � for

all of them.

Maximal number of gauge-invariant variables (2.4) which are functionally

independent on the constraint surfaceM

c

is 2(N �M ) [3]. Assuming that
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f�

�

: � = 1; : : : ; 2(N � M )g is the corresponding complete set of gauge-

invariant variables, one can prove (see [18-19]) that

1: p

k

dq

k

j

M

c

= �

1

+ �

2

with

a) d�

1

= 0

b) �

2

= �

�

(�)d�

�

(2.5)

c) det!

��

6= 0 where !

��

(�) = @

�

�

�

� @

�

�

�

;

2: H(p; q)j

M

c

= h(�):

The main statement of (2.5) is that after restriction to the constraint surface

M

c

, the dependence on extra (nonphysical) variables is presented only in

the term �

1

, which is a `total derivative'.

Since d�

1

= 0, it gives no contribution to the variation of the restricted

action and we can neglect it. Then for the reduced system we obtain

Sj

M

c

�

e

S =

Z

�

�

(�)d�

�

� h(�)dt; (2.6)

and the dynamics for gauge-invariant variables are described by the Hamil-

ton equations (see (1.6) and (1.10))

_

�

�

= !

��

(�)@

�

h(�); (2.7)

where !

��

(�) is the inverse of the symplectic matrix !

��

= @

�

�

�

� @

�

�

�

.

Thus, the reduced system (2.6)-(2.7) is an ordinary (nonconstrained)

Hamiltonian system.

It should be noticed that in the general case any 2(N �M ) number of

gauge-invariant variables play the role of local coordinates on the physical

phase space M and, respectively, (2.6){(2.7) are de�ned only locally. A

global description can be achieved by a set of gauge-invariant variables

which de�nes the global structure of the physical phase space M. The

number of such gauge-invariant variables is greater than 2(N �M ), but on

the constraint surface there are relations among them, and these relations

de�ne the geometry of M (on the phase space geometry of constrained

systems, see [16]).

For illustration, let us consider the following example of (2.1)-(2.3) (see

[53])

S =

Z

~p � d~q � [�

1

�

1

+ �

2

�

2

]dt: (2.8)

Here ~p and ~q are vectors in R

3

, the canonical Hamiltonian is zero,

�

1

= ~p � ~q; �

2

= ~p

2

~q

2

� (~p � ~q)

2

� r

2

(2.9)

and r is a positive parameter. These constraints are Abelian (f�

1

; �

2

g = 0)

and the second constraint �

2

can be written in the form

�

2

=

~

J

2

� r

2
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where

~

J = ~q � ~p is the angular momentum.

It is clear that the physical phase space is two-dimensional and the com-

ponents of angular momentum

~

J are gauge-invariant variables (they com-

mute with the constraints (2.9) since the latter's are O(3) scalars). On the

constraint surface these three components are related by

~

J �

~

J = r

2

. There-

fore, the physical phase spaceM is a two-dimensional sphere (see Appendix

A and Examples D and e of the previous chapter), and any two coordinates,

as well as the 1-forms �

1

and �

2

, are de�ned only locally.

The reduction scheme described in (2.6)-(2.7) can be used if all 2(N �

M ) gauge-invariant variables are known. For practical application of this

scheme, one can introduce arbitrary variables �

1

; : : : ; �

M

, which are comple-

mentary to gauge-invariant variables, in order to complete the coordinate

system

(�

1

; : : : ; �

2(N�M)

; �

1

; : : : ; �

M

)

onM

c

. Calculating the restricted 1-form p

k

dq

k

j

M

c

in these coordinates and

taking its di�erential, we can �nd the symplectic form ! = !

��

(�)d�

�

^d�

�

.

Note that in actual calculations it is possible to select the 1-form �

2

=

�

�

(�)d�

�

and get (2.6).

Application of this procedure to model (2.8)-(2.9) gives �

2

= (s � r)d',

where s and ' are the cylindrical coordinates on a sphere (see Appendix A)

J

1

=

p

r

2

� s

2

cos' J

2

=

p

r

2

� s

2

sin' J

3

= s (2.10)

It is clear that although (s � r)d' is not a global 1-form, its di�erential

can be continued to the well-de�ned symplectic form on the sphere [27] (see

(A.6))

! = �

J

1

(dJ

2

^ dJ

3

) + J

2

(dJ

3

^ dJ

1

) + J

3

(dJ

1

^ dJ

2

)

r

2

= ds ^ d':

It is easy to check that this symplectic form leads to the Poisson brackets

(1.15). Note that a consistent quantum theory of this system exists only for

the discrete values of the parameter r (see [20] and Section 4.5).

Generalization of the scheme to the in�nite-dimensional case is straight-

forward (in the Appendix B we present the example of massive photody-

namics in (2 + 1) dimensions). If we use the Dirac observables [68]

 

in

= e

i�

�1

(

~

r

~

A

)

 (2.11)

in ordinary ED, we will easily obtain the photons in the Coulomb gauge

and the `four-fermion interaction' for the `dressed fermions' (compare with

the example in Section 2.3 and see [18], [69]).

Commutation relations of the complete set of gauge-invariant variables

can also be derived by calculation of the Poisson brackets on the extended

phase space [3]. This, more standard procedure is based on the fact that

the Poisson brackets of any two gauge-invariant variables is again a gauge-

invariant one. This procedure and the scheme described in (2.6)-(2.7) are
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almost equivalent. Sometimes, however, when the complete set of gauge-

invariant variables is not a canonical one and the corresponding canonical

quantization is problematic, the calculation of di�erential forms become

reliable to apply more general quantization techniques (see: [18], [31], [52],

[57]).

In general, from the structure of gauge transformations, one can easily

�nd only a part of gauge-invariant variables, and a construction of a com-

plete set of gauge-invariant variables (2.6) is troublesome. Our approach

with di�erential forms can be e�ectively used for the solution of this prob-

lem as well.

Let us consider the situation when we know a set of gauge-invariant

variables f�

�

: � = 1; : : : ;Kg, where N �M � k � 2(N �M ). We can add

arbitrary variables �

1

; : : : ; �

2N�M�K

in order to complete the coordinate

system on M

c

and calculate the restricted 1-form p

k

dq

k

j

M

c

. Assuming

that we can select the `total derivatives' and the di�erentials d�

�

in the

form

p

k

dq

k

j

M

c

= dF (�; �) + �

�

(�; �)d�

�

(2.12)

and using (2.6), we can easily conclude that �

�

(�; �) will be gauge-invariant

variables. Note that passing to gauge-invariant variables �

�

is helpful for

obtaining the form (2.12). To illustrate this method, we apply it to a rel-

ativistic particle [5], where we have the 1-form � = ~pd~q � p

0

dq

0

, and the

constraint surface M

c

with � � p

2

�m

2

= 0; (p

0

> 0). The momenta ~p are

gauge invariant, and after restriction onM

c

, we have

�j

M

c

= ~pd~q �

p

~p

2

+m

2

dq

0

:

One can easily rewrite it in the following form

�j

M

c

= d(~p � ~q �

p

~p

2

+m

2

q

0

)� (~q �

~p

p

~p

2

+m

2

q

0

)d~p:

Evidently, the coe�cients of the di�erentials �d~p are gauge-invariant vari-

ables. They are canonically conjugate to ~p

~

Q = ~q �

~p

p

~p

2

+m

2

q

0

:

The gauge invariance of

~

Q can also be established from the relation

~

L =

p

~p

2

+m

2

~

Q; (2.13)

where

~

L are the generators of Lorentz transformations. Since all generators

of the Poincare group (P

�

;M

��

) are gauge-invariant variables, the same

property holds for the coordinates

~

Q. On the constraint surface ~p

2

�m

2

=

0; (p

0

> 0), all of these coordinates are the functions only of the reduced

variables ~p and

~

Q (see Example f in Section 1.2).
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The reduced system can be easily quantized in the momentum represen-

tation:

^

~p = ~p and

^

~

Q = i~

~

r. The operator ordering problem arises only for

the generators (2.13). Note that the standard Lorentz covariant measure in

the scalar product

h	

2

j	

1

i =

Z

d

3

~p

p

~p

2

+m

2

�

	

2

(~p)	

1

(~p)

corresponds to the ordering

^

~

L = i~

p

~p

2

+m

2
~

r.

2.2. Relativistic particle on SL(2; R) group manifold. Let M be a (pseu-

do) Riemannian manifold with the metric g

��

(x), where x

�

is a local coor-

dinate system onM . Take the familiar action describing a relativistic point

particle of the mass m > 0 moving freely on the manifoldM

I

0

= �m

Z

dt

q

g

��

(x) _x

�

_x

�

; (2.14)

where t is a parameter along the trajectory x

�

(t) and _x

�

:= dx

�

=dt. We

assume that t increases monotonically, say, from t = 0 to t = T , and that

paths under consideration satisfy g

��

(x) _x

�

_x

�

> 0. It is known that, at the

classical level, one can replace (2.14) by the quadratic action [70]

I = �

1

2

Z

dt

h

1

�

g

��

(x) _x

�

_x

�

+ �m

2

i

(2.15)

with � = �(t) > 0 being a Lagrange multiplier. Indeed, if we substitute

� by using its equation of motion, the action I reduces to I

0

. Like I

0

, the

action I is invariant under reparametrizations t! f(t) with

�(t) �! �

0

(f(t)) =

�

df

dt

�

�1

�(t); x

�

(t) �! x

�

0

(f(t)) = x

�

(t);

where we assume

_

f (t) > 0 to preserve the monotonic property.

The Hamiltonian that corresponds to the action I is found to be

H = �

�

2

(g

��

p

�

p

�

�m

2

); (2.16)

where p

�

is the momentum conjugate to x

�

. Since the momentum � con-

jugate to � vanishes, following Dirac's approach [1] to constrained systems

we must have the consistency condition _� = f�; Hg � 0. This leads to

� := g

��

p

�

p

�

�m

2

� 0; (2.17)

i.e., the Hamiltonian (2.16) be zero. Being �rst class, the constraint (2.17)

generates a local gauge symmetry, which is none other than the reparame-

trization of the system. Accordingly, the reduced phase space is given by

factorizing the constrained surface with respect to the gauge symmetry.
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Now we shall consider the case where M is the manifold of a semi-simple

Lie group G, which possesses the nondegenerate metric

g

��

(x) := Tr

�

g

�1

@

�

g g

�1

@

�

g

�

(2.18)

where g = g(x) 2 G is a group element. The `Tr' in (2.18) is de�ned

by the matrix trace `tr' in some irreducible representation multiplied by a

constant c, so as to provide an inner product hX ;Y i := Tr(XY ) = ctr(XY )

with a proper sign in the Lie algebra G of the group. (The constant c

possesses a typical scale factor, which we set to unity for brevity.) Choosing

a basis fT

m

g in G, we have the `at' metric in the Lie algebra, �

mn

:=

hT

m

; T

n

i, which is the metric in the tangent space on the group manifold.

As usual, X

m

:= hT

m

; Xi for X 2 G and the indices are raised/lowered as

X

m

= �

mn

X

n

using the inverse �

mn

of the metric �

mn

, whence hX ;Y i =

�

mn

X

m

Y

n

. In terms of the vielbein e

m

�

:= hT

m

; g

�1

@

�

gi one has g

��

=

e

m

�

e

n

�

�

mn

.

With (2.18) the action (2.14) can be written as

I

0

= �m

Z

dt

p

Tr(g

�1

_g)

2

(2.19)

which is coordinate free and hence globally well-de�ned over the group man-

ifold. The equations of motion derived from (2.19) are

d

dt

�

g

�1

_g

�

�

= 0; where

� :=

p

Tr(g

�1

_g)

2

: (2.20)

Similarly, the action (2.15) admits the global form

I = �

1

2

Z

dt

h

1

�

Tr(g

�1

_g)

2

+ �m

2

i

: (2.21)

A salient feature of M being a group manifold is that, in addition to the

reparametrization invariance, the system acquires a chiral invariance. In

fact, both of the actions, (2.19) and (2.21), are manifestly invariant under

the rigid left-right transformations,

g(x) �! hg(x) g(x) �! g(x)

e

h (2.22)

for arbitrary elements h,

e

h 2 G.

To provide a globally de�ned Hamiltonian description, let us recall the

free Hamiltonian system that can be de�ned to a semi-simple Lie group G,

that is, the system whose phase spaceM is given by the cotangent bundle

[59], [71]

M = T

�

G ' G� G = f(g;R)j g 2 G; R 2 Gg (2.23)
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on which the symplectic 2-form is given by

! = d� with; � = �TrR(g

�1

dg): (2.24)

The non-vanishing Poisson brackets derived from (2.24) are

fR

m

; R

n

g = f

l

mn

R

l

; fR

m

; g

ij

g = (gT

m

)

ij

; (2.25)

where f

l

mn

are the structure constants appearing in the basis: [T

m

; T

n

] =

f

l

mn

T

l

. The (total) Hamiltonian can be written as H = �1=2�� with � a

Lagrange multiplier, and

� = TrR

2

�m

2

� 0: (2.26)

Then, we get the equations of motion

_g = fg ;Hg = �gR;

_

R = fR;Hg = 0 (2.27)

and the constraint (2.26). Since this constraint together with the �rst equa-

tion of (2.27) imply �

2

= (�=m)

2

, the motion equations (2.27) reproduce

(2.20).

The conserved `right' current R appearing in (2.27) is in fact the Noether

current associated with the global right symmetry in (2.22) for the action

(2.19). Analogously, the `left' current

L := �g R g

�1

(2.28)

is the conserved Noether current associated with the left symmetry in (2.22),

which forms the Poisson brackets

fL

m

; L

n

g = f

l

mn

L

l

; fL

m

; g

ij

g = �(T

m

g)

ij

(2.29)

and commutes with the right current, fL

m

; R

n

g = 0. Both of the two

currents commute with the constraint (2.26) and are hence gauge invariant.

Although unnecessary so far in the present group manifold case, a local

coordinate system may be useful when we wish to �nd a physical interpre-

tation for the currents. Consider, for example, the normal coordinates

1

g(x) = e

x

m

T

m

; (2.30)

where x

m

are the `at' coordinates specifying the position of the particle.

Then, the momentum p

m

conjugate to x

m

reads

p

m

= �(g

�1

@

m

g)

n

R

n

= (@

m

g g

�1

)

n

L

n

: (2.31)

If we now de�ne the `vector current' V

m

by subtracting the two chiral cur-

rents, we get

V

m

=

1

2

(L

m

� R

m

) = p

m

+O(x

2

); (2.32)

1

This parametrization is available only for a neighbourhood of the identity g = 1, but

this is not important for our purpose here.



24

where O(x

2

) denotes a polynomial which is at least quadratic in x

m

. This

shows that in the vicinity of the origin g = 1 the vector current V

m

reduces

to p

m

, but since V

m

are conserved (while p

m

are not), and since V

m

are gauge

invariant and survive the reduction, we may regard V

m

as the `momentum'

(hence V

0

is the `energy') of the particle in the chronological gauge x

0

(t) = t.

On the other hand, the `axial vector current' A

m

de�ned by adding the two

currents becomes

A

m

=

1

2

(L

m

+R

m

) =

1

2

f

l

mn

x

n

p

l

+ O(x

2

): (2.33)

As we shall see shortly, for G = SL(2; R) the current A

m

will be interpreted

as the generator of three dimensional Lorentz transformations (hence A

0

is

the `angular momentum'). The orthogonality hV ;Ai = 0, which follows

from (2.28), is consistent with this interpretation.

We wish to remark at this point on the general solution for the equations

of motion (2.20). Thanks to the reparametrization invariance, the general

solution can readily be found by choosing the invariant length for the pa-

rameter t so that � = 1. Indeed, the equations of motion (2.20) then reduce

to

d

dt

(g

�1

_g) = 0, which can be integrated at once to be g(t) = g(0)e

�tR=m

,

where R 2 G is a constant satisfying (2.26). The general solution for

(2.20) can be obtained simply by returning to the generic parameter by

a reparametrization transformation t! f(t)

g(t) = g(0)e

�f(t)R=m

: (2.34)

The constant R is in fact the conserved right current determined from the

initial condition, g(0) and _g(0). (The solution can also be given in terms

of the left current as g(t) = e

f(t)L=m

g(0).) Thus, in the normal coordinates

(2.30) particle's trajectory is just a straight line for the initial condition

g(0) = 1.

We now specialize to the case G = SL(2; R) which is a three dimensional

Lorentzian manifold isomorphic to S

1

�R

2

. We shall work with the following

basis fT

m

g in the algebra G = sl(2; R)

T

0

=

�

0 �1

1 0

�

; T

1

=

�

0 1

1 0

�

; T

2

=

�

1 0

0 �1

�

: (2.35)

Choosing c = �1=2, we �nd that the at metric becomes

�

mn

= hT

m

; T

n

i = �

1

2

tr(T

m

T

n

) = diag (+1;�1;�1): (2.36)

Since the basis elements satisfy the relation

T

m

T

n

= ��

mn

� 1 + �

l

mn

T

l

(2.37)

with �

012

= +1, we have for X, Y 2 sl(2; R) the useful formula

XY = �hX ;Y i � 1 +

1

2

[X ;Y ] ; (2.38)
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and, in particular, XX = �jXj

2

� 1, where jXj

2

:= hX ;Xi. It is then easy

to show that if we write X = �

^

X with a `normalized' vector (i.e., j

^

X j

2

= �1

or 0), we have

e

X

=

8

>

<

>

:

cos� � 1 + sin� �

^

X; if j

^

X j

2

= +1;

cosh� � 1 + sinh� �

^

X; if j

^

X j

2

= �1;

1 + �

^

X; if j

^

X j

2

= 0:

(2.39)

We note that the orthochronous Lorentz group SO

"

(2; 1) in three dimen-

sions is realized by the adjoint action of SL(2; R)

X �! gX g

�1

with g 2 SL(2; R): (2.40)

More explicitly, the transformations in components induced by the adjoint

action (2.40) read

X

m

�! �

n

m

X

n

with �

n

m

= Tr(T

m

g T

n

g

�1

); (2.41)

where the matrices �

n

m

belong to the group SO(2; 1), whereas the property

�

0

0

� 1 can be seen by a direct computation. Clearly, the axial vector

current (2.33), which now takes the form A

m

= �

l

mn

x

n

p

l

, is the generator

of the Lorentz transformation (2.41), and in particular A

0

is the angular

momentum.

We now carry out the reduction of the Hamiltonian system explicitly by

means of the constraint (2.26) in the SL(2; R) case. The �rst point to be

noted is that the reduced phase space M

red

splits up into two coadjoint

orbits of the group. To see this, let us �rst write the variable R 2 G in

(2.23) used for the phase space M as

R = h

�1

K h with h 2 G K 2 G; (2.42)

where K is some �xed vector. The parametrization (2.42) is based on the

observation that any element in G = sl(2; R) can be reached from K by an

SO

"

(2; 1) transformation (2.40) with h, if we provide three types of K, that

is, time-like jKj

2

> 0, space-like jKj

2

< 0 and null jKj

2

= 0. Since one

can write K = r

^

K with r > 0 and a normalized vector

^

K , one sees that

the phase spaceM can be parametrized by the (redundant) set fg; h; r; sg,

where s := j

^

Kj

2

= �1, 0 indicates the type of K. Substituting (2.42) back

into (2.24) and renaming gh

�1

as g, we obtain

� = �

K

(g) + �

�K

(h

�1

); where �

K

(g) := �TrK(g

�1

dg): (2.43)

If K is constant but not null, then �

K

is just the standard canonical 1-form

associated with the coadjoint orbit O

K

of the group G passing through K.

But since the constraint (2.26) does indeed render K time-like constant with

r = m, we see that the reduced phase space is given by the direct product

of the two coadjoint orbits

M

red

' O

K

� O

�K

; (2.44)
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where the symplectic structure is carried over to those on the orbits. Ac-

cordingly, natural variables parametrizing the reduced phase space M

red

are the currents on the coadjoint orbits

L = �g K g

�1

and R = h

�1

K h (2.45)

which form independently an sl(2; R) algebra under the Poisson brackets

derived from (2.43).

Further, we point out that for SL(2; R) one can express the symplectic

2-form !

K

= d�

K

(or !

�K

= d�

�K

) for the coadjoint orbit solely in terms

of the chiral current L (or R) in (2.43). For example, in terms of the left

current the corresponding symplectic 2-form can be written as

!

K

(g) = �

1

4m

2

�

mnl

L

m

dL

n

^ dL

l

: (2.46)

To see this, we introduce a parameter � � 0 by h

^

K ;

^

Li := � cosh � with the

normalized left current

^

L := L=

p

jLj

2

, and construct the three vectors

T

0

:=

^

K �

^

L

2 cosh (�=2)

; T

1

:= �

^

K +

^

L

2 sinh (�=2)

; T

2

:=

[

^

K ;

^

L]

2 sinh �

: (2.47)

For �xed

^

K and

^

L, these vectors form a new orthonormal basis of the

sl(2; R) algebra,

hT

m

; T

n

i = �

mn

and [T

m

; T

n

] = 2 �

l

mn

T

l

: (2.48)

With this basis we consider the Euler angle representation of SL(2; R) ele-

ments

g = g(�; �; ) = e

�T

2

e

�T

0

e

T

2

: (2.49)

Note that among the three parameters is a bounded one 0 � � < 2�, which

is the parameter in the cyclic direction S

1

of the group manifold SL(2; R)

(see (2.39)). Observe also that the Lorentz transformation on the vector

^

K

by the adjoint action of g(�) = e

�T

2

is a `rotation' in the plane spanned by

^

K and

^

L

^

K �! g(�)

^

K g

�1

(�) =

sinh (2�+ �)

sinh �

^

K +

sinh 2�

sinh �

^

L: (2.50)

One then �nds that for � = ��=2 the vector

^

K is rotated to �

^

L, and for

� = ��=4 it is rotated halfway to �L, i.e., it directs to T

0

. But since the

parametrization (2.49) consists of two rotations of the type (2.50) with g(�)

and g() interrupted by the rotation with e

�T

0

, the parameters ful�lling the

relation L = �gKg

�1

in (2.45) are found to be

� =  = �

�

4

� = arbitrary: (2.51)

(The appearance of the free parameter � is expected from the counting of

degrees of freedom: SL(2; R) is three dimensional while its coadjoint orbit
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is two-dimensional for m 6= 0.) If we now express the canonical 1-form �

K

in (2.43) using (2.49) and (2.51), we get

�

K

(g) = �md� +

h[

^

K ;L] ; dLi

4(m� h

^

K ;Li)

: (2.52)

Choosing, e.g.,

^

K = �T

0

, we �nd that the corresponding symplectic 2-form

!

