R. Koplatadze and N. Partsvania

ON THE OSCILLATION OF SOLUTIONS OF TWO-DIMENSIONAL LINEAR DIFFERENTIAL SYSTEMS WITH DEVIATED ARGUMENTS

(Reported on December 1, 1997)

Consider the system of differential equations

$$
\begin{equation*}
u_{1}^{\prime}(t)=\sum_{i=1}^{m} p_{i}(t) u_{2}\left(\sigma_{i}(t)\right), \quad u_{2}^{\prime}(t)=-\sum_{i=1}^{m} q_{i}(t) u_{1}\left(\tau_{i}(t)\right) \tag{1}
\end{equation*}
$$

where $p_{i}, q_{i} \in L_{l o c}\left(\mathbb{R}_{+} ; \mathbb{R}_{\boldsymbol{+}}\right), \tau_{i}, \sigma_{i} \in C\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \sigma_{i}(t) \leq t$ for $t \in \mathbb{R}_{\boldsymbol{+}}, \lim _{t \rightarrow+\infty} \tau_{i}(t)=$ $+\infty, \lim _{t \rightarrow+\infty} \sigma_{i}(t)=+\infty(i=1, \ldots, m)$.

Let $t_{0} \in \mathbb{R}_{+}$and $a_{0}=\inf _{t \geq t_{0}}\left\{\min \left(\tau_{i}(t), \sigma_{i}(t): i=1, \ldots, m\right)\right\}$. A continuous vectorfunction (u_{1}, u_{2}) defined on $\left[a_{0},+\infty[\right.$ is said to be a proper solution of the system (1) in $\left[t_{0},+\infty\left[\right.\right.$ if it is absolutely continuous on each finite segment contained in $\left[t_{0},+\infty[\right.$, satisfies (1) almost everywhere on $\left[t_{0},+\infty\left[\right.\right.$, and $\sup \left\{\left|u_{1}(s)\right|+\left|u_{2}(s)\right|: s \geq t\right\}>0$ for $t \geq t_{0}$.

A proper solution $\left(u_{1}, u_{2}\right)$ of the system (1) is said to be oscillatory if both u_{1} and u_{2} have sequences of zeros tending to infinity. If there exists $t_{*} \in \mathbb{R}+$ such that $u_{1}(t) u_{2}(t) \neq$ 0 for $t \geq t_{*}$, then (u_{1}, u_{2}) is said to be nonoscillatory.

In this paper, sufficient conditions are given for the oscillation of proper solutions of the system (1) which make the results contained in [1, 2] more complete.

In the sequel, we will use the following notation: $p(t)=\sum_{i=1}^{m} p_{i}(t), q(t)=\sum_{i=1}^{m} q_{i}(t)$, $h(t)=\int_{0}^{t} p(s) d s, h_{0}(t)=\min \left\{h(t), h\left(\tau_{i}(t)\right): i=1, \ldots, m\right\}$.

Theorem 1. Let

$$
\begin{equation*}
\int^{+\infty} p(t) d t=+\infty, \quad \int^{+\infty} h_{0}(t) q(t) d t=+\infty \tag{2}
\end{equation*}
$$

and there exist a nondecreasing function $\sigma \in C\left(\mathbb{R}+; \mathbb{R}_{\boldsymbol{+}}\right)$ such that $\sigma_{i}(t) \leq \sigma(t) \leq t$ $(i=1, \ldots, m)$ and

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} h(\tau(\sigma(t))) / h(t)<+\infty \tag{3}
\end{equation*}
$$

If, moreover, there exists $\varepsilon>0$ such that for any $\lambda \in] 0,1]$

$$
\liminf _{t \rightarrow+\infty} h^{\varepsilon}(t) h^{1-\lambda}(\tau(\sigma(t))) \int_{\tau(\sigma(t))}^{+\infty} p(s) h^{-2-\varepsilon}(s) g(s, \lambda) d s>1
$$

where $\tau(t)=\max \left(\max \left\{\tau_{i}(s), \eta(s): i=1, \ldots, m\right\}: 0 \leq s \leq t\right), \eta(t)=\sup \{s: \sigma(s)<t\}$, $g(t, \lambda)=\int_{0}^{\sigma(t)} h(\xi) \sum_{i=1}^{m} q_{i}(\xi) h^{\lambda}\left(\tau_{i}(\xi)\right) d \xi$, then every proper solution of the system (1) is oscillatory.

