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Consider the n-th order ordinary di�erential equation

u

(n)

+

n�1

X

k=1

p

k

(t)u

(k)

= f(t; u; u

0

; : : : ; u

(n�1)

) (1)
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In the case where p

k

(t) � 0 (k = 1; : : : ; n� 1), the problems of the type (1), (2) have

been investigated by I. Kiguradze [1]. The theorems given below complement the results

of this work.
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hold on [a;+1[�R
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hold on [a;+1[ . Then there exists at least one solution of the problem (1), (2).

Corollary 1. Let the inequalities (4) and
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Corollary 2. Let all the conditions of Corollary 1, except (4) be ful�lled. Then the

problem (1), (2) has an n

0

-parametric family of solutions satisfying the conditions
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Remark 1. In the case where n = 2n

0

, p

n�2

(t) � 1 and p

k

(t) � 0 (k 6= n � 2;

k = 1; : : : ; n� 1), from Corollary 1 it follows Theorem 1.2 of the paper [2].
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