K

is just the one given in (2.46). Note that from (2.45) this choice implies

L

0

> 0 and R

0

< 0; (2.53)

that is, the left current lies in the coadjoint orbit given by an upper hyper-

boloid in the algebra sl(2; R) whereas the right current lies in the coadjoint

orbit given by a lower one.

2.3. Finite dimensional models of ED and YM theories. In this section we

consider the �nite-dimensional model with the SU (2) gauge group of sym-

metry. It is di�cult to obtain all gauge-invariant variables and therefore,

we use the method described at the end of Section 2.1. The obtained struc-

ture of gauge-invariant variables is quite unexpected. For comparison, we

also present the corresponding U (1) model. These U (1) and SU (2) mod-

els can be considered as the toy models of electrodynamics and Yang-Mills

theory (with matter), respectively. In the classical description, all `�elds'

are assumed to be c-numbers.

A. The model with U (1) symmetry

Let us consider the action

S=

Z

dt[

i

2

( 

�

_

 �

_

 

�

 ) �m 

�

 +A

0

( 

�

 � kE)+E

_

A�

1

2

E

2

]; (2.54)

where all `�elds' ( 

�

;  ;A

0

; A;E) are functions only of time t; m and k

(k 6= 0) are parameters. The similarity to electrodynamics is apparent from

the notation. At the same time, (2.54) has the form (2.1), where A

0

� �(t)

is a Lagrange multiplier, and � �  

�

 �kE is a constraint (we use the time

derivatives instead of 1-forms where it is convenient).

The nonzero Poisson brackets are

f ;  

�

g = i; fE;Ag = 1

and we have the gauge transformations

 (t) �! e

+i�(t)

 (t);  

�

(t) �! e

�i�(t)

 

�

(t)

and

A(t) �! A(t) + k�(t); E(t) �! E(t):

Then,

A

0

(t) �! A

0

(t) + _�(t)
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provides the invariance of action (2.54).

The reduced system is two-dimensional, and two gauge-invariant vari-

ables can be chosen as follows

	

inv

= e

�i

k

A

 	

�

inv

= e

i

k

A

 

�

(2.55)

(compare with (2.11)). Here the reduction procedure (2.6) is trivial and we

�nd

e

S =

Z

dt

�

i

2

(	

�

inv

_

	

inv

�

_

	

�

inv

	

inv

)�m	

�

inv

	

inv

�

1

k

2

(	

�

inv

	

inv

)

2

�

:

Thus, the `gauge �eld' A vanishes and the physical `excitations' are only

the `dressed �elds' 	

inv

(with `four-fermion interactions').

This model has a simple generalization in the case of a multi-component

gauge �eld

~

A with the gauge transformations

~

A �!

~

A+

~

k�;

where

~

k are parameters (

~

k

2

6= 0). The gauge-invariant variable 	

inv

is con-

structed similar to (2.55) (or, to (2.11)). Then, after reduction, the `longi-

tudinal' (to the

~

k) component of the gauge �eld

~

A vanishes and the physical

variables are the `transverse' ones, together with the constructed `dressed

�eld' 	

inv

. So, for these Abelian models, the structure of gauge-invariant

variables is very similar to the physical observables in electrodynamics [18],

[69].

B. The model with SU (2) symmetry

For the model with SU (2) gauge group of symmetry, we consider the

action

S =

Z

dt

�

i

2

( 

�

�

_

 

�

�

_

 

�

�

 

�

)�m 

�

�

 

�

+

~

A

0

(

~

j +

~

J) +

~

E

_

~

A�

1

2

~

E

2

�

: (2.56)

Here  

�

(� = 1; 2) is the 2-component spinor, m is a parameter,

~

A and

~

E are 3-dimensional vectors,

~

A

0

are Lagrange multipliers, and the angular

momenta

~

j and

~

J are given by

~

j =  

�

~�

2

 

~

J =

~

A�

~

E; (2.57)

where ~� are the standard Pauli matrices. The similarity with Yang{Mills

theory is obvious.

The nonzero Poisson brackets are

f 

�

;  

�

�

g = i�

��

fE

m

; A

n

g = �

mn

(m;n) = 1; 2; 3 (2.58)
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and the constraints

~

� =

~

j �

~

J generate the gauge transformations

 ! ! ;  

�

!  

�

!

�1

; A! !A!

�1

; E ! !E!

�1

;

where !(t) 2 SU (2) and

A �

1

2

~

A~�; E �

1

2

~

E~�: (2.59)

Then, for A

0

�

1

2

~

A

0

~�, we get A

0

! !A

0

!

�1

� i _!!

�1

:

Any scalar product of the vectors

~

A;

~

E;

~

J;

~

j will be gauge-invariant vari-

able. But on the constraint surface (

~

j +

~

J = 0), only three of them are

functionally independent. If we choose these independent gauge-invariant

variables as

l

0

=

1

4

(

~

A

2

+

~

E

2

); l

1

=

1

2

(

~

E

~

A); l

2

=

1

4

(

~

A

2

�

~

E

2

); (2.60)

then from (2.58) we obtain the sl(2; R) algebra (see (1.32)):

fl

�

; l

�

g = �

���

g

��

l

�

; where g

��

= diag(+;�;�; ): (2.61)

Since there are three constraints, the physical phase space is four-di-

mensional. To construct the fourth gauge-invariant variable and �nd the

complete symplectic structure, we use the method of Section 2.1 (see (2.12)).

For parametrization of the constraint surface, we introduce the new vari-

ables (j;�) and (h; ')

j =

1

2

(h

1

+ h

2

) h =

1

2

(h

1

� h

2

)

� = '

1

+ '

2

' = '

1

� '

2

;

(2.62)

where

 

�

=

p

h

�

e

�i'

�

;  

�

�

=

p

h

�

e

i'

�

; (� = 1; 2)

Then, for the 1-form, we have

i

2

( 

�

�

d 

�

�  

�

d 

�

�

) = jd� + hd': (2.63)

The vector

~

j (see (2.57)), in these new coordinates, takes the form

~

j =

0

@

p

j

2

� h

2

cos'

p

j

2

� h

2

sin'

h

1

A

and

~

j

2

= j

2

. Note that on the constraint surface we have (see (2.60))

l

�

l

�

= j

2

=4, and for �xed j, the commutation relations (2.61) de�ne the

well-known symplectic structure on this hyperboloid (see, e.g., [54]).
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If we introduce the orthonormal basis (~e

i

� ~e

k

= �

ik

; ~e

i

� ~e

j

= �

ijk

~e

k

):

~e

1

=

0

@

� sin'

cos'

0

1

A

~e

2

= �

h

j

0

B

@

cos'

sin'

�

p

j

2

�h

2

h

1

C

A

~e

3

=

~

j

j

;

then

~

A and

~

E can be parametrized as follows:

~

A = ~e

1

q

1

+ ~e

2

q

2

;

~

E = ~e

1

p

1

+ ~e

2

p

2

;

where

p

1

q

2

� p

2

q

1

= j: (2.64)

Calculating the restricted 1-form

~

Ed

~

Aj

M

c

in these new coordinates and

using (2.64), we obtain

~

Ed

~

Aj

M

c

= p

1

dq

1

+ p

2

dq

2

� hd': (2.65)

Comparing (2.63) and (2.65), we see that there is a cancellation of the 1-

form hd'. This means that the corresponding degree of freedom vanishes.

Now it is convenient to introduce the polar coordinates for the two-vectors

(q

1

; q

2

) and (p

1

; p

2

):

q

1

= r cos � p

1

= � cos ;

q

2

= r sin � p

2

= � sin :

Three of them (r; � and (��)) are connected with gauge-invariant variables

(2.60)

r

2

= 2(l

0

+ l

2

) � l

+

; �

2

= 2(l

0

� l

2

) � l

�

; r� cos(� � ) = 2l

1

:

Using these relations, we �nally get the reduced 1-form

�j

M

c

= jd#+ l

1

dl

+

l

+

where # = �� �: (2.66)

So the coordinate # = ��� is the fourth gauge-invariant variable. Respec-

tively, the reduced Hamiltonian takes the form

Hj

M

c

= 2mj +

j

2

+ 4l

2

1

l

+

(2.67)

and this is the complete reduction.

Note that the second part of the reduced 1-form l

1

d(ln l

+

) de�nes the

above mentioned symplectic structure on the hyperboloid l

�

l

�

=

1

4

j

2

.

We see that the physical picture of this reduced system di�ers from the

corresponding Abelian case. Here, after the reduction procedure, we obtain

the vanishing of the part of `matter �eld' ( ) degrees of freedom as well.

Geometric quantization [20] is a natural way of constructing the quantum

theory of the reduced system (2.66){(2.67), but, in principle, one can use
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the canonical quantization as well. For this purpose, it is convenient to

introduce (global) `creation' and `annihilation' variables

a

+

=

p

je

i#

; a =

p

je

�i#

; (2.68)

and in quantum theory, we get the discrete eigenvalues for j = a

+

a. Then,

quantization of the system with the canonical 1-form l

1

d(ln l

+

) and the

Hamiltonian (2.67) (for the obtained discrete eigenvalues of j), gives the

irreducible representations of SL(2; R) group (see, e.g., [54]).

Next, from (2.62), we have the relation N �  

�

�

 

�

= 2j. It is natural to

interpret the corresponding operator (

^

N � 2

^

j) as the  `particle number'

operator. In quantum theory, we have

[

^

N;

^

a

+

] = 2

^

a

+

;

where

^

a

+

is a physical creation operator (2.68). So among the physical

excitations (created by the operator

^

a

+

) there are states with only even

numbers of `fermions'. This fact can also be seen from the structure of the

variable a

+

(see (2.68) and (2.62)), since it has the phase factor e

i('

1

+'

2

)

. In

the quantum case the corresponding operator creates (see [72]) the pairs of

`dressed'  -particles. Thus, the vanishing of `matter �eld' degrees of freedom

in the classical case can be interpreted as the con�nement phenomenon of

the corresponding quantum theory.

Note that for the similar �nite-dimensional constrained systems, such

`con�nement' like phenomenon has been derived by the `�rst quantize and

then reduce' method (see [73]). In that approach, the reduction of the

extended states space by the conditions

^

�

a

j	

phys

i = 0 forbids states with

certain quantum numbers.

2.4. Field theory model with non-Abelian gauge group. For the �nite-di-

mensional models of the previous section, the gauge group G acts on the

con�guration space of `gauge �eld' A and on the phase space of `matter

�eld'  . This is the standard situation for the Yang-Mills theory.

Using the notations of (2.59), we have

~

Ed

~

A = hE; dAi; (2.69)

where h ; i is a scalar product in the corresponding Lie algebra G (see the

comments after (2.18)). Thus, the Lie algebra G can be interpreted as the

con�guration space of a `gauge �eld'

~

A and the corresponding cotangent

bundle as the phase space.

If one takes a manifold of a semi-simple Lie group G as the con�guration

space, then there are the natural actions (left and right) of G on this mani-

fold. One can similarly construct the gauge theory where the phase space is

a cotangent bundle over G. Generators of the left and right transformation

(g ! !g; g ! g!) are, respectively, the left and right currents (see (2.28)).

Choosing the gauge transformation as the right action, we �nd that the
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constraints are � � R = 0. Thus, the `gauge �eld' part in the action takes

the form (see (2.24)

Z

hR; g

�1

dgi � (h�; Ri+H(R; g))dt; (2.70)

where � 2 G gives the Lagrange multipliers,H is the gauge-invariant Hamil-

tonian, and for convenience we change the sign of R.

The �eld theory generalization of (2.56) is the standard Yang-Mills the-

ory. In this section, we consider the corresponding generalization of (2.70)

with the action

S =

Z

dt

"

Z

d

D�1

~x

 

D�1

X

k=1

hR

k

; g

�1

k

_g

k

i+ ehA

0

; �i

!

�H

#

; (2.71)

where g

k

(~x; t) 2 G; R

k

(~x; t); A

0

(~x; t) 2 G; H is a gauge-invariant Hamilto-

nian,A

0

are Lagrange multipliers, �(~x; t) � e

P

D�1

k=1

R

k

(~x; t) are constraints,

and e is the coupling constant (see below).

The `1-form'

P

D�1

k=1

hR

k

; g

�1

k

dg

k

i de�nes the equal-time Poisson brackets

(2.25)

fR

k;a

(~x); R

l;b

(~y)g = �

kl

�(~x� ~y)f

c

ab

R

k;c

(~x);

fg

k

(~x); R

l;a

(~y)g = �

kl

�(~x� ~y)(g

k

T

a

(~x));

fg

k

(~x); g

l

(~y)g = 0; (2.72)

where the set fT

a

j T

a

2 Gg is some basis in the Lie algebra G, and R

a

�

hT

a

; Ri Thus, for the constraints �

a

� hT

a

; �i, we have

f�

a

(~x); �

b

(~y)g = �(~x� ~y)f

c

ab

�

c

(~x) (2.73)

The corresponding gauge transformations are

g

k

�! g

k

! R

k

�! !

�1

R

k

! (2.74)

and one can easily construct the following gauge-invariant variables

g

kl

= g

k

g

�1

l

and L

k

= g

k

R

k

g

�1

k

: (2.75)

The Hamiltonian H in (2.71) is an arbitrary functional of such gauge-

invariant variables.

Since Eq. (2.75) gives the su�cient number of gauge-invariant variables,

we can use the scheme described in Section 2.1. The �rst nontrivial case is

3-dimensional space-time. If we introduce g = g

1

g

�1

2

as the �

�

variables,

and R

1

; R

2

and g

2

as the � variables of the scheme (see (2.12)), then for

the `1-form' � = hR

1

; g

�1

1

dg

1

i+ hR

2

; g

�1

2

dg

2

i (where integration over R

2

is

assumed), we immediately get

� = hR

1

+ R

2

; g

�1

2

dg

2

i + hg

2

R

1

g

�1

2

; g

�1

dgi
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and after reduction we have

�j

M

c

= hr; g

�1

dgi; (2.76)

where r := g

2

R

1

g

�1

2

is also gauge-invariant variable.

Thus, the structure of the 1-form is the same, and only the number of

variables decreasing. One can verify this fact for other dimensions as well.

It is clear that the phase spaces of the systems with 1-forms (2.69) and

(2.24) are essentially di�erent, and there is no regular map between them.

But in the �eld theory (where in�nite number of such spaces exist), there

is a nonlocal transformation (see [74-75])

A

k

=

1

e

g

�1

k

@

k

g

k

E

k

= �eg

�1

k

@

�1

k

(L

k

)g

k

(2.77)

which transforms system (2.71) into the Yang-Mills theory with the same

gauge group G. Indeed, from (2.71) and (2.77), one can see that

� =

D�1

X

k=1

@

k

E

k

+ e[A

k

; E

k

] (Gauss law)

and

hE

k

;

_

A

k

i = hR

k

; g

�1

k

_g

k

i + (total derivatives): (2.78)

To get the corresponding Hamiltonian of the Yang-Mills theory [76]

H =

1

2

Z

d

D�1

~x

0

@

D�1

X

k=1

hE

k

; E

k

i+

1

2

D�1

X

k;l=1

hF

kl

; F

kl

i

1

A

with F

kl

= @

k

A

l

� @

l

A

k

+ e[A

k

; A

l

], one must choose the following Hamil-

tonian

H =

1

2

Z

d

D�1

�

e

2

h@

�1

k

L

k

; @

�1

k

L

k

i +

1

e

2

h@

k

(g

kl

@

l

g

lk

); @

k

(g

kl

@

l

g

lk

)i

�

(2.79)

in (2.71). Thus, we can assume that the system (2.71), (2.79) is equivalent

to the ordinary Yang-Mills theory with some boundary conditions (which

allows us to invert (2.77) and to neglect the total derivatives in (2.78)).

The boundary behavior is a subtle problem even for simple models of the

�eld theory (see, e.g., Appendix B). It is too complicated for the Yang-Mills

theory and we do not consider it here.

Unfortunately, the complicated form of the Hamiltonian (2.79) is not

simpli�ed after the reduction procedure. For example, in the considered

3-dimensional case, the reduced Hamiltonian acquires the form

H =

1

2

Z

d

2

x

h

e

2

h@

�1

1

r; @

�1

1

ri+ e

2

h@

�1

2

l; @

�1

2

li +

+

1

e

2

h@

1

(g@

2

g

�1

); @

1

(g@

2

g

�1

i

i

; (2.80)
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where l = grg

�1

.

Gribov's ambiguity problem [15] has stimulated many papers on the

gauge-invariant description of the Yang-Mills theory. For the literature and

new results on this problem see in [7]. The reduced system (2.76), (2.80)

gives one of the possible versions of the Hamiltonian reduction for this the-

ory. The main problem in such approaches is the complicated form of the

Poincar�e generators in terms of gauge-invariant variables [74-77]. For ex-

ample, Hamiltonian (2.80) is nonlocal in �elds and nonanalytical in the

coupling constant e. So the standard perturbative quantization is not ap-

plicable here.

Note that the Hamiltonian (2.80) and the corresponding symplectic form

was obtained in [74-75] by the Dirac bracket formalism.

3. Quantization

In this chapter, we consider general quantization problems. We anal-

ize the di�culties of canonical quantization and give the examples of non

canonical quantization. The content of this chapter is based mainly on the

papers [50], [54-55], but it uses the results of previous papers as well.

3.1. Quantization principles. The classical theory usually plays a role of

some approximation to quantum theory, however, it is necessary to stress,

that a consistent quantum theory exists not for arbitrary classical one. On

the other hand, there is no smooth `classical' limit (~ ! 0) for all pre-

dictions of quantum theory and the primary role of classical theory is to

provide a framework for the interpretation of quantum theory, rather than

its approximation. Such a point of view �rst was indicated by Dirac and he

formulated correspondence principles of classical and quantum theories as

a similarity between their mathematical structures.

According to Dirac's formulation [78], the quantization of a Hamiltonian

system can be considered as a mapQ of the classical observables f(�); g(�),

h(�); : : : , into the Hermitian operators

^

f; ĝ;

^

h; : : : , which act on some ap-

propriate Hilbert space H. We call corresponding operators the quantum

observables. The map Q should satisfy the following principles:

P1. Linearity: if a and b are real numbers (a; b 2 R), then

Q : (af(�) + bg(�)) 7! a

^

f + bĝ:

P2. Mapping of the Poisson-Lie structure:

Q : ff; gg 7!

i

~

[

^

f; ĝ]: (3.1)

P3. Mapping of the centre: constant functions are mapped into constant

operators

Q : f

0

7!

^

I;

where f

0

(�) � 1 and

^

I is the unit operator.
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P4. Irreducibility: any operator

^

C, which commutes with all operators

Q�

i

(i = 1; : : : ; 2N ) should be proportional to the unit operator

^

C = c

^

I

with some number c.

Here we assume that all coordinates are global and therefore they are

observables as well.

In the case of canonical variables p, q, the correspondence (3.1) gives the

Heisenberg commutation relation

[q̂; p̂] = i~

^

I (3.2)

and the operators q̂; p̂ and

^

I form the Heisenberg algebra. From the text

books of quantum mechanics it is well known that the commutation relation

(3.2) provides the Heisenberg uncertainty principle for the coordinate and

momentum (�p)(�q) � ~=2.

We see that the Dirac's correspondence principles (P1-P4) preserves the

Poisson-Lie structure of the classical system and this is a mathematical

correspondence of the two theories. Of course, there is some physical moti-

vation for these principles.

It is clear that the linearity principle P1 is related to the superposition

principle of quantum mechanics, while the second and third principles are

responsible for the realization of quantum uncertainty principle and symme-

try group transformations of the quantum system. The principle P4 takes

into account a number of physical degrees of freedom, and at the same time,

it provides irreducibility of a representation of some fundamental transfor-

mation groups.

In quantum description, we use the Dirac's `bra-ket' notations for vectors

of Hilbert space, scalar product and mean values. Thus, h j

^

f j i denotes

the mean value of the quantum observable

^

f in the state j i.

Unfortunately, in the consistent quantization schemes one can satisfy

all four correspondence principles (P1-P4) only for some restricted class of

observables, and there is no possibility to extend these principles for all

observables [79-80]. Nevertheless, it is interesting to note, that some of

these principles can be satis�ed for all observables if we refuse other ones.

Then, restriction on the class of observables arises, when we try to satisfy

all principles together.

For illustration, we consider the Hilbert space

e

H = L

2

(M) with the

scalar product

h	

2

j	

1

i =

Z

d�(�) 	

�

2

(�)	

1

(�); (3.3)

where d�(�) is the invariant measure (1.43).

From the equation (1.19) we see that the operators

Qf = �i~V

f

(3.4)
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satisfy the principles P1 and P2 automatically. However, by (3.4), the

constant functions are mapped into the zero operators, and there is no

irreducibility as well.