[^0]Theorem 2. Let the conditions (2), (3) be fulfilled, where the function $\sigma \in C\left(\mathbb{R}_{\boldsymbol{+}} ; \mathbb{R}_{\boldsymbol{+}}\right)$ is nondecreasing, $\sigma_{i}(t) \leq \sigma(t) \leq t$ for $t \in \mathbb{R}_{\boldsymbol{+}}(i=1, \ldots, m)$. If, moreover, there exists $\varepsilon>0$ such that for any $\lambda \in] 0,1]$

$$
\liminf _{t \rightarrow+\infty} h^{-\lambda}(t) \int_{0}^{\sigma(t)} h(\xi) \sum_{i=1}^{m} q_{i}(\xi) h^{\lambda}\left(\tau_{i}(\xi)\right) d \xi>1-\lambda+\varepsilon
$$

then every proper solution of the system (1) is oscillatory.
Theorem 3. Let

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} h\left(\tau_{i}(t)\right) / h(t)<+\infty \quad(i=1, \ldots, m) \tag{4}
\end{equation*}
$$

and there exist $\varepsilon>0$ such that for any $\lambda \in] 0,1]$

$$
\liminf _{t \rightarrow+\infty} h^{-1}(t) \int_{0}^{t} h^{2}(\xi) \sum_{i=1}^{m} q_{i}(\xi)\left[h\left(\tau_{i}(\xi)\right) / h(\xi)\right]^{\lambda} d \xi>\lambda(1-\lambda)+\varepsilon
$$

Then every proper solution of the system (1) is oscillatory.
Corollary 1. Let (4) be fulfilled and $\left.\alpha_{i} \in\right] 0,+\infty[(i=1, \ldots, m)$, where

$$
\begin{equation*}
\alpha_{i}=\liminf _{t \rightarrow+\infty} h\left(\tau_{i}(t)\right) / h(t) \quad(i=1, \ldots, m) \tag{5}
\end{equation*}
$$

If, moreover, there exists $\varepsilon>0$ such that for any $\lambda \in] 0,1]$

$$
\liminf _{t \rightarrow+\infty} h^{-1}(t) \int_{0}^{t} h^{2}(s) \sum_{i=1}^{m} \alpha_{i}^{\lambda} q_{i}(s) d s>\lambda(1-\lambda)+\varepsilon
$$

then every proper solution of the system (1) is oscillatory.
Corollary 2. Let (4) be fulfilled, $\left.\alpha_{i} \in\right] 0,+\infty\left[, q_{i}(t) \geq q_{0}(t)\right.$ for $t \in \mathbb{R}_{+}(i=1, \ldots, m)$, where $q_{0} \in L_{\text {loc }}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \alpha_{i}(i=1, \ldots, m)$ are defined by (5). Then the condition

$$
\liminf _{t \rightarrow+\infty} h^{-1}(t) \int_{0}^{t} h^{2}(s) q_{0}(s) d s>\max \left\{\lambda(1-\lambda)\left(\sum_{i=1}^{m} \alpha_{i}^{\lambda}\right)^{-1}: \lambda \in[0,1]\right\}
$$

is sufficient for the oscillation of every proper solution of the system (1).
Corollary 3. Let $\left.\left.q_{0} \in L_{l o c}\left(\mathbb{R}_{+} ; \mathbb{R}_{+}\right), \alpha \in\right] 0,1\right]$ and $\lim \inf _{t \rightarrow+\infty} t^{-1} \int_{0}^{t} s^{1+\alpha} q_{0}(s) d s>$ 0 . Then every proper solution of the equation $u^{\prime \prime}(t)+q_{0}(t) u\left(t^{\alpha}\right)=0$ is oscillatory.

ACKNOWLEDGEMENT
This work was supported by Grant No. 1.6/1997 of the Georgian Academy of Sciences.

References

1. N. Partsvania, On oscillation of solutions of second order systems of deviated differential equations. Georgian Math. J. 3(1996), No. 6, 571-582.
2. R. Koplatadze and N. Partsvania, Oscillatory properties of solutions of twodimensional differential systems with deviated arguments. (Russian) Differentsial'nye Uravneniya 33(1997), No. 10, 1312-1320.

Authors' address:
A. Razmadze Mathematical Institute

Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia

[^0]: 1991 Mathematics Subject Classification. 34K15.
 Key words and phrases. Two-dimensional linear differential system with deviated arguments, proper solution, oscillatory solution.