In the case of Example A (see (1.13)), the map (3.4) gives

Qp = �i~@

q

Qq = i~@

p

and instead of the Heisenberg algebra we get two commuting operators.

In 1960 Segal [81] proposed the following generalization of (3.4)

Q : f 7! f(�) � �(V

f

)� i~V

f

�

^

f; (3.5)

where �(V

f

) is the value of the 1-form � = �

i

(�)d�

i

on the Hamiltonian

vector �eld V

f

(see (1.11) and (1.5)):

�(V

f

) � �

j

(�)!

jk

(�)@

k

f(�):

Thus, the operator

^

f is constructed from the invariant terms, and it does

not depend on the choice of coordinates onM.

We call the operators (3.5) the pre-quantization operators. One can check

that the pre-quantization operators are Hermitian with respect to the scalar

product (3.3), and they satisfy the principles P1-P3. Then, the problem

is only with the irreducibility P4. Of course, this problem is related to

the Hilbert space L

2

(M) which is too large for the corresponding quantum

system. It is clear that some reduction of L

2

(M) is a natural way to get the

irreducibility. The construction of pre-quantization operators and further

reduction of the Hilbert space are the basic ideas of geometric quantization

[20]. This method is quite general, and it can be used for the quantization of

Hamiltonian systems with almost arbitrary symplectic manifolds. However,

as it was mentioned in Introduction, despite a 20-years history, geometric

quantization is still not popular among physicists due to a comparatively

complicated mathematical formulation.

Recall that the standard canonical quantization is applicable only for

the manifolds with the global cotangent bundle structure (M = T

�

Q) and

the global canonical form (1.16). In that case we have a separation of all

coordinates �

k

(k = 1; : : : ; 2N ) into two canonically conjugated parts. The

�rst part is formed by the `coordinates' (q

�

) (of the con�guration space

Q), and the second by the corresponding `momenta' (p

�

) (� = 1; : : : ; N ).

Since the latter are unbounded: �1 < p

�

< +1, one can use the standard

quntization rule

q

�

�! q̂

�

= q

�

; p

�

�! p̂

�

= �i~

@

@q

�

: (3.6)

According to Darboux's theorem, the canonical coordinates exist on an

arbitrary symplectic manifold; but in general, such coordinates exist only lo-

cally [20], and there is no global cotangent bundle structure with unbounded

momenta. Consistent quantization assumes some equivalence between the
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set of quantum mean values Q

f

� fh j

^

f j i : j i 2 H; h j i = 1g and the

set of corresponding classical values C

f

� ff(�) : � 2 Mg

2

. Therefore,

in general, the rule (3.6) is not acceptable, since the spectrum of the �rst

order di�erential operator is unbounded.

After the realization of canonical commutation relations (3.2) by the rule

(3.6), the next step of the canonical quantization is a construction of other

quantum observables. The corresponding map Q is given by

Q : f(p; q) 7! f(p̂; q̂) (3.7)

and in general, due to the non-commutativity of the operators p̂ and q̂, we

have to indicate some ordering rule in the classical function f(p; q).

As it was mentioned above, all classical commutation relations cannot be

mapped identically for the corresponding quantum observables. In particu-

lar, according the Groenwald-van Hove theorem [80]-[79] it is impossible to

extend the classical Poisson-Lie algebra to polynomials in the momenta of

degree more that two. But one can prove the following important

Lemma. Let O

1

be the class of observables f(p; q) of the following form

f(p; q) = A

k

(q)p

k

+ B(q); (3.8)

where A

k

(q) and B(q) are arbitrary smooth functions. If we choose the

ordering

^

f =

1

2

�

A

k

(q)p̂

k

+ p̂

k

A

k

(q)

�

+ B(q); (3.9)

where p̂ and q̂ are the operators of canonical quantization (3:6), then:

I. O

1

is the subalgebra of O(M).

II. The corresponding operators (3:9) are Hermitian.

III. There are no anomalies in the commutation relations of the operators

(3:9).

The statements I and II are almost trivial, and III can be checked by the

direct calculation using the di�erential operators p̂ = �i~@

q

.

A certain choice of the ordering in (3.7) provides the realization of the

classical commutation relations only for the restricted class of observables,

and in general, there is no some selected ordering rule. The ordering freedom

actually is the ambiguity for any quantum theory. It is clear that this

ambiguity vanishes in the classical limit ~! 0.

In the case of `at' phase spaceM = R

2N

, some natural ordering is the

Weyl's one, which implies a complete symmetrization of operators p̂ and q̂

in the corresponding polynomials [82-83].

Representation of the canonical commutation relations (3.2) is possible

only in the in�nite-dimensional linear space with unbounded operators.

2

Q

f

and C

f

should be the same at least in the classical limit (~! 0).
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Such operators have some domain of de�nition, and they cannot be ex-

tended to the whole Hilbert space H. For example, in the `at' case, both

momentum and coordinate operators in (3.2) are unbounded, and respec-

tively this commutation relation have no sense on the whole Hilbert space

H.

With some natural assumptions on the domain of de�nition of the coordi-

nate and momentumoperators one can prove Stone - von-Neumann theorem

([84]-[85]), that all irreducible representations of the canonical commutation

relations are unitary equivalent.

If the classical commutation relations (1.22) are preserved for the corre-

sponding operators

^

h

�

= Qh

�

, then these operators generate the group of

unitary transformation given by

U

�

h

= exp(

i

~

�

�

^

h

�

): (3.10)

In the case of Example a (see (1.26)-(1.28)), we get the Weyl group [82]

with the elements

U (�; P;Q) = exp(

i

~

�) exp

�

i

~

(P q̂ �Qp̂)

�

; (3.11)

where we use the parametrization �

0

:= �, �

1

:= �Q, �

0

:= P . To obtain

the multiplication rule for the Weyl group, one can use Weyl's formula

3

e

^

f

e

ĝ

= e

^

f+ĝ

e

1

2

[

^

f ;ĝ]

(3.12)

which is true when

[

^

f; [

^

f; ĝ]] = 0; [ĝ; [

^

f; ĝ]] = 0

If we introduce the one parameter transformations U

1

(Q) and U

2

(P )

U

1

(Q) := exp (�

i

~

Qp̂) U

2

(P ) := exp (

i

~

P q̂); (3.13)

then from (3.12) we get the relation of non-commutativity

U

2

(P ) U

1

(Q) = exp (

i

~

PQ)U

1

(Q)U

2

(P ) (3.14)

which actually de�nes the multiplication rule for the whole Weyl group

U (�

1

; P

1

; Q

1

)U (�

2

; P

2

; Q

2

) =

= U (�

1

+ �

2

+

1

2

(P

1

Q

2

� P

2

Q

1

); P

1

+ P

2

; Q

1

+ Q

2

): (3.15)

This group can be considered as the `quantum deformation' of the commu-

tative translation group on the plane (see (1.28)).

3

Generalization of (3.12) for arbitrary case is the Backer-Cambel-Hausdorf formula

[66].
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In the classical case, the translation group is generated by the commuting

operators (see (1.5))

V

p

= @

q

; and V

q

= �@

p

:

Non-commutativity for the Weyl group comes from the Heisenberg algebra

(3.2) which is related to the Heisenberg uncertainty principle. Thus, we can

summarize that:

a) The basic physical principles for quantum theory are the superposition

and uncertainty principles;

b) Dirac's postulates P1-P4 are the mathematical realization of these prin-

ciples;

c) as a result, we have the Heisenberg algebra and then, for the transforma-

tions of quantum system we get the Weyl group.

But one can postulate in another way too: we can take a de�nition of

the Weyl group (3.15) (or of the non-commutativity (3.14)) as the primary

principle, and consider the Heisenberg commutation relations (3.2) as the

consequence.

This idea can be generalized, and one can consider quantization of a

classical system as a suitable unitary representation of the corresponding

symmetry group [28-29]. This representation should take into account pe-

culiarities of the phase space and a possible quantum deformation, which

is responsible for the uncertainty principle. Necessity for such generaliza-

tion arises for the systems without the global canonical structure when one

cannot apply the ordinary canonical method.

Note that the elements of the Weyl group are the unitary operators and

they are well de�ned for arbitrary vector of the Hilbert space H. Respec-

tively, the non-commutativity relations (3.14) are valid globally on the whole

Hilbert space, while the canonical commutation relation (3.2) has no mean-

ing for some vectors of H.

Unfortunately, mathematical principles of quantum mechanics cannot be

tested directly, and, by experiments, we usually verify only some conse-

quence of these principles. At the end of this section we consider a possible

test for the non-commutativity relation (3.14).

Note that the Weyl group is connected with the transformations of the

inertial frames. Indeed, the transformation U

1

(Q) = U (0; 0; Q) corresponds

to the translation in the coordinate space, while the operator U

2

(P )) can

be interpreted as the Galiley transformation (at t = 0) to the inertial frame

with the velocity v = P=m, where m is a mass of a particle. In the classical

theory these two transformations commute. This means that two observers,

the �rst moving in the translated system and the second translated in the

moving system, see the classical particle in the same state. Note that for

a relativistic particle indicated transformations are non-commuting and, in

principle, this e�ect is measurable.

In quantum mechanics we also have the non-commutativity given by

(3.14). Then, the wave functions in the indicated classically equivalent
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frames di�er by the phase factor exp (

i

~

PQ). Of course, a possible measure-

ment of this e�ect could be a good test for the non-commutativity relation

(3.14) and respectively, for the Weyl group too.

3.2. Examples of non-canonical quantization.

Quantization on a cylindre

The translation group on a cylindre is given by (1.33). We denote the

corresponding quantum transformations by U

1

(�) and U

2

(S) where, for con-

venience, we denote the group parameters by � and S. Formally, these

operators are analogous to (3.13)

U

1

(�) � exp (�

i

~

�

^

S) U

2

(S) � exp (

i

~

S'̂): (3.16)

But, now, we are not introducing the operators

^

S, '̂, and the operators

U

1

(�), U

2

(S) are the primary ones.

The quantum non-commutativity rule is postulated by

U

2

(S) U

1

(�) = exp (

i

~

S�)U

1

(�)U

2

(S): (3.17)

Then, consecutive actions of the operators U

1

and U

2

de�ne the group of

transformations. Any element of this group can be written in the form

U (�; S; �) = exp (

i

~

�)U

1

(�) U

2

(S)

and the equation (3.17) gives a multiplication rule for this group (similarly

to (3.14)-(3.15)).

The transformations (3.16) are assumed to be unitary and we have the

natural conditions

U

1

(0) =

^

I = U

2

(0): (3.18)

Taking into account the periodicity in � (see (1.35)), we impose the

condition

U

1

(�+ 2�) = U

1

(�): (3.19)

Then, from the equations (3.17)-(3.19) we obtain

exp (

i

~

2�S) = 1 () S = n~;

Thus, we conclude that the quantum non-commutativity rule (3.17) restricts

the possible values of the parameter S for the quantum transformations

U

2

(S), and the equations (3.17)-(3.19) can be satis�ed simultaneously only

if S=~ is integer.

One can construct the following irreducible representations of (3.17) with

natural physical interpretations:
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i) The Hilbert space L

2

is given by the ortho-normal basis jni (n 2 Z),

and the transformations U

1

(�) and U

2

(S) act on this basis in the following

way:

U

1

(�)jni = e

�in�

jni; U

2

(m~)jni = jn+mi: (3.20)

ii) The Hilbert space is the space of square-integrable functions on the

circle L

2

(S

1

), and the action of the operators U

1

(�) and U

2

(m~) on the

function  (') 2 L

2

(S

1

) is given by

U

1

(�) (') =  (' � �); U

2

(m~) (') = e

im'

 ('): (3.21)

One can check that both (3.20) and (3.21) give the realization of non-

commutativity (3.17), and the conditions (3.18)-(3.19) are satis�ed as well.

The unitary equivalence of the representations i) and ii) is given by the

maps ( (') $  

n

)

 (') =

X

n

e

in'

p

2�

 

n

;  

n

=

Z

d'

e

�in'

p

2�

 (');

where  

n

are the coe�cients of the expansion for the state j i 2 L

2

in the

basis jni

j i =

X

n

 

n

jni:

Quantization on a torus

In the case of a torus (see Examples C and d in Chapter 1), there are two

one-parameter unitary transformations U

1

(�

2

) and U

2

(�

1

), which are both

periodic with periods a

2

and a

1

, respectively

U

1

(�

2

+ a

2

) = U

1

(�

2

); U

2

(�

1

+ a

1

) = U

2

(�

1

): (3.22)

We postulate the non-commutativity rule

U

2

(�

1

) U

1

(�

2

) = exp (

i

~

�

1

�

2

)U

1

(�

2

)U

2

(�

1

) (3.23)

and from (3.22)-(3.23) obtain that both parameters �

1

and �

2

are quantized

�

1

=

2�~n

a

2

�

2

=

2�~m

a

1

; (3.24)

where m and n are arbitrary integers. Using again the periodicity conditions

(3.22), we �nd

a

1

a

2

= 2�~N (3.25)

with some �xed positive integer N . Therefore, the group of quantum trans-

formations contains a �nite number of elements. We also conclude that the

consistent quantum theory on the torus requires quantization of the phase

space volume by the condition (3.25). Since the parameters �

1

and �

2

are
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discrete and periodic, we can denote the quantum translations (3.22) by

U

1

(m) and U

2

(n) (m;n = 0; : : : ; N � 1). Note that the condition (3.25) is

equivalent to the Bohr-Sommerfeld quantization rule.

Now, similarly to the previous case, one can construct two N dimensional

`�

1

' and `�

2

' representations:

i

0

). The ortho-normal basis of the �rst representation is formed by the

vectors jni

1

(n = 0; : : : ; N � 1), and we de�ne

U

1

(m)jni

1

= e

�

2�inm

N

jni

1

; U

2

(m)jni

1

= j[n+m]

N

i

1

; (3.26)

where [n+m]

N

is the sum of numbers n and m with the module N .

ii

00

). The vectors jni

2

with (n = 0; : : : ; N�1) form the basis of the second

representation and

U

1

(m)jni

2

= j[n+m]

N

i

2

; U

2

(m)jni

2

= e

2�inm

N

jni

2

: (3.27)

These representations are unitary equivalent and the corresponding `tran-

sition matrix' has the form

2

hnjmi

1

=

e

2�imn

N

p

N

:

Quantization of the reduced SL(2; R) system

We are now going to discuss the quantization of the system considered in

Section 2.2. It was a relativistic particle moving on SL(2; R) group manifold.

However, having seen that the reduced phase space consists of the two

coadjoint orbits (2.44), the problem actually reduces to the quantization of

the system of coadjoint orbits. In other words, the quantization amounts to

�nding unitary, irreducible representations of the algebra sl(2; R) formed by

the chiral currents on the coadjoint orbits, O

K

and O

�K

. On account of the

constraint (2.26) which requires the CasimirQ = 1=4TrL

2

to be the positive

constant m

2

=4, the irreducible representations [86] (see also, [87]) relevant

for our purpose are the discrete series D

�

j

with 2j = 3; 4; : : : , for which q =

j(j�1) > 0. Further, the conditions (2.53) require that the representations

for the left sector should be given by D

+

j

while those for the right sector

are D

�

j

. A simple realization for these representations can be provided

by the Holstein-Primako� method, in which one uses creation/annihilation

operators [a ; a

y

] = 1 as a basic building block. For instance, for the left

sector we have [53]

L

�

:= L

1

+ iL

2

= 2

p

a

y

a+ 2j � a;

L

+

:= L

1

� iL

2

= 2a

y

�

p

a

y

a+ 2j;

L

0

:= 2(a

y

a+ j):

(3.28)
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It is straightforward to check that the left current given in (3.29) satis�es

the constraint (2.26) as well as the (quantum) commutation relations

[L

m

; L

n

] = 2i �

l

mn

L

l

: (3.29)

In the familiar Fock space consisting of the states jn

L

i for n

L

= 0; 1; 2; : : :

with

ajn

L

i =

p

n

L

jn

L

� 1i; a

y

jn

L

i =

p

n

L

+ 1 jn

L

+ 1i; (3.30)

we �nd

L

�

jn

L

i = 2

p

(n

L

� 1 + 2j)n

L

jn

L

� 1i;

L

+

jn

L

i = 2

p

(n

L

+ 2j)(n

L

+ 1) jn

L

+ 1i;

L

0

jn

L

i = 2(n

L

+ j) jn

L

i:

(3.31)

Analogously, one can construct representations for the right sector using an-

other pair of creation/annihilation operators for the right current. Actually,

this is equivalent to the formal replacement fL

+

; L

�

; L

0

g ! f�R

�

;�R

+

;

�R

0

g in the above construction, which leads to the Fock space consisting

of jn

R

i for n

R

= 0; 1; 2; : : : , for which

R

�

jn

R

i = �2

p

(n

R

+ 2j)(n

R

+ 1) jn

R

+ 1i;

R

+

jn

R

i = �2

p

(n

R

� 1 + 2j)n

R

jn

R

� 1i;

R

0

jn

R

i = �2(n

R

+ j) jn

R

i:

(3.32)

The full Hilbert space is spanned by the states given by the direct product

of the two representations, D

+

j

and D

�

j

, sharing the same value for the

Casimir. The states are thus labeled by the two integers, jn

L

; n

R

i = jn

L

i


jn

R

i, on which the energy V

0

in (2.32) and the angular momentum A

0

in

(2.33) act as

V

0

jn

L

; n

R

i = (n

L

+ n

R

+ 2j) jn

L

; n

R

i;

A

0

jn

L

; n

R

i = (n

L

� n

R

) jn

L

; n

R

i:

(3.33)

The above result shows that the energy levels are positive de�nite and

spaced integrally, which is in fact expected because of our identi�cation

of x

0

2 S

1

being `time', while the angular momentum takes integer values

only. The allowed mass of the particle at the quantum level is

m = 2

p

j(j � 1) with 2j = 3; 4; : : : : (3.34)

As we have seen in Section 2.2, the basic ingredient underlying the sim-

plicity of the quantization is the chiral split of the reduced system, that is,

the split into two coadjoint orbits. In this respect, it is worth mentioning

that essentially the same split was discussed (for compact groups) in [88]

for the system of the cotangent bundle. This suggests that the Hamiltonian

reduction and the subsequent quantization considered for SL(2; R) may

be generalized to any higher rank group G with the simplicity intact, by
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specifying all the Casimir elements of the group in the form of constraints.

Whether this yields a physically interesting model or not is however unclear

except for G = SL(2; R).

3.3. Roots of the phase operators. The problem of polar-decomposition of

the creation and annihilation operators (â

+

, â) of a harmonic oscillator goes

back to Dirac [89]. First we consider some aspects of this problem (for more

details see 72).

Let H be the oscillator hamiltonian

H =

1

2

(p

2

+ q

2

); (3.35)

where p and q are the canonical coordinates (fp; qg = 1) on R

2

.

The polar angle ' is introduced by

p = �

p

2H sin'; q =

p

2H cos' (3.36)

and the complex variables a and a

�

a =

q + ip

p

2

; a

�

=

q � ip

p

2

(3.37)

take the form

a =

p

He

�i'

; a

�

=

p

He

i'

: (3.38)

Note that the complex variables a

�

, a are the classical functions for the

creation and annihilation operators â

+

, â.

The variable ' is not an observable (it is only a local coordinate), but

formally, the HamiltonianH and the polar angle ' are canonical coordinates

since from (3.36) we have

! = dp^ dq = dH ^ d': (3.39)

The functions e

�i'

are correctly de�ned on the whole phase space R

2

,

except the origin, and for the Poisson brackets with the Hamiltonian (3.35)

we have

fH; e

�i'

g = �ie

�i'

: (3.40)

In the quantum case we choose the normal ordering of the Hamilton

operator and de�ne it by

^

H

0

= â

+

â �

p̂

2

+ q̂

2

2

�

^

I

2

; (3.41)

where

^

I is the unit operator and, for convenience, we choose the units with

~ = 1.

It is well known that the eigenvalues of

^

H

0

are nonnegative integers. The

corresponding eigenvectors jni (n = 0; 1; 2; : : :)

^

Hjni = njni (3.42)
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form the basis of the Hilbert space and satisfy (3.30). For further conve-

nience, this Hilbert space we denote by H

B

(the bosonic space), and we

consider the operator

^

H

0

as the particles (bosonic) number operator:

Let us introduce the operators

^

E

�

jni =

(

jn� 1i; n > 0

0; n = 0

^

E

+

jni = jn+ 1i: (3.43)

Then, from (3.30) and (3.42) we get

^

E

�

=

1

p

^

H

0

+

^

I

â

^

E

+

= â

�

1

p

^

H

0

+

^

I

; (3.44)

where the operator function

p

^

H

0

+

^

I acts on the basis vectors (3.42) as a

diagonal operator

1

p

^

H

0

+

^

I

jni =

1

p

n+ 1

jni:

Comparing (3.43) and (3.38), we can assert that e

�i'

are the classical func-

tion of the operators

^

E

�

. We call these operators the phase operators.

Note also that the de�nition (3.43) gives

[

^

H

0

;

^

E

�

] = �

^

E

�

and these commutation relations are equivalent to the corresponding clas-

sical ones (see (3.40)).

From the de�nition (3.43), it is clear that the phase operators are mutu-

ally conjugate, and they satisfy only the one-side unitary relations

^

E

+

^

E

�

=

^

I � j0ih0j

^

E

�

^

E

+

=

^

I; (3.45)

where j0ih0j is the projection operator on the vacuum state.

Now we consider the square root of the phase operators

^

E

1=2

�

. The corre-

sponding classical functions exp (�i'=2) are singular and multi-valued, but

formally, from (3.39) we have

fH; e

�i'=2

g = �(i=2)e

�i'=2

;

which in the quantum case should take the form

[

^

H

0

;

^

E

1=2

�

] = �(1=2)

^

E

1=2

�

: (3.46)

Then, the operators

^

E

1=2

�

must decrease (or increase) by 1=2 the levels of

the oscillator Hamiltonian. However, since such states are absent in the

spectrum, relations (3.46) cannot be realized on the Hilbert space H

B

.

It is well-known that Dirac's equation describes fermions and Dirac's

operator i

�

@

�

is connected with the square root of @ 'Alamber's operator

@

2

[3]. Similarlywe can try to connect the square root of the phase operators

^

E

1=2

�

with the fermionic operators.
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For this purpose we introduce the fermionic operators

^

f and

^

f

+

with the

anticommutation relations

^

f

2

=

^

f

+2

= 0

^

f

^

f

+

+

^

f

+

^

f =

^

I: (3.47)

These relations can be irreducibly represented in the two-dimensional

space H

F

with the basis vectors jni

F

(n = 0; 1)

^

f j0i

F

= 0

^

f j1i

F

= j0i

F

^

f

+

j0i

F

= j1i

F

^

f

+

j1i

F

= 0:

For the fermionic number operator

^

N

F

=

^

f

+

^

f satis�es

[

^

N

F

;

^

f ] = �

^

f ; [

^

N

F

;

^

f

+

] =

^

f

+

;

^

N

F

jni

F

= njni

F

:

Now we consider the exterior product of the spaces H

B

and H

F

: H

BF

:=

H

B


H

F

and introduce the new Hamiltonian

^

H

^

H =

^

H

0




^

I

F

+ (1=2)

^

I

B




^

N

F

; (3.48)

where

^

I

B

and

^

I

F

are the identity operators in the corresponding Hilbert

spaces H

B

and H

F

.

To simplify the notation we replace the operators

^

H

0




^

I

F

and

^

I

B




^

N

F

respectively by

^

H

0

and

^

N

F

, i.e.,

^

H =

^

H

0

+ (1=2)

^

N

F

: (3.49)

The eigenstates of the new Hamiltonian

^

H are characterized by two numbers

jn

B

; n

F

i,

^

Hjn

B

; n

F

i = (n

B

+

1

2

n

F

)jn

B

; n

F

i;

with n

B

= 0; 1; 2; : : :; n

F

= 0; 1:

Let us introduce the operators

^

A

�

^

A

+

=

^

f

+

+

^

E

+

^

f

^

A

�

=

^

f +

^

E

�

^

f

+

: (3.50)

Obviously the operator

^

A

+

increases by 1=2 and the operator

^

A

�

decreases

by 1=2 every eigenvalue level of the operator

^

H (except the vacuum state

which is canceled by

^

A

�

). Thus, the following relations are satis�ed

[

^

H;

^

A

�

] = �(1=2)

^

A

�

: (3.51)

Considering quadratic combinations of the operators

^

A

�

, we obtain

(

^

A

+

)

2

=

^

E

�

; (

^

A

�

)

2

=

^

E

+

;

^

A

+

^

A

�

=

^

I � j0; 0ih0; 0j;

^

A

�

^

A

+

=

^

I:

(3.52)

Then from (3.50)-(3.52) we conclude that the operators

^

A

�

can be consid-

ered as a de�nition of the operators

^

E

1=2

�

^

E

1=2

�

:=

^

A

�

:
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The described scheme can be generalized for arbitrary integer k (k > 2)

considering the k-th root of the phase operators

^

E

1=k

�

:

We introduce the k-dimensional unitary space H

k

with the orthonormal

basis

j0i

k

; j1i

k

; j2i

k

; : : : ; jk� 1i

k

(3.53)

and de�ne the operators

^

f

k

,

^

f

+

k

by

^

f

k

jni

k

=

(

jn� 1i

k

; n � 1

0; n = 0

;

^

f

+

k

jni

k

=

(

jn+ 1i

k

; n � k � 2

0; n = k � 1:

In the basis (3.53), the operators

^

f

k

and

^

f

+

k

have the representation

f

k

=

0

B

B

B

B

@

0 1 0 ::: 0 0

0 0 1 ::: 0 0

: : : ::: : :

0 0 0 ::: 0 1

0 0 0 ::: 0 0

1

C

C

C

C

A

; f

+

k

=

0

B

B

B

B

@

0 0 0 ::: 0 0

1 0 0 ::: 0 0

0 1 0 ::: 0 0

: : : ::: : :

0 0 0 ::: 1 0

1

C

C

C

C

A

:

It is obvious that

(

^

f

k

)

k

= (

^

f

+

k

)

k

= 0; (3.54)

and one can verify that the k

2

`normally ordered' monomes (

^

f

+

k

)

j

(

^

f

k

)

m

,

where 0 � j;m � k � 1, give k

2

linearly independent matrices. Then, the

corresponding operators form the basis in the space of linear operators on

H

k

, and any monome can be written as a linear combination of normally

ordered ones. For example,

^

f

k

^

f

+

k

takes the form

^

f

k

^

f

+

k

=

^

I � (

^

f

+

k

)

k�1

(

^

f

k

)

k�1

(3.55)

which, together with (3.54) is a generalization of the commutation relations

(3.47). One can obtain some other useful relations as well:

k�1

X

j=0

(

^

f )

j

(

^

f

+

)

k�1

(

^

f )

k�j�1

=

^

I; (

^

f )

j

(

^

f

+

)

m

= 0; if j �m � k:

(3.56)

We introduce the particle number operator

^

N

k

by

^

N

k

jni

k

= njni

k

:

It satis�es the relations

[

^

N

k

;

^

f

k

] = �

^

f

k

[

^

N

k

;

^

f

+

k

] =

^

f

+

k
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and can be written in the normal form

^

N

k

=

^

f

+

k

^

f

k

+ (

^

f

+

k

)

2

(

^

f

k

)

2

+ � � �+ (

^

f

+

k

)

k�1

(

^

f

k

)

k�1

:

Now let us consider the exterior product of the spaces H

B

and H

k

H

k

= H

B


 H

k

;

and de�ne the Hamiltonian on H

k

^

H =

^

H

0

+

1

k

^

N

k

where we use the above mentioned abbreviation (see (3.48)-(3.49).

The eigenvectors of the new Hamiltonian

^

H can be characterized by two

quantum numbers jn

B

; n

k

i, where n

B

= 0; 1; 2; : : :; �

k

= 0; 1; 2; : : : ; k � 1

and we have

^

Hjn

B

; n

k

i = (n

B

+

1

k

n

k

)jn

B

; n

k

i: (3.57)

The energy levels are non-degenerated and equidistant with the interval

1=k.

Here, similarly to (3.50), we introduce the operators

^

A

�;k

:

^

A

+;k

=

^

f

+

k

+

^

E

+

(

^

f

k

)

k�1

;

^

A

�;k

=

^

f

k

+

^

E

�

(

^

f

+

k

)

k�1

;

(3.58)

This operators shift the energy levels by 1=k (

^

A

+;k

increases and

^

A

�;k

de-

creases) except the vacuum state, which is canceled by the operator

^

A

�;k

.

The operators

^

A

�;k

satisfy the commutation relations

[

^

H;

^

A

�;k

] = �

1

k

^

A

�;k

:

Now, using (3.54)-(3.56), we obtain that

(

^

A

+;k

)

k

=

^

E

+

(

^

A

�;k

)

k

=

^

E

�

and also

^

A

�;k

^

A

+;k

=

^

I

^

A

+;k

^

A

�;k

=

^

I � j0; 0ih0; 0j:

Summarizing our results, we can formulate.

Theorem. k-th roots of the phase operators

^

E

1=k

�

are de�ned on the

Hilbert space H

B


 H

k

and have the form

^

E

1=k

�

:=

^

A

�;k

:
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The described scheme has some interesting physical interpretation con-

nected with the geometry of the k-sheet surface. If we consider the map of

the complex plane (z) to a k-sheet surface

a =

z

k

p

k(z

�

z)

k�1

a

�

=

z

�

k

p

k(z

�

z)

k�1

then the functions e

�i'=k

(where ' is the polar angle for the variables a; a

�

)

are `correctly' de�ned (see remark after the equation (3.39)).

We can consider the standard symplectic form on the plane z; z

�

! = dp ^ dq = �idz

�

^ dz;

and the Hamiltonian

h =

1

k

z

�

z: (3.59)

A spectrum for the corresponding quantum operator is non-degenerated and

equidistant with the interval 1=k.

The Hamiltonian (3.59) in (a; a

�

) variables takes the form (3.35)

h(z

�

; z) = H(a

�

; a) = a

�

a:

Then, comparing the spectra of the Hamiltonians (3.57) and (3.59), we can

conclude that the above described quantization with `k-statistics particles'

4

can be interpreted as the quantization on the k-sheet surface.

The case k = 2 is considered in [48] and [49], where the corresponding

quantum system is used for the description of the internal degrees of freedom

for a relativistic particle. The case of arbitrary k can be related to the anyon

physics and fractional statistics.

4. E-Quantization Scheme

In this chapter we consider the general quantization scheme based on

a extension of the phase space with further application of the constrained

quantization technique. In our approach the problem of scalar product

arises and we investigate this problem in Section 4.4. In the last section we

use our quantization method for the realization of classical symmetries on

the quantum level. This chapter is based mainly on the papers [51-53] and

[57].

4

In the case k = 2 we have the Fermi statistics.
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4.1. Quantization on a cotangent bundle. As it was pointed out, the stan-

dard canonical quantization can be used only for the systems with the phase

space having the cotangent bundle structure. We start with an arbitrary

symplectic manifoldM. Only, for simplicity, we assume that the symplectic

form ! is exact: ! = d� (1.11).

To generalize the canonical method, we introduce some auxiliary Hamil-

tonian system with the phase space T

�

M, where T

�

M is the cotangent

bundle over the symplectic manifoldM. The new system has 4N dimen-

sions, and we choose the 1-form � = P

k

d�

k

, where (P

k

; �

k

) are the standard

coordinates on the cotangent bundle T

�

M: P

k

= P (@

�

k). So, the coordi-

nates P

k

play the role of `momenta', while the �

k

are `coordinates'. The

corresponding symplectic form is canonical: d� = dP

k

^ d�

k

, and for the

Poisson brackets of the new system we have (compare with (1.12))

f�

k

; �

l

g

�

= 0 = fP

k

; P

l

g

�

fP

k

; �

l

g

�

= �

l

k

: (4.1)

The index � is used to make di�erence between the Poisson brackets (1.2)

and (4.1). Below we denote the initial system by M , and the extended new

system by T

�

M .

Let us introduce the vector �eld � (� 2 V (M)) as the solution of the

equation

!(�; � ) = (� � P ) (�); (4.2)

where !(�; � ) denotes the contraction of ! with �: !(�; � )

l

= �

k

!

kl

.

Since the symplectic form ! is non-degenerated, the equation (4.2) de�nes

the vector �eld � uniquely, and the components of this �eld are given by

�

k

= !

kl

(P

l

� �

l

): (4.3)

Respectively, we get the map (T

�

M 7! V (M)) of the cotangent bundle

T

�

M to the space of vector �elds onM. Using this vector �eld � and some

observable f(�) 2 O(M), we can construct the function �

f

on T

�

M

�

f

� �(f) = �

k

@

k

f; (4.4)

and from (4.3) we have

�

f

= �(V

f

)� P (V

f

); (4.5)

where V

f

is the Hamiltonian vector �eld (1.5).

The de�nition of the functions �

f

by (4.4), at the same time, gives the

map

O(M) 7! O(T

�

M)

of observables of the system M to a certain class of functions on T

�

M.

Then, from (4.1)-(4.5) we obtain

f�

f

;�

g

g

�

= �ff; gg � �

ff;gg

f�

f

; gg

�

= �ff; gg: (4.6)
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Note, that these commutation relations are written for the system T

�

M ,

and here for the functions ff; gg and g we use the same notation as for the

corresponding observables onM. Strictly, of course, we should distinguish

between these functions. However, it is generally simpler not to do this

except in case of possible confusion.

Now, let us introduce a new map from O(M) to O(T

�

M)

f 7! R

f

� f � �

f

(4.7)

which in local coordinates (P

k

; �

k

) takes the form

R

f

= f(�) + @

k

f(�)!

kl

(�)(P

l

� �

l

(�)): (4.8)

For further construction, the key step is the following

Lemma. The map (4:7) preserves the Poisson brackets

fR

f

; R

g

g

�

= R

ff;gg

: (4.9)

This lemma can be checked by the direct calculation, using the Poisson

brackets (4.6).

Note that the change of the 1-form � by an exact form dF : �

k

(�) �!

�

k

(�) + @

k

F (�) corresponds to the trivial canonical quantization of the sys-

tem T

�

M

P

k

�! P

k

� @

k

F (�) (4.10)

generated by the function F (�).

We choose the Hamiltonian of the extended system T

�

M to be equal

to R

H

, where H = H(�) is the initial Hamiltonian. Respectively, for the

system T

�

M the action (1.10) takes the form

S

T

�

M

=

Z

[P

k

(�)

_

�

k

�R

H

(P; �)]dt: (4.11)

The system T

�

M can be quantized by the scheme of canonical quantiza-

tion. This means that the Hilbert space

e

H is the space of square integrable

functions 	(�) on M:

e

H = L

2

(M). It is convenient to introduce the in-

variant measure (1.43), and we de�ne the scalar product by (3.3).

For any function f(�), according to the scheme of canonical quantization,

we have the corresponding operator

^

f which acts on a wave function 	(�)

as the multiplication by f(�). Taking into account the remarks mentioned

above (see after (4.6)), we use the same notation f(�) for this operator

^

f as

well:

^

f � f(�).

Further, the rule (3.6) de�nes the Hermitian operators

^

P

k

^

P

k

= �i~@

k

� i~

@

k

!(�)

4!(�)

; (4.12)



52

where the additional term, proportional to @

k

!, arises from the measure

(1.43) in (3.3).

Construction of Hermitian operators, in general, has an ambiguity con-

nected with the ordering of coordinate and momentum operators in the

functions of corresponding observables. In our case, the ordering problem

is only for the term @

k

f!

kl

P

l

(see (4.8)). When the momentum operator

is in the �rst degree, we can use the lemma mentioned in Section 3.1 (see

(3.8)-(3.9)), and choose the following symmetric ordering

@

k

f!

kl

P

l

�!

1

2

(@

k

f!

kl

^

P

l

+

^

P

l

@

k

f!

kl

): (4.13)

Using the Jacobi identity (1.1), one can prove that

@

k

�

p

!(�) !

kl

(�)

�

= 0: (4.14)

Then, from (4.12)-(4.14), we obtain

^

R

f

= f(�) � �

k

!

kl

@

l

f � i~!

lk

@

l

f@

k

: (4.15)

Since the operator ordering (4.13) avoids anomalies in the quantum com-

mutation relations, from (4.9) we get

[

^

R

f

;

^

R

g

] = �i~

^

R

ff;gg

(4.16)

and this is the most interesting point of the described quantization scheme

on the cotangent bundle of a symplectic manifold.

Comparing (4.15) with (3.5), we �nd that the constructed operators

(4.15) (which naturally arise in our scheme) are pre-quantization operators,

and the relation (4.16) is a well known fact from the method of geometric

quantization [20].

Note that any change of the 1-form � by an exact form dF corresponds

to the unitary transformation of the operators

^

R

f

(see (4.10))

^

R

f

�! e

�

i

~

F (�)

^

R

f

e

i

~

F (�)

:

After canonical quantization on the cotangent bundle T

�

M, our goal is

to use this quantum theory for the quantization of the initial systemM , and

in the next section we consider the connection between these two systems.

4.2. Constraints on a cotangent bundle. Geometrically there is a standard

projection (� : T

�

M ! M) of the cotangent bundle T

�

M to the initial

phase spaceM. To �nd the dynamical relation between these two systems,

we introduce a constraint surface on the cotangent bundle T

�

M, and de�ne

it as the kernel of the mapping T

�

M! V (M) given by (4.2) and (4.3). It

means that on the constraint surface the vector �eld � vanishes (� = 0),

and if we use the functions �

f

(P; �) (see (4.4)), this surface can be written

as

�

f

= 0; 8 f(�) 2 O(M): (4.17)
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From (4.6) and (4.7) we have

fR

f

;�

g

g

�

= �

ff;gg

(4.18)

and we see, that (4.17), i.e., the constraint surface, is invariant under the

canonical transformations generated by the functions R

f

. In particular, it

is invariant in dynamics generated by the Hamiltonian R

H

.

In local coordinates the surface (4.17) can be written as

P

k

� �

k

(�) = 0: (4.19)

(see (4.3)-(4.5)), and respectively, the momenta P

k

are de�ned uniquely.

Hence, the coordinates �

k

(k = 1; : : : ; 2N ) can be used for the parametriza-

tion of the constraint surface, and this surface is di�eomorphic to the man-

ifoldM. Then, the reduction procedure gives (see (4.19) and (4.8))

P

k

d�

k

j

�=0

= �

k

(�)d�

k

R

H

j

�=0

= H(�);

and the action (4.11) of the system T

�

M is reduced to (1.10). Thus, we

conclude that the classical system T

�

M restricted on the constraint surface

�

f

= 0 is equivalent to the initial one.

To �nd the connection on the quantum level too, we have to quantize the

system T

�

M taking into account the constraints (4.17).

Before beginning the quantum part of the reduction scheme, let us note

that the constraints (4.17) are written for an arbitrary observable f(�), and

since the constraint surface � = 0 is 2N -dimensional, only the �nite number

of those constraints are independent.

To select the independent constraints, we introduce the complete set of

observables onM. The set of observables ff

n

(�) 2 O(M); (n = 1; : : : ;K)g

is called complete, if any observable f(�) 2 O(M). can be expressed as a

function of this set

f = F(f

1

; : : : ; f

K

) (4.20)

It is clear thatK � 2N , and we can choose the set withK = 2N only for the

manifolds with global coordinates. For K > 2N there are some functional

relations for the set f

1

; : : : ; f

K

, and locally only 2N of these functions are

independent. Then, from (4.4) and (4.20) we have

�

f

=

@F

@f

n

�

f

n

; (4.21)

and the constraints (4.17) for arbitrary f are equivalent to the K constraints

�

f

n

= 0 (n = 1; : : : ;K): (4.22)

In particular, in the case of global coordinates we can introduce only the

2N constraints �

f

n

, (n = 1; : : : ; 2N ). If it is not speci�ed, below we are

assuming that the manifoldM has global coordinates and a set of functions

f

1

; : : : ; f

2N

is complete. Note that the constraint surface and the reduced
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classical system are independent on the choice of such complete set. Using

(4.6), we see that on the constraint surface (4.17), the rank of the matrix

f�

f

n

;�

f

m

g

�

is equal to 2N . Therefore these constraints, in Dirac's classi�-

cation, are the second class constraints.

For constrained dynamical systems there are, actually, two schemes of

quantization (see introduction):

A. \First reduce and then quantize".

B. \First quantize and then reduce".

By the scheme A we are returning to the initial problem of quantization

on the manifoldM. Therefore, it is natural to use the scheme B, especially

as the �rst step of this scheme we have already accomplished.

To justify our strategy, it is necessary to show that the schemes A and

B give equivalent quantum theories, when the system M is quantizable by

the canonical method, and also it is worthwhile to have a certain general

receipt for accounting for the constraints (4.22) on the quantum level.

According to the scheme B, the next step is the construction of Hermitian

constraint operators. From (4.5) and (4.13), the operators

^

�

f

= i~V

f

+ �(V

f

) (4.23)

are Hermitian, and by direct calculation we obtain

[

^

�

f

;

^

�

g

] = i~(ff; gg +

^

�

ff;gg

); (4.24)

[

^

R

f

;

^

�

g

] = �i~

^

�

ff;gg

: (4.25)

These commutators are quantum versions of the relations (4.6) and (4.18).

As it was expected, there are no anomalies for them (see (4.16)).

Now we should make the reduction of the Hilbert space L

2

(M) using the

constraint operators (4.23) for some complete set of functions f

1

; : : : ; f

2N

.

The reduced Hilbert space for the constrained systems is called the physical

Hilbert space as well, and we denote it by H

ph

.

For systems with 2N second class constraints there is the following re-

duction procedure: one has to select a subset of N constraints

^

�

1

; : : : ;

^

�

N

,

which can be treated as the �rst class constraints (independently from oth-

ers), and then construct the physical Hilbert space H

ph

from the states

which satisfy the Dirac conditions

^

�

a

j	

ph

i = 0; a = 1; : : : ; N . Note that

we cannot put all constraints equal to zero in strong sense (

^

�

k

j	i = 0; k =

1; : : : ; 2N ), since it is in contradiction with commutation relations of the

second class constraints.

It is easy to see that, in our case, the �rst class constraints will be com-

muting (see (4.6)). Then, the described procedure implies the selection of N

commuting observables f

a

; a = 1; : : : ; N ; ff

a

; f

b

g = 0, and further, solution

of the di�erential equations

^

�

f

a

	

ph

(�) = 0 (a = 1; : : : ; N ): (4.26)
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Construction of physical states by selection of N commuting observables is

quite natural from the point of view of standard quantum mechanics, and

we shall return to this point later.

The equations (4.26) are �rst order linear di�erential equations and, in

principle, they can be explicitly integrated to describe the corresponding

wave functions. But, usually, two signi�cant problems arise at this stage of

quantization: the �rst is connected with a scalar product for the physical

states [14], and the second, with de�nition of the observable operators on

these states.

For the �rst problem, the point is that the Dirac's conditions

^

�

a

j	

ph

i =

0, in general, have no solutions in the Hilbert space where the �rst stage of

quantization was accomplished.

In our case, the solutions of (4.26), as a rule, are not square integrable

onM (usually they are generalized functions), and the scalar product (3.3)

needs modi�cation. On the other hand, a certain measure in scalar product

de�nes the class of functions square integrable by this measure. Thus, a

measure for the new scalar product and the class of solutions of (4.26)

should be adjusted.

A possible solution of this problem is based on the introduction of com-

plex constraints [91]. Note that classical observables f(�) are assumed to

be real functions on a phase space, but it is clear that the whole considered

construction (except for the self-adjointness) can be naturally extended for

complex-valued functions (f(�) = f

1

(�) + if

2

(�)) as well.

Using the remaining part of the constraints �

f

N+1

; : : : ;�

f

2N

, one can in-

troduce constraints for the complex functions Z

a

= f

a

+i�f

N+a

and consider

the equations

^

�

Z

a

j	

�

i = (

^

�

f

a

+ i�

^

�

f

N+a

)j	

�

i = 0 (a = 1; : : : ; N ): (4.27)

Here, 1 � a � N; ff

a

; f

N+a

g 6= 0 and � is some real parameter. Sometimes

we omit the index `ph' for the physical vectors and the physical Hilbert

space, and use the index � only.

The condition (4.27) looks like Gupta-Bleuler quantization [92]-[93], and

for normalizable solutions j	

�

i the mean values of corresponding constraints

vanish

h	

�

j

^

�

f

a

j	

�

i = 0 h	

�

j

^

�

f

N+a

j	

�

i = 0:

It turns out that solutions of (4.27) could be square integrable indeed,

and then, they form some subspace of the Hilbert space L

2

(M) (see the

examples below). We denote the corresponding reduced physical Hilbert

space by H

�

. We have 	

�

(�) 2 H

�

� L

2

(M) � L

�

2

(M), where L

�

2

(M) is

the space dual to the Hilbert space L

2

(M). If we consider the physical

states j	

�

i as the vectors of the dual space L

�

2

(M), then the suitable choice

of the norms jj	

�

jj, and some smooth dependence on the parameter � can

provide the existence of the limit

lim

�!0

j	

�

i = j	

ph

i;
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where j	

ph

i 2 H

ph

� L

�

2

(M). The obtained physical states j	

ph

i specify

the class of solutions of (4.26), and the scalar product for them is de�ned

by

h	

2ph

j	

1ph

i = lim

�!0

h	

2�

j	

1�

i

jj	

2�

jj jj	

1�

jj

; (4.28)

where j	

1ph

i and j	

2ph

i are the limits of j	

1�

i and j	

2�

i, respectively. More

detailed consideration of this problem will be done in Section 4.4.

It should be noted that the choice of physical states by the conditions

(4.26) is equivalent to the choice of real polarizations of geometric quanti-

zation, while the choice (4.27) gives the complex polarization [20].

The second above mentioned problem arises when the reduced Hilbert

space is non-invariant under the action of some pre-quantization operator

^

R

g

. From (4.26), the invariance condition has the form

[

^

R

g

;

^

�

f

a

] =

N

X

b=1

d

b

a

^

�

f

b

(1 � a � N ) (4.29)

and, using (4.25) we see that this condition is not ful�lled for arbitrary g(�).

Moreover, even if a pre-quantization operator acts invariantly on H

ph

, this

operator can be non-Hermitian on H

ph

, when the latter is not a subspace

of L

2

(M) and the Hilbert structure is introduced additionally.

For the de�nition of the corresponding observable operator on the phys-

ical Hilbert space, one can deform the pre-quantization operator adding

quadratic and higher powers of constraint operators (see Appendix C).

Then, using the commutation relations (4.25) and (4.25), one can construct

a new Hermitian operator which is invariant on the reduced Hilbert space.

Of course, there are di�erent possible deformations, and in general, they

de�ne di�erent operators on the physical Hilbert space. In terms of usual

canonical quantization, di�erent deformations correspond to di�erent oper-

ator ordering. This is the standard ambiguity of quantum theories which

vanishes in the classical limit ~! 0. Note that the corresponding deformed

classical functions are indistinguishable on the constraint surface �

f

= 0.

We call the described quantization scheme E-quantization scheme. In

the next section we consider the application of this scheme to two simple

examples considered in Chapter 1. We use these examples also as a test for

our approach as well.

4.3. Examples of E-quantization scheme. Example 1. Let M be a plane

M� R

2

with the standard coordinates �

1

� p; �

2

� q and the symplectic

form ! = dp^dq. The coordinates p and q are global and from (4.5) we get

�

p

=

1

2

p � P

q

; �

q

=

1

2

q + P

p

;
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where, for convenience, we choose the 1-form � =

1

2

pdq �

1

2

qdp. The corre-

sponding constraint operators are

^

�

p

=

1

2

p+ i~@

q

;

^

�

q

=

1

2

q � i~@

p

(4.30)

and, according to (4.27), for the physical vectors j	

�

i we can write the

equation

�

^

�

q

� i�

^

�

p

�

j	

�

i = 0: (4.31)

The solution of (4.31) is

	

�

(p; q) = exp (�

�p

2

2~

) exp (�

ipq

2~

) (q � i�p); (4.32)

with an arbitrary function  . For the square integrability of these solutions

the parameter � should be positive (� > 0) and we can specify the class of

functions  , for example, by

 (�) = exp (�

�

2

2

)P (�); (� � q � i�p); (4.33)

where  is some �xed positive parameter ( > 0), and P (�) is any polyno-

mial. Then, for su�ciently small � the functions (4.32) will be square inte-

grable on the plane and they form the physical subspace H

�

, (H

�

2 L

2

(R

2

)).

To investigate the case � = 0, we consider the limit as � ! 0 in (4.32),

and get

	

ph

(p; q) = exp (�

ipq

2~

)  (q): (4.34)

It is clear that these functions are not square integrable on the plane, but

they are well-de�ned elements of the dual space 	

ph

(p; q) 2 L

�

2

(R

2

). The

functions (4.34) form the physical Hilbert space H

ph

, and they are solutions

of (4.31) with � = 0 (see in the next section as well). Using the rule (4.28),

we obtain

h	

2ph

j	

1ph

i =

1

N

1

N

2

Z

 

�

2

(q) 

1

(q) dq; (4.35)

where

N

2

i

=

Z

j 

i

(q)j

2

dq; (i = 1; 2; N

i

> 0):

The action of the pre-quantization operators

^

R

p

=

1

2

p� i~@

q

;

^

R

q

=

1

2

q + i~@

p

(4.36)

on the physical states (4.34) gives

^

R

p

	

�

(p; q)=exp (�

ipq

2~

) (�i~) 

0

(q);

^

R

q

	

�

(p; q)=exp (�

ipq

2~

) q (q): (4.37)
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Thus, from (4.35)-(4.37) we have the standard coordinate representation of

quantum mechanics. Similarly, one can obtain the momentum represen-

tation in the limit as � ! 1 with corresponding choice of a class of the

solutions (4.33).

Let us consider the problem of observable operators on the physical

Hilbert space H

ph

with the vectors (4.34). It is easy to check that this

space is invariant under the action of the pre-quantization operators

^

R

f

,

where f(p; q) = pA(q) + U (q), with arbitrary A(q) and U (q). But it turns

out that these operators

^

R

f

are Hermitian (with respect to the scalar prod-

uct (4.35)) only for the constant function A(q) (A(q) = c). Similarly, there

is a problem of de�nition of kinetic energy operator, since the chosen H

ph

is

not invariant under the action of the corresponding pre-quantization opera-

tor

5

. These are the problems mentioned at the end of the previous section,

and for the de�nition of the corresponding observable operators we can

make appropriate deformations (see Appendix C). For example, the defor-

mation of the pre-quantization operator of kinetic energy E = p

2

=2m by

the quadratic term

^

R

p

2

=2m

!

^

R

p

2

=2m

+

1

2m

^

�

2

p

�

^

E

gives that the corresponding operator

^

E is well de�ned on H

ph

, and e�ec-

tively it acts as the standard kinetic energy operator

^

E :  (q) 7! �

~

2

2m

 

00

(q):

Now we return to the physical subspace H

�

with some �xed positive �.

In the complex coordinates

z =

q + i�p

p

2�~

; z

�

=

q � i�p

p

2�~

(4.38)

the equation (4.31) takes the form

�

@

z

+

z

�

2

�

	

�

(z; z

�

) = 0; (4.39)

and we obtain the solutions

	

�

= exp (�

1

2

jzj

2

)F (z

�

); (4.40)

where F (z

�

) is any holomorphic function of z

�

. Comparing (4.40) and

(4.32), we have F (z

�

) = exp (1=2 z

�

2

)  (

p

2�~ z

�

). The complex coor-

dinates z and z

�

(see (4.38)) are the classical functions of annihilation

5

For this H

ph

such problem have functions f(p; q) containing the momentum p in

second and higher degrees
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and creation operators, respectively (see (3.37). The corresponding pre-

quantization operators

^

R

z

=

z

2

+ @

�

z

^

R

z

�

=

z

�

2

� @

z

act invariantly on the physical Hilbert space H

�

, and we have

^

R

z

	

�

= exp (�

1

2

jzj

2

)F

0

(z

�

)

^

R

z�

	

�

= exp (�

1

2

jzj

2

)z

�

F (z

�

):

Thus, the reduction onH

�

gives the holomorphic representation of quantum

mechanics [94], and we see again that the quantum theory of E-quantization

scheme is equivalent to the ordinary canonical one. The physical Hilbert

spaces H

�

for di�erent � are di�erent subspaces of L

2

(R

2

), but, due to the

Stone - von-Neumann theorem [84]-[85], the corresponding representations

of canonical commutation relations are unitary equivalent to each other.

Further, we have the standard quantum mechanical relation

hp; q; �j	i =

Z

dx hp; q; �jxi (x); (4.41)

where  (x) � hxj	i is a wave function of the coordinate representation and

jp; q; �i is a coherent state [95]

âjp; q; �i =

q + i�p

p

2�~

jp; q; �i: (4.42)

The `matrix element' hp; q; �jxi is given by

hp; q; �jxi =

�

1

��~

�

1=4

exp (

i

2~

pq) exp (�

i

~

px) exp (�

(x� q)

2

2�~

); (4.43)

and from (4.41) and (4.43), we obtain

lim

�!0

hp; q; �j	i

�

1

4��~

�

1=4

= exp (�

ipq

2~

)  (q): (4.44)

It is well known that the matrix element hp; q; �j	i is connected with the

wave function of holomorphic representation (see [94-95])

hp; q; �j	i = exp (�

1

2

jzj

2

)F (z

�

); (4.45)

where the variables p; q and z; z

�

are related by (4.38). On the other hand,

from the equivalence of the holomorphic representation and E-quantization

scheme, the wave function

e

	

�

(p; q) � hp; q; �j	i in (4.45) can be considered

as a vector of the physical Hilbert space H

�

(compare (4.40) and (4.45)).

Then, (4.41) and (4.44) will be similar to (4.32) and (4.34), respectively.

Only it should be noted that the two physical states 	

�

(p; q) and

e

	

�

(p; q),

constructed by the same function  (q) 2 L

2

(R

1

), are di�erent (	

�

(p; q) 6=

e

	

�

(p; q)) (see (4.32) and (4.41)), and they coincide only in the limit � !
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0. This short remark indicates di�erent possibilities of described limiting

procedure (for more details see the next section).

Example 2. Let M be a cylinder M � R

1

� S

1

with the coordinates

�

1

� S 2 R

1

; �

2

� ' 2 S

1

and the symplectic form ! = dS ^ d' (see

Examples B and c in Chapter 1).

Since the cylinder is a cotangent bundle over the circle, the canonical

quantization for this model is realized on the space of square integrable

functions  (') on the circle ( (') 2 L

2

(S

1

)). The quantization rule (3.6)

gives

^

S  (') = �i~@

'

 (');

^cos'  (') = cos'  (');

^

sin'  (') = sin'  ('); (4.46)

and the operator

^

S has the discrete spectrum S

n

= n~, (n 2 Z), with the

eigenfunctions  

n

(') = 1=

p

2� exp (in') (see also (3.21)).

The coordinate ' is not global, and for the 1-form we choose � = Sd'.

The set of functions

f

1

= S; f

2

= cos'; f

3

= sin'

is complete (with the relation f

2

2

+ f

2

3

= 1), and for the corresponding

constraint operators we get

^

�

S

= S + i~@

'

;

^

�

cos'

= i~ sin'@

S

;

^

�

sin'

= �i~ cos'@

S

: (4.47)

Note that there is a possibility to have a complete set of observables with

only two functions. For example,

e

f

1

= e

S=�

cos';

e

f

2

= e

S=�

sin'; (4.48)

where � is some constant parameter (with dimension of angular momen-

tum). These functions are global coordinates on the cylinder and they map

the cylinder to the plane without the origin: (

e

f

1

;

e

f

2

) 2 R

2

� f0g.

Using (4.47), we see that the wave functions  (') of `'- representation'

can be obtained in E-quantization scheme by

^

�

cos'

	

ph

(S; ') = 0 and (or)

^

�

sin'

	

ph

(S; ') = 0: (4.49)

But it is clear that these functions are not normalizable on the cylinder.

The case of the condition

^

�

S

	

ph

(S; ') = 0; (4.50)

is more complicated, since this equation has no global regular solutions. In

the class of generalized functions, one can �nd solutions of the type

	

ph;n

= �(S � n~) exp (in'); (n 2 Z) (4.51)
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which obviously are not square integrable. To investigate these classes, we

need a limiting procedure similar to Example 1. We consider such a proce-

dure in the next section and also in Chapter 5, where some motivation and

generalization of the condition (4.27) will be done. Here, in the remaining

part of this section, we construct the example of the physical Hilbert spaces

as subspaces of L

2

(R

1

� S

1

).

We introduce the complex coordinates related to (4.48)

z =

e

f

1

� i

e

f

2

= exp (S=� � i'); z

�

=

e

f

1

+ i

e

f

2

= exp (S=�+ i') (4.52)

and impose the condition (4.27) for � = 1:

^

�

z

�

j	

ph

i = 0. The correspond-

ing equation

�

@

z

+

�

2~

log jzj

z

�

	

ph

(z; z

�

) = 0; (4.53)

has the solutions

	

ph

(z; z

�

) = exp

�

�

�

2~

(log jzj)

2

�

 (z

�

): (4.54)

where  (z

�

) is any holomorphic function (@

z

 = 0) on the plane without

origin, and it has the expansion

 (z

�

) =

1

X

n=�1

d

n

z

�

n

Respectively, in (S; ') coordinates, the solution (4.54) takes the form

	

ph

(S; ') =

1

X

n=�1

c

n

exp

�

�

(S � n~)

2

2�~

�

exp (in') (4.55)

with c

n

= d

n

exp (~n

2

=2�), and the square integrability gives

1

X

n=�1

jc

n

j

2

<1: (4.56)

We have the pre-quantization operator of angular momentum

^

R

S

=

�i~@

'

. It is a well-de�ned operator on the physical subspace (4.55), and

has the same non-degenerated spectrum as the operator

^

S of the canonical

quantization. Thus, we see the unitary equivalence of these two quantiza-

tions.
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4.4. The problem of scalar product for the constrained systems. Let f; g

be two non-commuting observables and

^

�

f

;

^

�

g

the corresponding constraint

operators (4.23). As it was mentioned, these operators are Hermitian on

the Hilbert space H � L

2

(M). Suppose that the equation (see (4.27))

(

^

�

f

+ i�

^

�

g

)j	

�

i = 0 (4.57)

has normalizable solutions for any � 2 (0; �), where � is a positive number.

The solutions with �xed � form a subspace H

�

of the Hilbert space H. We

assume that each subspace can be represented as H

�

= F

�

H

0

, where H

0

is

a linear space, and F

�

is a linear invertible map

F

�

: H

0

!H

�

; F

�1

�

: H

�

!H

0

: (4.58)

In practical applications the linear space H

0

automatically arises from the

form of the general solution of (4.57); only it should be speci�ed from the

condition of square integrability of the corresponding functions 	

�

= F

�

 ,

where  2 H

0

. For example, in the case of the equation (4.31), the general

solution (4.32) and (4.33) is described by the space of polynomials P (�),

and it can be interpreted as H

0

. The representation (4.41) and (4.45) of

the same solutions is di�erent, and in that case, the space H

0

is obviously

L

2

(R

1

). As for the general solution (4.54) and (4.55), the space H

0

is a

space of Fourier modes c

n

; n 2 Z, with

P

jc

n

j

2

<1 (see (4.56)).

The space of linear functionals on the Hilbert space H is called the dual

(to H) space, and we denote it by H

�

. From our de�nitions we have

	

�

= F

�

 2 H

�

� H � H

�

:

Suppose that the set of the vectors F

�

 with any �xed  2 H

0

has the limit

(�! 0) in the dual space H

�

, and this limit de�nes the vector  

�

2 H

�

lim

�!0

F

�

 =  

�

: (4.59)

Such linear functional  

�

usually is unbounded, and the limit in (4.59)

means that for any 	 2 H we have

lim

�!0

hF

�

 j	i =  

�

(	); (4.60)

where  

�

(	) denotes the value of the functional  

�

on the corresponding

vector 	 2 H. If we change the map F

�

by

F

�

!

e

F

�

= a(�)F

�

;

where a(�) is some `scalar' function of the parameter �, then the new map

e

F

�

provides a representation of the subspace H

�

in the same form: H

�

=

e

F

�

H

0

.

It is obvious that the existence of the limit in (4.59) essentially depends on

the suitable choice of the normalizable function a(�).

The action of some operator

^

O on the functional  

�

can be de�ned by

^

O 

�

(	) �  

�

(

^

O

+

	); (4.61)
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where

^

O

+

is the Hermitian conjugated to

^

O.

The norm jj	

�

jj of the vectors 	

�

= F

�

 , with �xed  , usually diverges

when �! 0, but if we assume that

�jjF

�

 jj ! 0; (4.62)

then we can prove that  

�

satis�es the equation

^

�

f

 

�

= 0. Indeed, from

(4.59)-(4.62) we have

^

�

f

 

�

(	) =  

�

(

^

�

f

	) = lim

�!0

hF

�

 j

^

�

f

	i =

= lim

�!0

h	

�

j

^

�

f

	i = lim

�!0

i�h	

�

j

^

�

g

	i = 0;

where we take into account that the function 	

�

= F

�

 satis�es (4.57).

Thus, (4.59) de�nes the map F

�

: H

0

! H

�

, and the corresponding func-

tionals  

�

= F

�

 satisfy the condition (4.26).

Further, let us assume that F

�

 6= 0, whenever  6= 0. Then, the space

H

ph

� F

�

H

0

, as a linear space, will be isomorphic to H

0

, and, respectively,

isomorphic to each H

�

as well (see (4.58)).

If for 8 �

1

; �

2

2 (0; �) the map

F

�

2

F

�1

�

1

: H

�

1

!H

�

2

(4.63)

is a unitary transformation, then one can introduce the Hilbert structure

on H

0

and H

ph

by de�nition of the scalar product

h 

2

j 

1

i � hF

�

 

2

jF

�

 

1

i � hF

�

 

2

jF

�

 

1

i (4.64)

It is obvious that in the case of unitarity of transformations (4.63), the

scalar product (4.64) is independent on the choice of the parameter �, and

the corresponding Hilbert structure is a natural one. But, in general, the

transformation (4.63) is not unitary, and there is no special Hilbert structure

on H

0

. Respectively, we have the problem for the scalar product on the

space H

ph

, especially that corresponding functionals are unbounded and

have the `in�nite norm' in the Hilbert space H.

Note that for the general solutions (4.32) and (4.33), the corresponding

transformation (4.63) is not the unitary one, while the general solution

(4.40)-(4.41), (4.45) provides unitarity explicitly

e

	

�

2

(p; q) =

Z

dpdq

2�~

hp; q; �

2

jp

0

; q

0

; �

1

i

e

	

�

1

(p

0

; q

0

):

Below we describe some procedure for the solution of the scalar product

problem in that general case too.

In ordinary quantum mechanics, a physical state is represented by a ray

in a Hilbert space and all vectors on the same ray are physically indistin-

guishable. So, if we suppose that the vector j 

�

i has some norm jj 

�

jj, then
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the normalized vector

j 

�

ii �

j 

�

i

jj 

�

jj

(4.65)

describes the same physical state. It is just the scalar product of such

normalized vectors that has the physical meaning. Up to the phase factor,

this scalar product describes the `angle' between the rays, and de�nes the

probability amplitude.

We introduce the scalar product of such normalized vectors by

hh 

2�

j 

1�

ii � lim

�!0

h	

2�

j	

1�

i

jj	

2�

jj jj	

1�

jj

; (4.66)

where the limits of j	

1�

i and j	

2�

i, respectively, are the functionals j 

1�

i

and j 

2�

i (see (4.59)), and the latter are related to j 

1�

ii and j 

2�

ii by

(4.65). When the limit (4.66) exists, it should de�ne the scalar product

of the normalized physical states. Then the scalar product for arbitrary

vectors can be obtained uniquely up to a rescaling.

It is obvious that in the case of unitarity of transformations (4.63), the

de�nitions of scalar product (4.64) and (4.66) are equivalent.

Note that the described scheme for the de�nition of the scalar product

of physical states (4.26) can be generalized for other constrained systems as

well.

4.5. Symmetry groups in E-quantization scheme. The commutation rela-

tions (1.22) and (1.24) de�ne a symmetry for the classical system. The

Dirac correspondence principle P2 (see (3.1)) is responsible for the repre-

sentation of this symmetry on the quantum level. But, as it was mentioned

in Chapter 3, in general, there are some problems for the realization of the

correspondence principle P2. These problems are of both the technical and

principal character [79]-[80].

Realization of the classical commutation relations in the scheme of canon-

ical quantization essentially depends on the choice of operator ordering. For

some simple examples one can achieve the non-anomalous quantization by a

suitable choice of the ordering. For example, the lemma of Section 3.1 (see

(3.8)-(3.9), provides such a choice for the wide class of observables h

�

(p; q)

which are linear in the momenta

h

�

(p; q) = A

a

�

(q)p

a

+B

�

(q); (a = 1; : : : ; N ;� = 1; : : : ;M ):

Another example is the Weyl ordering for the quadratic generators

h

�

(p; q) = A

ab

�

p

a

p

b

+ B

ab

�

p

a

q

b

+ C

ab

�

q

a

q

b

(see Example b in Section 1.2). The absence of anomalies in the correspond-

ing commutation relations can be easily checked by the direct calculation.

6

6

Note that in the in�nite-dimensional case the Weyl ordering of some quadratic ob-

servables is not a well de�ned one, and we usually use the normal ordering. The latter,
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However, in more general cases there are no any special ordering rules

for the preservation of the classical commutation relations, and sometimes

anomalies are even unavoidable [79]-[80].

In this section we describe a practical scheme for the realization of the

correspondence principle P2, using E-quantization scheme.

Let h

�

(�) (� = 1; : : : ;M ) be a set of functions with the commutation

relations (1.22), where C



��

are the structure constants of some Lie algebra.

According to (4.16), the corresponding pre-quantization operators

^

R

�

:=

^

R

h

�

gives the representation of this algebra on the space L

2

(M)

[

^

R

�

;

^

R

�

] = �i~C



��

^

R



:

But the Hilbert space L

2

(M) is too large and we need a representation

on the physical Hilbert space H

ph

. The latter is de�ned by the conditions

(4.26) (or (4.27)) where the functions f

a

(�) should be commuting

ff

a

(�); f

b

(�)g = 0; (a; b = 1; : : : ; N ): (4.67)

Obviously we get the non-anomalous quantization if the following two con-

ditions are ful�lled:

a) The physical Hilbert space H

ph

is invariant under the action of the pre-

quantization operators

^

R

�

.

b) The physical Hilbert space H

ph

is a subspace of L

2

(M) (see the previous

section).

The invariance condition a) is given by (4.29). Then, using (4.25) and

(4.21), we obtain

fh

�

; f

a

g = F

�;a

(f

1

; : : : ; f

N

); (� = 1; : : : ;M ; a = 1; : : : ; N )

and since the functions f

a

(�) satisfy (4.67), we get

ffh

�

; f

a

g; f

b

g = 0; (� = 1; : : : ;M ; a; b = 1; : : : ; N ): (4.68)

Thus, a given set of generators h

�

(�) (� = 1; : : : ;M ) de�nes the system

of di�erential equations (4.67)-(4.68) for the functions f

a

(�) (a = 1; : : : ; N ).

If this system has a solution, one has to investigate the corresponding con-

ditions (4.26) to obtain the physical Hilbert space H

ph

. When H

ph

is a

subspace of L

2

(M), we automatically arrive at the non-anomalous quanti-

zation. But ifH

ph

is not a subspace of L

2

(M), then the further investigation

is needed to check the Hermiticity of the pre-quantization operators

^

R

�

with

respect to the new scalar product on H

ph

.

For illustration we consider the rotation group on the sphere (see Ex-

amples D and e in Chapter 1). Poisson bracket (1.15) is equivalent to the

in general, possesses anomalies. For example, the conformal group generators give the

Virasoro central extension for the corresponding algebra.
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symplectic form (A.6), which is closed, but not exact. The corresponding

1-form exists only locally and in the cylindrical coordinates one can choose

� = (s � r)d' (4.69)

(see (A.5)). The functions (2.10) are generators of the rotation group and

they satisfy the commutation relations (1.38).

Then, from the system (4.67)-(4.68) we get three equations for the one

function f

1

(s; '). The corresponding solution has the form

f

1

(s; ') =

�

r � s

r + s

�

1=2

e

�i'

; (4.70)

and for the additional observable f

2

, we have

f

2

(s; ') =

�

r � s

r + s

�

1=2

e

i'

: (4.71)

Note that f

1

and f

2

are the complex coordinates on the plane obtained

by the stereographic projection from the lower pole.

In standard notations f

1

:= z

�

and f

2

:= z, we get the following compo-

nents of the 1-form

�

z

= i

rz

�

1 + zz

�

; �

z

�

= �i

rz

1 + zz

�

(4.72)

and, respectively,

!

z

�

z

= �!

zz

�

=

2ir

(1 + zz

�

)

2

;

p

! =

2r

(1 + zz

�

)

2

: (4.73)

Then, the equation (4.26) for physical wave functions is

(~@

z

+

rz

�

1 + zz

�

)	

ph

(z; z

�

) = 0; (4.74)

and we obtain the solutions

	

ph

= (1 + zz

�

)

�r=~

 (z

�

) (4.75)

with an arbitrary holomorphic function  (z

�

). Using (4.73) and (1.43), we

get the scalar product of the physical wave functions

h	

ph;2

j	

ph;2

i =

Z

dz

�

dz

(1 + zz

�

)

2+2r=~

 

�

2

(z

�

) 

1

(z

�

): (4.76)

For the �niteness of the norm we get that the maximumdegree K of the

polynomial for the holomorphic function  (z

�

)

 (z

�

) =

K

X

n=0

c

n

z

�

n

(4.77)
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is restricted by

K < 1 +

2r

~

:

Further, we have the following pre-quantization operators for the rotation

generators (2.10)

^

R

+

:=

^

R

1

+ i

^

R

2

= rz + ~(@

z

�

+ z

2

@

z

);

^

R

�

:=

^

R

1

� i

^

R

2

= rz

�

� ~(@

z

+ z

�

2

@

z

�

);

^

R

3

= r + ~(z@

z

� z

�

@

z

�

);

and e�ectively their action on the holomorphic function  (z

�

) is given by

^

R

+

:  (z

�

) 7! ~z

�

 

0

(z

�

);

^

R

�

:  (z

�

) 7! 2rz

�

 (z

�

)� ~z

�

2

 

0

(z

�

);

^

R

3

:  (z

�

) 7! r (z

�

) � ~z

�

 

0

(z

�

); (4.78)

We see that the action of the operator

^

R

�

increases the degree of the poly-

nomial in (4.77), and since the maximumdegree is restricted by the number

K, we should have

^

R

�

: z

�

K

7! 0:

Moreover, from (4.78) we �nd

r =

K~

2

: (4.79)

Summarizing, we conclude that a consistent quantum theory on the

sphere arises only for the discrete values (4.79) of the radius r of the sphere.

The corresponding physical Hilbert space is K + 1 dimensional and in the

basis z

�

n

(n = 0; : : : ;K) we obtain the standard irreducible representation

of the rotation group.

Note that the considered system on the sphere can be obtained by the

reduction of the constrained system given in Appendix A. The correspond-

ing generalization in the Minkowski space gives (see the end of Appendix

A):

a) When c > 0 and I

0

:= s > O,

� = (s � c)d' I

0

= s; I

�

= I

1

� iI

2

=

p

s

2

� r

2

e

�i'

(4.80)

b) When c > 0 and I

0

:= s < O,

� = (s + c)d' I

0

= s; I

�

= I

1

� iI

2

=

p

s

2

� r

2

e

�i'

:

c) When c < 0 and I

0

:= s,

� = sd' I

0

= s; I

�

= I

1

� iI

2

=

p

s

2

+ r

2

e

�i'

:

For all these examples, the symplectic form ! have the same form (A.5)

in the cylindrical coordinates. Only the domain of the variable s is di�erent.

One can repeat the described scheme for the cases a) and b) and respec-

tively obtain the holomorphic representations of SL(2; R) which are unitary

equivalent to the discrete series D

�

c

[54], [87].
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Note that for all three cases a)-c) the reduced phase space has the cotan-

gent bundle structure with the canonical 1-form and the canonical quanti-

zation is applicable. For example, in the case a) (see (4.80)) we can �ned

the `canonical' 1-form on the plane

� = (s � c)d' = Hd' = 1=2(pdq� qdp);

where H := s�c � 0, and the coordinates (H;') and (p; q) are connected by

(3.36). Using the new `at' coordinates (p; q), one can check that the gen-

erators (4.80) take the form (1.40). When the dependence on the canonical

variables (p; q) is such non-polynomial, it is di�cult to choose the suitable

ordering, but, in this case, one can guess the answer, using the form of the

representation D

+

c

^

I

0

= â

+

â+ c;

^

I

+

= â

+

p

â

+

â+ 2c;

^

I

�

=

p

â

+

â+ 2c â;

where â and â

+

are the creation and annihilation operators (3.30). In this

way we can obtain the Holstein-Primakof representation [67] (see (3.28),

(3.31)).

5. Quantum Fluctuations and Uncertainties

This chapter is based on the recent paper [57]. Here we generalize a condi-

tion for the selection of admissible physical states. Then we �nd connection

of E-quantization with the Berezin quantization and using the general co-

herent states. In the last section, we introduce the quantum distribution

function and discuss its physical interpretation.

5.1. Minimal uctuations of quantum constraints. In the case of Example

1 (see Section 4.3), the constraint operators

^

�

p

and

^

�

q

have the canonical

commutation relations (see (4.30))

[

^

�

p

;

^

�

q

] = i~: (5.1)

Recall that due to quantum uncertainties, we cannot put

^

�

p

j	i = 0 and

^

�

q

j	i = 0 simultaneously. The condition (4.31) is equivalent to the choice

of the physical states j	

�

i as the `vacuum' states in �

p

, �

q

variables. Then

the mean values of constraints are equal to zero:

h	

�

j

^

�

p

j	

�

i = 0; h	

�

j

^

�

q

j	

�

i = 0;

and the product of quadratic uctuations is minimal:

h	

�

j

^

�

2

p

j	

�

ih	

�

j

^

�

2

q

j	

�

i = ~

2

=4:

Thus, for this simple example, the meaning of the condition (4.27) (or

(4.57)) is that the obtained physical states j	

�

i provide the best realiza-

tion of the classical constraints �

p

= 0, �

q

= 0 on the quantum level.

Let us consider the condition (4.57) in the general case. Note that if

two functions f and g are canonically conjugated: ff; gg = 1, then the
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corresponding constraint operators have canonical commutation relations

(see (4.25)). Therefore, for the construction of the physical states by (4.57),

it is natural to choose the function g as canonically conjugated to f , and

repeat the calculations of Example 1 in f , g variables. Unfortunately this

simple procedure, in general, fails. The reason is that the canonically conju-

gated variable g usually exists only locally and the corresponding constraint

�

g

is not well de�ned both on classical and quantum levels. For exam-

ple, canonically conjugated variable to the harmonic oscillator Hamiltonian

H = 1=2(p

2

+ q

2

) is the polar angle ' (see (3.36), (3.39)). Choosing the

1-form � = 1=2(pdq� qdp) = Hd', we get

^

�

H

= H + i~@

'

;

and for the operator

^

�

'

one can formally write

^

�

'

= �i~@

H

, but this

operator is not self-adjoint . Then, though the equation

(

^

�

H

+ i�

^

�

'

)j	i = 0; (5.2)

has integrable solutions (for example, 	(p; q) = exp (�H

2

=2�~)), neverthe-

less they are not acceptable for the physical states, since the mean values of

the constraint operators

^

�

H

and

^

�

'

do not vanish, and the minimization

of quadratic uctuations is not achieved as well.

For � = 0 one can write the formal solution of (5.2) (like (4.51)): 	 =

�(H � ~n) exp (in'), and since H � 0, such `solutions' exist only for n � 0.

Then, the pre-quantization operator

^

R

H

= �i~@

'

has the spectrum H

n

=

~n, n � 0. The situation is similar for any completely integrable system

[71]. In action-angle variables I

a

; '

a

(a = 1; : : : ; N ) we have the 1-form

� = I

a

d'

a

and the Hamiltonian H = H(I

1

; : : : ; I

N

). Then, the constraint

and pre-quantization operators take the form

^

�

I

a

= I

a

+ i~@

'

a

;

^

R

I

a

= �i~@

'

a

;

^

R

H

= H �

@H

@I

a

^

�

I

a

: (5.3)

If '

a

are the cyclic variables ('

a

2 S

1

), then by described formal operations

we obtain the `physical states'

	

ph

(I; ') =

N

Y

a=1

�(I

a

� ~n

a

) exp (in

a

'

a

); (5.4)

as the `solutions' of the equations

^

�

I

a

	

ph

(I; ') = 0:

The spectra of pre-quantization operators (5.3) on these `physical states'

are

(I

a

)

n

a

= ~n

a

and H

n

1

;:::;n

N

= H(~n

1

; : : : ; ~n

N

);
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where n

a

are integer numbers, and the corresponding admissible values are

chosen according to the possible classical values of the variables I

a

(as, for

example, n � 0 for the harmonic oscillator). It is remarkable that these

formal results correspond to the quantization rule

I

a

�'

a

=

I

p

a

dq

a

= 2�~n

a

which is almost the semi-classical one. From these formal operations it

seems that the quantum problem is solvable for any completely integrable

system; but of course, these expressions have only symbolic meaning, and

(5.4) needs further speci�cation, taking account of N other constraints and

limiting procedure as well.

After these remarks, let us consider the case where the observables f and

g in (4.57) are not canonically conjugated to each other.

It turns out that in general, the equation (4.57) has no normalizable

solutions at all, and the choice of sign (or value) of � does not help. If

we intend to deal with arbitrary observables and symplectic manifolds, we

have to generalize condition (4.27). For this purpose, we introduce the

minimization principle for quadratic uctuations of quantum constraints.

Quadratic uctuations of two Hermitian operators

^

�

f

and

^

�

g

can be

characterized by the functional U (	)

U (	) � h	j

^

�

2

f

j	ih	j

^

�

2

g

j	i; (5.5)

where j	i is a vector with the unit norm h	j	i = 1.

Then, one can postulate the principle that the physical states provide

minimization of this functional (5.5). For two arbitrary Hermitian oper-

ators, the minimization problem of uncertainties was studied in [96] and

[72]. In those papers, the minimization problem was considered for another

functional U

1

(	)

U

1

(	) �

h	j

^

�

2

f

j	ih	j

^

�

2

g

j	i

h	j

^

Aj	i

2

(5.6)

as well, where the operator

^

A is the commutator

^

A = �

i

~

[

^

�

f

;

^

�

g

]: (5.7)

In this section we consider only the functional U (	).

Using the results of [96] and [72] and taking variation of the functional

(5.5), we get the equation for the physical wave functions j	

ph

i (see Ap-

pendix D)

1

2a

2

^

�

2

f

j	

ph

i+

1

2b

2

^

�

2

g

j	

ph

i = j	

ph

i (5.8)
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with the subsidiary conditions

a

2

= h	

ph

j

^

�

2

f

j	

ph

i; b

2

= h	

ph

j

^

�

2

g

j	

ph

i; (5.9)

where a and b are some �xed parameters. Possible values of these parameters

are de�ned from the following procedure. At �rst we have to solve the

equation (5.8) with free parameters a; b and select the solutions with unit

norm which satisfy (5.9). Usually after this we still have a freedom in a

and b. Then we must choose one of those pairs with minimal product of

ab (we assume both a and b to be nonnegative). The �xed values of the

parameters a and b provide that the solutions of (5.8) form the linear space

as the subspace of L

2

(M). This subspace should de�ne the physical Hilbert

space H

ph

� H

(a;b)

of the system.

Thus, instead of the �rst order di�erential equation (4.57) with one pa-

rameter �, we get the second order equation (5.8) with two parameters a,b

and subsidiary conditions (5.9). Note that a possible limiting procedure

in (5.8) for a ! 0 (or b ! 0) can specify the physical states j	

ph

i with

^

�

f

j	

ph

i = 0 (or

^

�

g

j	

ph

i = 0).

For the test of the formulated principle, at �rst we consider again Exam-

ple 1. In this case the constraint operators

^

�

f

�

^

�

p

and

^

�

g

�

^

�

q

have the

canonical commutation relations (5.1). Then (5.8) looks like the harmonic

oscillator eigenvalue problem with the frequency ! = 1=ab and the eigen-

value E = 1. Respectively, we get ~(n + 1=2) = ab. One can check that

all the oscillator's eigenstates jni satisfy the conditions (5.9) and therefore

the minimal ab (ab = ~=2) corresponds to the vacuum state (n = 0) given

by (a

^

�

q

� ib

^

�

p

)j	

ph

i = 0. Thus, for the physical states we arrive again at

(4.31) with � = b=a, and the limiting procedure as a ! 0 (or b ! 0 ) can

be accomplished in a similar way.

Now, let us consider Example 2 with the constraint operators (4.47). For

convenience we can construct the operator

^

O �

^

�

2

sin '

+

^

�

2

cos'

and minimize

the product h	j

^

�

2

S

j	ih	j

^

Oj	i. From (4.47) we have

^

O = �~

2

@

2

S

, and we

see that this operator is the square of the Hermitian operator

^

�

'

� �i~@

S

(

^

O =

^

�

2

'

). Then, from the variation principle we get the equation (5.8)

with

^

�

f

= S + i~@

'

and

^

�

g

= �i~@

S

. Since these two Hermitian operators

have the canonical commutation relations, we arrive again at the oscillator

problem. Only, now the `ground' state should be obtained from the equation

(S + i~@

'

+

a

b

~@

S

)j	

ph

i = 0: (5.10)

Hence, for this example, using the minimization principle, we arrive at the

equation (5.10). It is interesting to note that the equations (5.10) and (4.53)

are equivalent, and the functions (4.55) with � = a=b are the solutions of

(5.10) as well.

In (5.10) we can accomplish the limiting procedure to the equations (4.50)

(or (4.49)), taking the corresponding limits a=b � �! 0 (or �!1).
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From (4.55) we see that the functions

	

�;n

(S; ') =

�

~

��

�

1=4

exp

�

�

(S � n~)

2

2�~

�

exp (in') (5.11)

form the ortho-normal basis for the physical states (5.10). The behavior of

these basis functions is singular when � ! 0 (or � ! 1). But, with some

suitable renormalization, the corresponding limits exist in the dual space

L

�

2

(R

1

� S

1

) (see Section 4.5). Indeed, the limit �! 0 of the function

e

	

�;n

(S; ') =

1

p

2~

�

1

��

�

1=4

	

�;n

(S; ')

is the generalized function (4.51), while the limit �!1 of the functions

e

e

	

�;n

(S; ') =

1

p

2

�

�

�~

�

1=4

	

�;n

(S; ')

gives the standard basis for `' representation' (see (4.46) and (4.49)).

According to the rule (4.28), the obtained physical states (4.51) (simi-

larly, the states  

n

(') = 1=

p

2� exp (in')) form an ortho-normal basis of

the corresponding reduced Hilbert space.

Any physical state (5.10) with the unit norm can expanded in the basis

(5.11):

	

�

(S; ') =

1

X

n=�1

a

n

	

�;n

(S; ') with

1

X

n=�1

ja

n

j

2

= 1:

Here the numbers a

n

can be interpreted as the probability amplitudes for

the angular momentum, and it is clear that the functions 	

�

(S; ') describe

the same quantum physical state for all �. Using the form of the basis

functions (5.11), we get

lim

�!0

j	

�

(S; ')j

2

= 2�~

1

X

n=�1

ja

n

j

2

�(S � n~); (5.12)

where we take into account that

lim

�!0

	

�

�;n

(S; ')	

�;m

(S; ') = 0; when m 6= n:

We see that the right-hand side of (5.12) describes the angular-momentum

distribution function for the corresponding physical state.

We use this property in Section 5.3 for the physical interpretation of wave

functions 	

ph

(�), and now, in the next section, we return to the condition

(4.57) for further investigation.



73

5.2. Minimal uncertainties and coherent states. The minimization principle

for quadratic uctuations applied for the functional (5.6) U

1

(	) gives (see

Appendix D)

1

2a

2

^

�

2

f

j	

ph

i+

1

2b

2

^

�

2

g

j	

ph

i �

^

A

A

j	

ph

i = 0; (5.13)

where

^

A is commutator (5.7), A is a parameter, and the solutions j	

ph

i

should satisfy both (5.9) and the condition h	

ph

j

^

Aj	

ph

i = A.

There is some relation between the minimization of the functional U

1

(	)

and the condition (4.57). The condition (4.57) is the �rst order di�eren-

tial equation for the wave function 	

�

(�). Of course, it is much easier to

analyze solutions of (4.57) than to investigate (5.8) (or (5.13)), which are

the second order equations with two (or three) free parameters and the

subsidiary conditions (5.9). But, to be acceptable for the physical states,

the corresponding the solutions of (4.57) should belong to the domain of

de�nition of self-adjoint operators

^

�

f

and

^

�

g

. Except the �niteness of the

norm of j	

�

i, this means that the operators

^

�

f

and

^

�

g

must be Hermitian

on these functions. As it was pointed out, in general, these conditions are

not ful�lled, and in that case we have to use the minimization principle for

quadratic uctuations of quantum constraints. But, if for some real �, the

solutions of (4.57) satisfy the two conditions mentioned above, then one can

derive that (see Appendix D)

h	

�

j

^

�

2

f

j	

�

i =

~�A

2

h	

�

j

^

�

2

g

j	

�

i =

~A

2�

; where h	

�

j

^

Aj	

�

i = A;

and the corresponding physical states j	

�

i provide the minimization of the

functional U

1

(	): U

1

(	

�

) = ~

2

=4. Note (and it is natural) that such func-

tions j	

�

i satisfy (5.13) (j	

ph

i = j	

�

i) with a

2

= ~�A=2, b

2

= ~A=2�, and

A = h	

�

j

^

Aj	

�

i. To be convinced, it is su�cient to act on (4.57) by the

operator

^

�

f

� i�

^

�

g

.

When the commutator

^

A in (5.13) is a c-number, the equations (5.13)

and (5.8) are equivalent and they de�ne the same physical Hilbert spaces

as the subspaces of L

2

(M). But, in general, these subspaces are di�erent,

and for their physical interpretation further investigation is required.

Let us return again to the choice of physical states by the condition (4.57).

For simplicitywe consider the two-dimensional case with the coordinates � �

(�

1

; �

2

), and the observables f and g can play the role of these coordinates

as well.

Suppose that for some real �, the solutions of (4.57) satisfy the required

conditions, and hence, they are acceptable for the physical states. In com-

plex variables

z = f(�) � i�g(�); z

�

= f(�) + i�g(�); (5.14)
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the condition (4.57) can be written as

^

�

z

�

j	

ph

i = 0. The corresponding

di�erential equation has the form (see (4.39), (4.53) and (4.74))

�

@

z

�

i

~

�

z

�

	

ph

= 0; (5.15)

where �

z

is the component of the 1-form � = �

z

dz + �

z

�

dz

�

. The solutions

of (5.15) are

	

ph

(�) = exp (�

1

2~

S(�)) (z

�

); (5.16)

where @

z

S = �2i�

z

, the coordinates z and � are related through (5.14),

and  (z

�

) is almost arbitrary. Only this holomorphic function  (z

�

) should

provide a �nite norm of physical states 	

ph

(�).

The pre-quantization operator

^

R

z

�

= z

�

�

^

�

z

�

acts invariantly on the

physical states (5.16), and this action is given as a multiplication of corre-

sponding wave functions  (z

�

) by z

�

^

R

z

�

	

ph

(�) = z

�

(�)	

ph

(�): (5.17)

From (4.25) and (4.21) we have

[

^

R

z

;

^

�

z

�

] = �i~

^

�

fz;z

�

g

= 2�~@

z

(ff; gg)

^

�

z

+ 2�~@

z

�

(ff; gg)

^

�

z

�

;

and if the Poisson bracket ff; gg is not a constant, then the physical Hilbert

space (5.16) is not invariant under the action of pre-quantization operator

^

R

z

. In this case, the deformation procedure is rather problematic, and to

de�ne the operator ẑ, we use the relation between z, z

�

variables. Since the

operator ẑ

+

�

^

R

z

�

is well de�ned on the physical states (5.16), it is natural

to introduce the operator ẑ as Hermitian conjugated to

^

R

z

�

: ẑ � (

^

R

z

�

)

+

.

Respectively, the operators

^

f and ĝ will be

^

f =

1

2

(ẑ + ẑ

+

); ĝ =

i

2�

(ẑ � ẑ

+

): (5.18)

If 	

ph;n

(�) is some ortho-normal basis of the physical Hilbert space (5.16),

then the action of the operator ẑ on any state 	

ph

(�) can be written as

ẑ	

ph

(�) =

X

n

	

ph;n

(�)h	

ph;n

jẑj	

ph

i =

X

n

	

ph;n

(�)hẑ

+

	

ph;n

j	

ph

i =

=

X

n

	

ph;n

(�)

Z

d�(�

0

) 	

�

ph;n

(�

0

)z(�

0

)	

ph

(�

0

); (5.19)

where d�(�

0

) is the standard measure (1.43).

Let us introduce the wave function �

�

(�):

�

�

(�) �

X

n

	

�

ph;n

(�)	

ph;n

(�); (5.20)



75

where the parameters � � (�

1

; �

2

) take the same values as the coordinates

(�

1

; �

2

). So, (5.20) is an expansion of the wave function �

�

(�) in the basis

	

ph;n

(�) with the coe�cients 	

�

ph;n

(�).

With some assumptions about the analytical structure on M, one can

prove (see [82] and [27]) that the function �

�

(�) is well-de�ned on L

2

(M)

and the corresponding norm

Z

d�(�) j�

�

(�)j

2

=

X

n

	

�

ph;n

(�)	

ph;n

(�) = �

�

(�) (5.21)

does not depend on the choice of the basis 	

ph;n

(�).

Then for an arbitrary physical state j	

ph

i, (5.20) yields

h�

�

j	

ph

i =

Z

d�(�) �

�

�

(�)	

ph

(�) = 	

ph

(�): (5.22)

If we act with the operator ẑ on the state �

�

(�), and use (5.17), (5.19),

and (5.22), we obtain

ẑ�

�

(�) = h�

�

jẑj�

�

i = h�

�

jẑ

+

j�

�

i

�

= (ẑ

+

�

�

(�))

�

=

(z

�

(�)�

�

(�))

�

= z(�) �

�

(�); (5.23)

where the complex valued functions z(�) and z

�

(�) are given by (5.14), and

we take into account that

�

�

�

(�) = �

�

(�)

which is apparent from the de�nition (5.20).

Thus, we see that the function �

�

(�

0

) is the eigenstate of the operator

ẑ with the eigenvalue z = z(�). This state is uniquely characterized by

the complex parameter z, and we denote the corresponding `bra' and `ket'

vectors by hzj and jzi, respectively. We also use the notation jzi � j

�

f; �g; �i,

where

�

f = f(�) and �g = g(�) are the real and the imaginary parts of the

complex number �.

From the de�nition (5.20) the set of vectors jzi is a complete one on the

physical Hilbert space H

ph

Z

d�(�) jz(�)ihz(�)j =

^

I:

It is remarkable that this condition of completeness allows us to introduce

the covariant and the contravariant symbols of Berezin quantization [27].

Further, for the Hermitian operators (5.18) the relation (5.23) takes the

form

(

^

f � i�ĝ)j

�

f ; �g; �i = (

�

f � i��g)j

�

f ; �g; �i; (5.24)

which gives

h

�

f ; �g; �j

^

f j

�

f; �g; �i =

�

f ; h

�

f ; �g; �jĝj

�

f; �g; �i = �g:
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Then, using the method described in [96]-[72], we obtain

h

�

f ; �g; �j(

^

f �

�

f )

2

j

�

f; �g; �ih

�

f; �g; �j(ĝ� �g)

2

j

�

f; �g; �i

h

�

f ; �g; �j

^

Cj

�

f; �g; �i

2

=

~

2

4

; (5.25)

where

^

C is the commutator

^

C = i=~ [

^

f; ĝ]: (5.26)

One can show (see [96]) that the number ~

2

=4 is the minimal value for the

corresponding quadratic uctuations. Therefore, the quantum state j

�

f; �g; �i

minimizes the quadratic uctuations of the observables f and g around

the values

�

f and �g. In this respect, they are very similar to the standard

coherent states of quantum mechanics jp; q; �i (see (4.42)), which minimize

the coordinate-momentum uncertainty.

Note that the operators

^

f and ĝ generally are not the pre-quantization

ones, and respectively, the operator

^

C has not the form (4.16).

For the considered examples (see Section 4.3) many technical calculations

with coherent states can be accomplished explicitly. In the case of a plane,

the ortho-normal basis for the physical states (4.40) can be chosen as

	

ph;n

(p; q) = exp (�

1

2

jzj

2

)

z

�

n

p

n!

:

Then, from (5.20) and (5.22 )we get

�

p

1

;q

1

(p; q) = exp (�

1

2

jzj

2

) exp (�

1

2

jz

1

j

2

) exp (z

�

1

z) = hz

1

jzi;

and these states have the unit norm for arbitrary z

1

(see (5.21)). Comparing

(5.22) and (5.24) to (4.45) and (4.42), we see that the states jzi are just the

usual coherent states jp; q; �i mentioned above.

In the case of a cylinder, we have

f = e

S=�

cos'; g = e

S=�

sin'; � = 1

and the corresponding complex variables (4.52). The physical Hilbert space

is de�ned by (4.54) or (4.55), and it has the ortho-normal basis (5.11).

Here, we omit the index `ph', the arguments of the functions, and denote

the corresponding basis by j	

n

i. The states j	

n

i are the eigenstates of the

operator

^

S �

^

R

S

= �i~@

'

with the eigenvalues n~. Then, from (5.20) and

(5.11), we get

jzi =

�

~

��

�

1=4

1

X

n=�1

exp

�

�

(S � n~)

2

2�~

�

exp (in') k	

n

i: (5.27)

This state has the �nite norm

hzjzi =

�

~

��

�

1=2

1

X

n=�1

exp

�

�

(S � n~)

2

�~

�

;
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and in the limit as �! 0 we obtain

hzjzi !

1

X

n=�1

�(S=~ � n): (5.28)

Since the operator ẑ

+

acts as the multiplication by z

�

(see (4.52)), for the

basis vectors (5.11) we get

ẑ

+

j	

n

i = exp

�

~n

�

+

~

2�

�

j	

n+1

i:

Respectively, the Hermitian conjugated operator ẑ is

ẑj	

n

i = exp

�

~n

�

�

~

2�

�

j	

n�1

i; (5.29)

and we obtain the commutator

[ẑ; ẑ

+

] = 2 exp (2

^

S=�) sinh (~=�):

Note that the operator ẑ is not the pre-quantization one, and the corre-

sponding classical commutation relation is

fẑ; ẑ

+

g =

2i

�

exp (2S=�):

Now, from (5.29) and (5.27), we can check that the states jzi are the

eigenstates of the operator ẑ with the eigenvalues z = exp (S=� � i').

The states jzi in (5.27) are de�ned for arbitrary values of the variable

S. At the same time, the states with �xed value of the angular momentum

(�S = 0), exist only for the discrete values of S (S

n

= ~n). Of course,

the states jzi are not the eigenstates of the operator

^

S, but, from (5.25),

it is expected that �S ! 0 when � ! 0. Therefore, it is interesting to

investigate the behavior of the states jzi when �! 0.

Note that the expansion (5.27) can be considered as the de�nition of the

states jzi for a quantum theory of a rotator in abstract Hilbert space; only

the basis vectors j	

n

i should be the eigenstates of the angular momentum

operator

^

S with the eigenvalues S

n

= ~n. With this remark we can neglect

the dependence on the parameter � in the basis vectors 	

n

, and consider

the behavior (when � ! 0) of the corresponding coe�cients only. If we

introduce the vector jS; ';�i with the unit norm

jS; ';�i �

jzi

hzjzi

1=2

;

then from (5.27) we get

jS; ';�i =

1

X

n=�1

d

n

(S; �)

d(S; �)

exp (in') j	

n

i;
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where

d

n

(S; �) = exp

�

�

(S � n~)

2

2�~

�

; d

2

(S; �) =

1

X

n=�1

d

2

n

; (d > 0):

In the limit as � ! 0, d

n

(S; �)=d(S; �) ! c

n

(S), and for the coe�cients

c

n

(S) we get:

a. c

n

(S) = 0, if S < ~(n � 1=2), or S > ~(n + 1=2);

b. c

n

(S) = 1=

p

2, if S = ~(n � 1=2) or S = ~(n + 1=2);

c. c

n

(S) = 1, if ~(n � 1=2) < S < ~(n+ 1=2).

We see that jS; ';�i ! exp (in') j	

n

i, where n is the nearest integer

number to S=~. But if S=~ is exactly in the middle of two integers: S=~ =

n + 1=2, then jS; ';�i ! 1=

p

2 (exp (in')j	

n

i + exp (i(n + 1)')j	

n+1

i).

So, when � ! 0, all states jS; ';�i with ~(n � 1=2) < S < ~(n + 1=2)

`collapse' to the state j	

n

i.

From (5.22) and (5.28) we see that the obtained behavior of the states

jS; ';�i for small � is in accordance with the corresponding behavior of the

wave functions of E-quantization scheme given by (5.12).

5.3. Quantum distribution functions. For the physical interpretation of the

wave functions 	

ph

(�), we refer to the equation (4.57), where the functions

f(�) and g(�) are two non-commuting observables (ff; gg 6= 0) on the two

dimensional phase space M. We assume that the solutions of (4.57) 	

�

�

	

ph

(�) de�ne the physical Hilbert space as the subspace of L

2

(M). To

emphasize the dependence on the observables f , g and on the parameter �,

we denote this physical Hilbert space here by H

�

(f; g).

On H

�

(f; g) the operators

^

f and ĝ have the form (5.18), where the op-

erator ẑ

+

acts on wave functions 	

ph

(�) as the multiplication by z

�

(�) =

f(�) + i�g(�), and the operator ẑ is its Hermitian conjugated. Then, for

mean values of these operators we get

h	

ph

j

^

f j	

ph

i =

Z

d�(�) j	

ph

(�)j

2

f(�);

h	

ph

jĝj	

ph

i =

Z

d�(�) j	

ph

(�)j

2

g(�): (5.30)

We see that j	

ph

(�)j

2

can be interpreted as some `distribution function' on

the phase spaceM.

For further investigation, we introduce the modulus and phase of wave

functions 	

ph

(�)

	

ph

(�) = e

i�(�)

p

�(�): (5.31)

From (4.57) and (5.31), we have two real equations

V

f

�+

�

2

V

g

(log �) =

1

~

�(V

f

); V

g

��

1

2�

V

f

(log �) =

1

~

�(V

g

); (5.32)

where V

f

and V

g

are the corresponding Hamiltonian vector �elds (see (1.5)).
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One can check the validity of the following relations

[V

f

; V

g

] = V

ff;gg

=

fff; gg; gg

ff; gg

V

f

�

fff; gg; fg

ff; gg

V

g

and

V

f

�(V

g

)� V

g

�(V

f

) = ff; gg+ �(V

ff;gg

):

Using these relations, we can exclude the function �(�) from (5.32), and

obtain the equation only for �(�)

"

~

2�

�

1

ff; gg

V

f

�

2

+

~�

2

�

1

ff; gg

V

g

�

2

#

log � = �

1

ff; gg

: (5.33)

Note that in variables f , g this equation takes the form

~

2

�

1

�

@

2

g

+ �@

2

f

�

log � = �

1

ff; gg

; (5.34)

where the Poisson bracket ff; gg can be considered as a function of f and

g.

Any solution of (5.33) �(�) de�nes the corresponding phase �(�) up to the

integration constant (see (5.32)). This constant phase factor is unessential

for physical states (5.31) and, respectively, there is one-to-one correspon-

dence between the `distribution functions' �(�) = j	

ph

(�)j

2

and the pure

states described by a projection operator

^

P

	

ph

� j	

ph

ih	

ph

j

�(�)  !

^

P

	

ph

: (5.35)

With this remark we can use the index � for corresponding pure states as

well:

^

P

	

ph

�

^

P

�

.

From (5.31) and (5.22), we have

�(�) = j	(�)j

2

= hz(�)j	

ph

ih	

ph

jz(�)i = hz(�)j

^

P

�

jz(�)i; (5.36)

where jzi is a coherent state related to the observables f and g (see (5.20)

and (5.24)). If one introduces the covariant symbol P

�

(�) of the projection

operator

^

P

�

P

�

(�) �

hz(�)j	

ph

ih	

ph

jz(�)i

hz(�)jz(�)i

;

then from (5.36) we have �(�) = P

�

(�)hz(�)jz(�)i, and the correspondence

(5.35) describes the well known connection between operators and their

covariant symbols (see [27]).

Let F (�) be any observable onM and

^

F be the corresponding operator

on the physical Hilbert space H

�

(f; g). Standard quantummechanical mean

values are calculated by

h	

ph

j

^

F j	

ph

i = Tr(

^

F

^

P

�

) � h

^

F i

�

: (5.37)
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We introduce the new mean values

�

F

�

:

�

F

�

�

Z

d�(�) F (�)�(�): (5.38)

In general, h

^

F i

�

6=

�

F

�

, but for F = f and F = g these mean values are the

same for an arbitrary state � (see (5.30))

�

f

�

= h

^

f i

�

; �g

�

= hĝi

�

: (5.39)

Using (5.17) and (5.18), for the operators

^

f

2

and ĝ

2

we obtain

�

f

2

�

= h

^

f

2

i

�

+

�~

2

h

^

Ci

�

;

�

g

2

�

= hĝ

2

i

�

+

~

2�

h

^

Ci

�

; (5.40)

where the operator

^

C is the commutator (5.26).

The quadratic uctuations calculated for the mean values (5.37) and

(5.38), respectively, are

(�

^

F )

2

�

= h

^

F

2

i

�

� h

^

F i

2

�

; (�F )

2

�

=

�

F

2

�

� (

�

F

�

)

2

: (5.41)

Then, from (5.39) and (5.40) we have

(�f)

2

= (�

^

f)

2

+

�~

2

h

^

Ci; (�g)

2

= (�ĝ)

2

+

~

2�

h

^

Ci: (5.42)

The introduced `distribution functions' can be generalized for mixed

states as well. Any mixed state is described by a density matrix opera-

tor �̂ [97], which is Hermitian (�̂ = �̂

+

), semi-positive (h j�̂j i � 0, for any

state j i), and it has the unit trace (Tr�̂ = 1). Respectively, any density

matrix operator has the spectral expansion

�̂ =

X

n

c

n

j 

n

ih 

n

j; (5.43)

where j 

n

i are the ortho-normal eigenvectors of �̂, c

n

are the corresponding

positive (c

n

> 0) eigenvalues, and

P

n

c

n

= 1.

Similarly to (5.36), we de�ne the `distribution function' �(�) connected

with the covariant symbol of �̂

�(�) � hz(�)j�̂jz(�)i: (5.44)

Using the spectral expansion (5.43) we get that a `distribution function' of

a mixed state can be expressed as a convex combination of `distribution

functions' of pure ones

�(�) =

X

n

c

n

�

n

(�); (0 < c

n

< 1): (5.45)

One can easily check that the relations (5.39)-(5.42) are valid for the mixed

states as well.
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From (5.44)-(5.45) we see that, in general, a `distribution function' �(�) is

a non-negative function on the phase spaceM, and it satis�es the standard

condition of classical distributions

Z

d�(�) �(�) = 1: (5.46)

Thus, for a given f(�), g(�) and � we have `distribution functions' �(�)

which look like classical ones, and at the same time they describe all possible

quantum states uniquely. We call these functions the quantum distribution

functions. Sometimes it is convenient to indicate the dependence on the

observables f; g and the parameter � explicitly: �(�) � �(�jf; g; �).

We can compare the quantum distribution function �(�jf; g; �) to the

Wigner function �

w

(�), which is the Weyl symbol of a density matrix oper-

ator [98]. For any Wigner function �

w

(�) we have the `classical' formula for

quantum mechanical mean values (see (1.46),

h

^

F i

�

=

Z

d�(�) F (�)�

w

(�): (5.47)

Though this formula is valid for an arbitrary observable F (�), nevertheless

Wigner functions cannot be interpreted as functions of probability density.

Due to the uncertainty principle, there is no such function on the phase

space of a quantum system. In general, the Wigner function is even neg-

ative in some domain of a phase space. It should also be noted that the

Wigner function is de�ned only for a `at' phase space (M = R

2N

) and the

Cartesian coordinates.

A quantum distribution function �(�jf; g; �) can be considered for almost

arbitrary `coordinates' f , g. It is always positive, but the `classical' formula

(5.47) (with substitution �

w

by �) is valid only for the functions F = f , or

F = g (and their linear combination).

The evolution equation for the Wigner function has the Liouville like

form (1.48), where one has to change the Poisson bracket on the right-hand

side to the Moyal one (see for example in [83]). The Moyal bracket has

an expansion in powers of ~ and the zero term coincides with the Poisson

bracket. A similar type equation can be obtained for the normal symbol of

the density matrix operator, and such equation can be generalized for other

quantum distribution functions as well. It is clear that the corrections (in

powers of ~) to the Poisson bracket essentially depend on the choice of

observables f and g and the parameter �. If we take f = H, where H(�) is

the Hamilton function and take the limit as �! 0, one can expect that all

corrections vanish, and the corresponding distribution function satis�es the

Liouville equation.

For the physical interpretation of quantum distribution functions �(�jf; g;

�) we consider again Example 1 (see Section 4.3) with M = R

2

, f � q,
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g � �p. In this case (5.42) takes the form

(�q)

2

= (�q̂)

2

+

�~

2

(�p)

2

= (�p̂)

2

+

~

2�

; (5.48)

where (�q̂)

2

and (�p̂)

2

are usual quantum mechanical quadratic uctua-

tions of coordinate and momentum, and they satisfy the Heisenberg uncer-

tainty relation

(�p̂)

2

(�q̂)

2

�

~

2

4

: (5.49)

Suppose that a quantum particle is described by a wave function  (q).

The function j (q)j

2

is a probability density of coordinate distribution, and

the quadratic uctuation (�q̂)

2

is calculated by the classical formula

(�q̂)

2

=

Z

dq q

2

j (q)j

2

�

�

Z

dq qj (q)j

2

�

2

:

The distribution function j (q)j

2

, in principle, can be measured. We denote

the corresponding experiment by E

q

. Theoretically it is assumed that in the

experiment E

q

the coordinate can be measured with an absolute precision,

and the quantum system can be prepared in a given state  (q) as many

times as it is necessary for a good approximation of the function j (q)j

2

. A

statistical distribution of the coordinate, obtained in such experiment, is the

intrinsic property of the quantum system in the given state. In general, in a

pure state a de�nite value has some other observable (for example, energy),

but not the coordinate.

Similarly, the momentum distribution for the same state is described by

the function j

e

 (p)j

2

, and for a good approximation of the function j

e

 (p)j

2

we need the experiment E

p

with the precise measurement of the momentum.

Note that the function

e

 (p) is the Fourier transformation of  (q).

One possible method for measuring of the coordinate and the momentum

of a quantum particle is the scattering of a light on this particle (see [97]).

It is well-known that in such an experiment the precise measurement of

the coordinate can be achieved by photons with a very short wavelength

� (high energy). On the contrary, photons of low energy are needed for

the measurement of the momentum. Thus, E

q

and E

p

are two essentially

di�erent experiments. Theoretically, the experiment E

q

is the measurement

with photons of `zero wavelength': � ! 0, and the experiment E

p

requires

photons of `zero energy': �!1.

But real experiments, of course, are with photons of �nite and non-zero

wavelength �. we denote the experiment with some �xed wavelength � by

E

�

. In this experiment there are the errors in measuring of both coordinate

and momentum. The �rst one �

q

is proportional to the photon's wave-

length �, while the error of momentum �

p

is proportional to the photon's
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momentum (see [97]) p

�

= 2�~=�. Respectively, we can write

�

q

= ��; �

p

= �

~

�

; (5.50)

where � and � are dimensionless parameters of order 1.

Thus, in the experiment E

�

we have two di�erent uctuations: the �rst

one ((�q̂), (�p̂)) is the intrinsic property of a quantum system, and the

second ((�

q

), (�

p

)) is related to the measurement procedure. Then, for

the total quadratic uctuations we can write

(�

t

q)

2

= (�q̂)

2

+ (�

q

)

2

= (�q̂)

2

+ �

2

�

2

;

(�

t

p)

2

= (�p̂)

2

+ (�

p

)

2

= (�p̂)

2

+

�

2

~

2

�

2

: (5.51)

As it was mentioned, the uctuations (�q̂) and (�p̂) satisfy the uncertainty

relation (5.49). Assuming that for the ideal experiment �� = 1=2, from

(5.50) we get another uncertainty relation

�

q

�

p

=

~

2

: (5.52)

With this assumption, from (5.48) and (5.51), we can write

(�

t

q)

2

= (�q)

2

; (�

t

p)

2

= (�p)

2

:

Then the parameter � is related to the wavelength � and at the same time

it �xes the ratio of the experimental errors

� =

�

q

�

p

: (5.53)

Note that for the total uctuations we get the uncertainty relation

(�p)(�q) � ~:

Since the quadratic uctuations (�q)

2

and (�p)

2

are calculated by the mean

values of the function �

�

(p; q), it is natural to suppose that the quantum

distribution function �

�

(p; q) = j	

�

(p; q)j

2

is the distribution obtained in

the experiment E

�

with simultaneous measurements of the coordinate and

the momentum.

This idea can be easily generalized assuming that the quantum distribu-

tion function �(�jf; g : �) is the distribution on the phase space obtained

in some ideal experiment with simultaneous measuring of the observables

f and g. In such an experiment we have the unavoidable errors �

f

and

�

g

connected with the measurement procedure with micro-objects. For the

corresponding uctuations there is the additional uncertainty principle (see

(5.52)), and the parameter � speci�es the experiment by �xing the ratio of

the errors � = �

f

=�

g

.

If the function �(�) � �(�jf; g; �) is really measurable, then in the limit

�! 0 this function �(�) should describe the experimental distribution of the
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exact measurement of the observable f . It is obvious that for the observable

f with discrete spectrum the corresponding function �(�) should be localized

in the points of this spectrum. Thus, by asymptotics of quantum distribu-

tion functions one can obtain the spectrum of the physical observables (see

(5.12) and the end of Section 5.2).

We see that quantum distribution functions can play some fundamental

role for the interpretation of quantum theory. It is natural to try to formu-

late quantum mechanics in terms of these distribution functions, especially

as they describe all possible states of a quantum system uniquely. But for

this purpose it is worthwhile to have an independent (without referring to

the Hilbert space) description of the set of functions �(�) � �(�jf; g; �). The

corresponding functions are positive, satisfying (5.46), and at the same time

they essentially depend on the choice of observables f and g and of the pa-

rameter �. On the other hand, the set of physical states is a convex one,

where the boundary points are the pure states. So for the description of our

set we need to specify the distribution functions of pure states, but the latter

are given as the solutions of (5.33). Thus, in this approach equation (5.33)

plays an important role. Actually it describes the set of all physical states

and, respectively, it contains the information about quantum uncertainties

both the intrinsic and the experimental ones.

Note that on the left-hand side of the corresponding equation there is the

Laplace operator (see (5.33) and (5.34)) and we have some metric structure

induced on the phase spaceM. It is remarkable, that this metric structure

is related to the experimental errors. Indeed, in the case of Example 1 the

errors �

p

;�

q

and the parameter � are related by (5.53), and we see that

the corresponding equation (5.34) takes the form

�

�

2

q

@

2

q

+�

2

p

@

2

p

�

log � = �1:

Note, that a similar `shadow' metric on a phase space was introduced in

[36].

If the equation for the quantum distribution functions of pure states has

really the fundamental character, then one might expect that it can be

derived from some general principle. A suitable principle could be the mini-

mization of certain functional, and we arrive to the problem of construction

of the corresponding functional. Since the minimization should be achieved

on pure states, it is natural to interpret such functional as the entropy of

a quantum system. Respectively, one candidate for such a functional is

the standard quantum mechanical entropy S = �Tr(�̂ log �̂) which can be

expressed as a functional of �(�).

Formulation of quantum mechanics based on the entropy minimization

principle for the measurable distribution functions seems quite interesting

and it needs further investigation.
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Conclusions

In conclusions we present the main results of the work:

1. The practical reduction scheme of gauge invariant theories is con-

structed. This method is based on the analysis of the restricted 1-forms in

gauge-invariant variables, and it is e�ectively used even if only a part of the

gauge invariant variables are known.

2. A complete reduction of the models of Yang-Mills theory is accom-

plished. A possible mechanism of the con�nement is obtained for the �nite-

dimensional model with SU (2) gauge symmetry. In the in�nite dimensional

case the reduced Hamiltonian system has a non-analytical dependence on

the coupling constant and this system is equivalent to Yang-Mills theory

with a certain boundary condition.

3. A quantum theory is constructed for the system of a relativistic parti-

cle moving freely on the SL(2; R) group manifold. Applied to the cotangent

bundle of SL(2; R), the method of Hamiltonian reduction allows us to split

the reduced system into two coadjoint orbits of the group. We �nd that

the Hilbert space consists of states given by a discrete series of unitary ir-

reducible representations of SL(2; R), and only some discrete values of the

mass parameter are admissible.

4. The k-th root of the bosonic phase operator is constructed. This

construction leads to the extension of the Hilbert space. In the case k = 2

the ordinary fermionic extension arises. Particles whose statistics depends

on k are introduced for other values of k. We show that the constructed

quantum system can be considered as a quantization on k-sheet manifold

as well.

5. A general quantization method based on the extension of phase space

is constructed. This method (E-quantization) turned out to be very similar

to geometric quantization, though it is based on essentially di�erent ideas.

A connection of E-quantization with the Berezin quantization is found.

6. The problem of scalar product is investigated for the constrained

systems and a possible solution to this problem is given.

7. Generalization of the Gupta-Bleuler like conditions is done by mini-

mization of quadratic uctuations of quantum constraints.

8. The general coherent states are introduced. They minimize uncertain-

ties for some complete set of observables. The special coherent states on

the cylinder are constructed and their behaviour is investigated.

9. The positive de�ned quantum distribution function is introduced. The

special elliptic type equations are obtained for the pure state distributions.

A possible experimental measuring of the quantum distribution functions is

investigated and the corresponding physical interpretation of these distri-

bution is found.
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Appendix A

Let

~

J = (J

x

; J

y

; J

z

) be any non-zero vector of 3-dimensional Euclidean

space. We associate the following orthonormal frame ~e

i

(

~

J) (i = 1; 2; 3) with

this vector

~

J

~e

3

=

J

z

J

; ~e

i

� ~e

k

= �

ik

; ~e

i

� ~e

k

= �

ikl

~e

l

; (A.1)

where J = (J

2

x

+ J

2

y

+ J

2

z

)

1=2

.

Of course, there are di�erent possibilities for the choice of the vectors

~e

1

and ~e

2

, but note that the orthonormal frame ~e

i

(

~

J) cannot be chosen

continuously on the sphere J = r. For example, if we choose

~e

1

=

1

J

�

J

2

x

J + J

z

� J;

J

x

J

y

J + J

z

; J

x

�

;

~e

2

=

1

J

 

J

x

J

y

J + J

z

;

J

2

y

J + J

z

� J; J

y

!

; (A.2)

then the continuity is violated at the lower pole J

z

= �J .

Suppose that the vector

~

J is the exterior product of two orthogonal vec-

tors ~q and ~p:

~

J = ~q � ~p (see (2.8)-(2.9)). Using the basis (A.1), we get the

decomposition for the vectors ~q and ~p

~q = a

1

~e

1

+ a

2

~e

2

; ~p = b

1

~e

1

+ b

2

~e

2

; (A.3)

where the coe�cients (a

1

; a

2

) and (b

1

; b

2

) satisfy the following conditions

a

1

b

1

+ a

2

b

2

= 0; a

1

b

2

� a

2

b

1

= r;

and for the two dimensional vectors a = (a

1

; a

2

) and b = (b

1

; b

2

) we can

choose the parametrization

a = �(cos �; sin�); b =

r

�

(� sin �; cos�); (� > 0): (A.4)

The initial phase space with the coordinates (~p; ~q)is 6-dimensional. The

4-dimensional constraint surface �

1

:= ~p � ~q = 0; �

2

=

~

J

2

� r

2

= 0 can

be parametrized by the coordinates (s; '; �; �) where (s := J

z

; ') are the

cylindrical coordinates on the sphere (see (2.10)). Using (A.1)-(A.4), we

can calculate the reduction of the 1-form ~p �d~q on the constraint surface and

obtain

~p � d~qj

�

1;2

=0

= rd�+ (s � r)d': (A.5)

In this calculation we use that

~e

1

d~e

2

= r(r � s)d'

which can be derived using the parametrization (A.2).
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The di�erential of the 1-form (A.5) is a well de�ned symplectic form on

the sphere

! = ds ^ d': (A.6)

The described reduction scheme can be generalized for the Minkowski

space with the metric tensor g

��

(�; � = 0; 1; 2). Here the co-vector I

�

is

de�ned by

I

�

= �

���

q

�

p

�

and the constraints have the form �

1

= p

�

q

�

= 0; �

2

= I

�

I

�

� c = 0. It

should be noted that the form of the frame connected with the vector I

�

essentially depends on the sign of the constant c, and respectively, di�erent

reductions are possible.

Appendix B

The 2 + 1-dimensional massive photodynamics is described by the La-

grangian (see e.g., [99])

L = �

1

4

F

��

F

��

�

m

4

�

���

F

��

A

�

: (B.1)

We choose g

��

= diag(+;�;�), �

012

= 1. Using the �rst order formalism

[18], we obtain

S=

Z

dt

Z

R

2

d

2

x[(E

i

�

m

2

�

ij

A

j

)

_

A

i

�

1

2

(E

i

E

i

+B

2

)+A

0

(@

i

E

i

�mB)]; (B.2)

where

E

i

� F

0i

�

_

A

i

� @

i

A

0

B �

1

2

�

ij

F

ij

(�

ij

� �

0ij

)

and we neglect the boundary term

R

R

2

d

2

x@

i

[A

0

(

m

2

�

ij

A

j

�E

i

)].

If we use `1-forms' instead of time derivatives (see the comment after

(2.54)), the action (B.2) takes the form (2.1) with A

0

playing the role of a

Lagrange multiplier.

For the reduction, we choose E

1

and E

2

to be the variables �

�

, and A

1

to be the additional variable � (see (2.12)). Then

e

S =

Z

dt

Z

R

2

d

2

x

�

1

m

E

2

_

E

1

�

1

2

[E

i

E

i

+

1

m

2

(@

k

E

k

)

2

] +

d

dt

�

�

; (B.3)

where

� =

1

2

[E

1

A

1

+E

2

^

K(A

1

+

1

m

E

2

)]

and the operator

^

K � @

�1

1

@

2

is assumed to be symmetrical due to the

corresponding boundary conditions.



89

Neglecting the � term as the total derivative, we get the local Hamilto-

nian theory with the canonical commutation relations

fE

2

(x); E

1

(y)g = m�

(2)

(x� y) (B.4)

and the quadratic Hamiltonian

1

2

Z

R

2

d

2

x[E

i

E

i

+

1

m

2

(@

k

E

k

)

2

]: (B.5)

The energy-momentum tensor can also be expressed in terms of E

1

and E

2

alone:

T

00

=

1

2

[E

i

E

i

+

1

m

2

(@

k

E

k

)

2

]; T

0i

=

1

m

�

ij

E

j

(@

k

E

k

): (B.6)

Let us briey discuss the boundary conditions. We can assume that the

boundary behavior of the physical variables (E

1

; E

2

) should provide the

Poincar�e invariance of the reduced system (B.3)-(B.6), while the boundary

behavior of the �elds of the initial system (B.1) should allow the outlined

reduction procedure.

Generators of the Poincar�e group (constructed from the energy-mome-

ntum tensor (B.6)) generate transformations of E

1

and E

2

according to the

Poisson brackets (B.4). The space of functions E

1

(x) and E

2

(x) should be

invariant under these transformations. It is natural to choose the class of

smooth functions rapidly vanishing at in�nity.

For diagonalization of the Hamiltonian and momentum, let us make the

Fourier transformation

E

j

(x) = i

Z

d

2

p

e

�i(p�x)

2�

e

E

j

(p):

and introduce the longitudinal and transverse components

e

E

j

(p) =

p

j

jpj

e

1

(p)�

�

jl

p

l

jpj

e

2

(p);

where jpj =

p

p

2

1

+ p

2

2

.

Then diagonalizationof the energy and momentumoccurs in the variables

a(p) =

!

p

m

e

1

(p) + ie

2

(p)

p

2!

p

e

�i'(p)

a

�

(p) =

!

p

m

e

1

(�p) � ie

2

(�p)

p

2!

p

e

i'(p)

with

!

p

=

p

jpj

2

+m

2

and e

�i'(p)

=

p

1

� ip

2

jpj

:

Note that for the chosen class of E

1

(x) and E

2

(x), the longitudinal and

transverse components of

e

E

j

(p) have a singularity at the origin (p = 0), and
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we need to introduce the phase factor e

i'(p)

to cancel it. On the other hand,

one can easily check that the class of smooth functions a(p), a

�

(p) is Poincar�e

invariant. This phase factor was introduced in [99] to avoid anomalies in

the commutation relations of the Poincar e algebra of quantum operators.

As we have seen, this phase factor is connected with the Poincare invariance

of the classical system, as well.

After describing the class of physical variables, one can go back and �nd

the class of gauge potentials A

�

. One can show that these classes for massive

and ordinary photodynamics in (2+1) dimensions are di�erent.

Appendix C

Let us consider a symplectic manifoldM with some global coordinates �

k

,

(k = 1; : : : ; 2N ) and constant symplectic matrix: @

j

!

kl

= 0 (see (1.12)).

The simple example of such M is R

2N

with canonical coordinates.

For the global coordinates �

k

we can introduce the corresponding con-

straint functions �

�

k , and from (4.3)-(4.4) we get

�

�

k = �

k

= !

kl

(P

l

� �

l

): (C.1)

Then, (4.6) takes the form

f�

k

;�

l

g

�

= !

kl

; ff;�

k

g

�

= �!

kl

@

l

f; (C.2)

where f(�) is any observable onM, but in (C.2) it is considered as a function

on T

�

M with the natural extension (see remarks after the equation (4.6)).

Let us add to the function f(�) the term linear in constraints �

k

f(�) ! f

(1)

= f(�) + A

(1)

l

(�)�

l

(C.3)

and choose the functions A

(1)

l

(�) to satisfy the condition

ff

(1)

;�

k

g

�

= B

(1)k

l

(�)�

l

: (C.4)

This means that the right-hand side of (C.4) should contain the constraints

�

k

only in the �rst degree. From this condition the functions A

(1)

l

(�) and

B

(1)k

l

(�) are de�ned uniquely

A

(1)

l

(�) = �@

l

f(�); B

(1)k

l

(�) = !

kj

@

2

jl

f(�): (C.5)

It is obvious, that f

(1)

= R

f

, and (C.4)-(C.5) are equivalent to (4.18) with

constant symplectic matrix !

kl

. We can continue this `deformation' proce-

dure

f

(1)

! f

(2)

= f

(1)

+

1

2

A

(2)

lj

(�)�

l

�

j

(C.6)
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demanding

ff

(2)

;�

k

g

�

= B

(2)k

lj

(�)�

l

�

j

:

Then, for the functions A

(2)

lj

(�) and B

(2)k

lj

(�) we have

A

(2)

lj

(�) = @

2

lj

f(�); B

(2)k

lj

(�) = �

1

2

!

ki

@

3

ilj

f(�):

Generalizing for arbitrary n, we get

f(�) ! f

(n)

= f(�) +

n

X

a=1

1

a!

A

(a)

k

1

:::k

a

(�)�

k

1

: : :�

k

a

; (C.7)

where

A

(a)

k

1

:::k

a

(�) = (�)

a

@

(a)

k

1

:::k

a

f(�) (C.8)

and

ff

(n)

;�

k

g

�

=

(�)

n+1

n!

!

kl

�

@

(n+1)

lk

1

:::k

n

f(�)

�

�

k

1

: : :�

k

n

: (C.9)

Using this procedure for any observable f(�), one can construct a new

function

e

f = limf

(n)

(n ! 1), which commutes with all constraints �

k

(k = 1; : : : ; 2N ), and on the constraint surface (�

k

= 0 (k = 1; : : : ; 2N )) it

is equal to f(�).

A similar procedure can be accomplished on the quantum level as well,

taking into account operators ordering and self-adjoint conditions. But,

when the symplectic matrix !

kl

depends on coordinates �

k

, the described

procedure fails for some observables f(�), even on the classical level. For

the illustration, let us consider a simple example on a half plane with co-

ordinates (p; q), p > 0, and the canonical 1-form � = pdq. If we take the

coordinates �

1

= p

2

=2, �

2

= q (which are global here), then the correspond-

ing constraints �

1

= p

2

� pP

q

, �

2

= P

p

have the commutation relations

f�

2

;�

1

g = p+

1

p

�

1

: (C.10)

The �rst deformation of the function f = q, as usual, gives f

(1)

= R

q

=

q � P

p

and we get

ff

(1)

;�

1

g

�

= �

1

p

�

1

; ff

(1)

;�

2

g

�

= 0: (C.11)

Considering the second deformation (C.6)

f

(2)

= f

(1)

+

1

2

�

A

11

(�)(�

1

)

2

+ 2A

12

(�)�

1

�

2

+A

22

(�)(�

2

)

2

�
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and using commutation relations (C.10)-(C.11), we see that it is impossible

to cancel the linear (in the constraints �

1

and �

2

) terms in the Poisson

brackets ff

(2)

;�

1

g

�

and ff

(2)

;�

2

g

�

simultaneously.

Appendix D

At �rst, we consider minimization of the product of quadratic uctuations

(see (5.5))

U (	) � h	j

^

�

2

f

j	ih	j

^

�

2

g

j	i; (D.1)

with the vectors j	i of unit norm

h	j	i = 1: (D.2)

For the minimization of the functional U (	) one can use the variation prin-

ciple, considering the variation of j	i to be independent of h	j. Since we

have the subsidiary condition (D.2), from the variation of (D.1) we obtain

b

2

^

�

2

f

j	i+ a

2

^

�

2

g

j	i = cj	i; (D.3)

where

a

2

= h	j

^

�

2

f

j	i; b

2

= h	j

^

�

2

g

j	i: (D.4)

Multiplying by h	j, we get c = 2a

2

b

2

, and the equation (D.3) takes the form

1

2a

2

^

�

2

f

j	i +

1

2b

2

^

�

2

g

j	i = j	i: (D.5)

Thus, the solutions of (D.5) which satisfy the conditions (D.4) can provide

minimization of the functional U (	). If there are solutions with di�erent

values of the parameters a and b, then we have to choose the solutions with

minimal value of the product a

2

b

2

.

Now we consider minimization of the functional U

1

(	) (see (5.6))

U

1

(	) �

h	j

^

�

2

f

j	ih	j

^

�

2

g

j	i

h	j

^

Aj	i

2

: (D.6)

For an arbitrary vector j	i and any real parameter � we have

h	j(

^

�

f

� i�

^

�

g

)(

^

�

f

+ i�

^

�

g

)j	i � 0: (D.7)

The left-hand side of this inequality is a second order polynomial in �

�

2

h	j

^

�

2

g

j	i � ~�h	j

^

Aj	i+ h	j

^

�

2

f

j	i;

and respectively we have

h	j

^

�

2

f

j	ih	j

^

�

2

g

j	i �

~

2

4

h	j

^

Aj	i

2

: (D.8)
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Thus, the minimal value of the functional U

1

(	) could be ~

2

=4. If for some

� the equation

(

^

�

f

+ i�

^

�

g

)j	i = 0 (D.9)

has a normalizable solution j	i = j	

�

i, then, for this j	

�

i we have an

equality in (D.7) and (D.8). Respectively, these states j	

�

i, provide the

minimization of the functional U

1

(	). But, as it was indicated in Section

5.1, sometimes equation (D.9) has no normalizable solutions for any real �.

In that case, one can consider the minimization problem for the functional

U

1

(	) by the variation principle, as it was done for the functional U (	)

above. Repeating the same procedure, we get the equation

1

2a

2

^

�

2

f

j	i+

1

2b

2

^

�

2

g

j	i �

^

A

A

j	i = 0; (D.10)

where a; b; A are parameters, and the solution j	i should satisfy (D.4) and

the additional condition.
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