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1. Definition of the Riemann Chronological Integral

1.1. Auxiliary De�nitions and Facts. Denote by M an abstract monoid

whose algebraic structure is de�ned by a binary associative operation f(g

1

;

g

2

) 7�! g

1

� g

2

g : M �M ! M and by the unity e. If some g 2 M is

invertible, then we denote its inverse by g.

The limiting structure in M is determined by means of directedness es.

This permits us to retain simplicity and generality. As usual, a family

G = fg

w

g

w2


is said to be a directedness in M if (
;�) is a directed set,

and w 7�! g

w

maps 
 into M . Given two directednesses G = fg

w

1

g

w

1

2


1

and F = ff

w

2

g

w

2

2


2

in M , G is said to be a subdirectedness of F when

there exists a mapping N : 


1

! 


2

such that:

(a) g

w

1

= f

N(w

1

)

, 8w

1

2 


1

;

(b) for every w

2

2 


2

there exists w

1

2 


1

such that from w 2 w

1

and

w � w

1

it follows N(w) � w

2

.

The limiting structure in M is de�ned by a system L composed of the

pairs (G; g) (g 2M , G is a directedness in M) and satisfying the following

restrictions:

(i) if G = fg

w

g

w2


is a directedness such that g

w

= g for every w 2 
,

then (G; g) 2 L;

(ii) if (G; g

1

) 2 L and (G; g

2

) 2 L, then g

1

= g

2

;

(iii) if F is a subdirectedness in G, and (G; g) 2 L, then (F; g) 2 L.

In the sequel, using the conventional terminology, if (G; g) 2 L we will

say that G converges to g and g is a limit of G.

The limiting and algebraic structures are compatible, i.e.,

f(g

1

; g

2

) 7�! g

1

� g

2

g :M �M !M

is a continuous mapping. Under our notation this means that if

fg

w

1

g

w

1

2


1

converges to g and ff

w

2

g

w

2

2


2

converges to f , then fg

w

1

�

f

w

2

g

(w

1

;w

2

)2


1

�


2

converges to g � f . (


1

�


2

) denotes a directed product

of the directed sets:

(w

1

; w

2

) � ( ew

1

; ew

2

) is equivalent to (w

1

� ew

1

and w

2

� ew

2

):

1.2. De�nition of the Chronological Integral and Some Examples. Let (t; s)

7�! f(t; s) map the triangle [a; b] � [0; �] into M , where [a; b] � R, and �

is a positive number. �(a; b) denotes the set of all partitions of the form

� = fa = s

0

� �

1

� s

1

� � � � � �

n

� s

n

= bg, and

�s

i

= s

i

� s

i�1

; j�j = maxf�s

i

ji = 1; : : : ; ng:

�(a; b) is a directed set, the relation �

1

� �

2

meaning j�

1

j � j�

2

j.
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For a su�ciently �ne partition � we denote

!

X

�

f = f(�

1

;�s

1

) � f(�

2

;�s

2

) � � � � � f(�

n

;�s

n

);

 

X

�

f = f(�

n

;�s

n

) � � � � � f(�

2

;�s

2

) � f(�

1

;�s

1

);

the arrow showing the order of co-factors in the right-hand side, which is

important in the non-commutative case.

De�nition 1. We say that g 2M is the right (left) chronological integral

(or simply, integral) of the function f from a to b, and write

g =

b

Z

a

f(

!

� ; d�)

�

g =

b

Z

a

f(

 

� ; d�)

�

;

if for some �

0

2 �(a; b) the directedness

�

!

X

�

f

�

�

0

��2�(a;b)

��

 

X

�

f

�

�

0

��2�(a;b)

�

: (1)

is de�ned correctly and converges to g. When

g =

b

Z

a

f(

!

� ; d�)

�

g =

b

Z

a

f(

 

� ; d�)

�

;

is invertible, we say that g 2M is the right (left) integral of the function f

from b to a, and write

g =

a

Z

b

f(

!

� ; d�)

�

g =

a

Z

b

f(

 

� ; d�)

�

:

The directedness (1) is de�ned for every �

0

such that j�

0

j < �. �(a; b) is

a directed set, and for every �

1

, �

2

there exists their majorant. Therefore

in De�nition 1 the values of the integral do not depend on the choice of �

0

.

In what follows, the notation f�

�

g

�

0

��2�(a;b)

means that we consider the

given directedness starting from some �

0

.

When the values of the right and of the left integrals coincide, we can

omit the arrow and write

b

R

a

f(�; d�). Such cases arise usually when M is a

commutative monoid, or when the values of the function f commute, since

for a su�ciently �ne � there takes place

P

!

�

f =

P

 

�

f , and therefore the

arrow can be omitted.



51

Remark 1. In case of necessity (for example, when on the support M

we can determine in two ways a structure of monoid consistent with the

limiting structure), in our notation the binary operation will be indicated

regarding to which the integral is taken

~

!

X

�

f;

~

b

Z

a

f(�; d�):

Example 1. (The Riemann integral). Let t 7�! f(t) map [a; b] into R. If

we consider R with the ordinary convergence and with the operations O, +,

then De�nition 1 for the function f(t; s) 7�! f(t)sg : [a; b]�R ! R provides

the Riemann's integral of the function f .

Example 2. (the multiplicative integral). Let us consider the limit of

products of the form

Y

�

= exp(A(s

n

)(s

n

� s

n�1

)) � � � exp(A(s

1

)(s

1

� s

0

)); (2)

where � = fa = s

0

� � � � � s

n

= bg and A(s) is a continuous function from

[a; b] to the space B(E) of bounded linear operators in the Banach space E.

The limit is taken as j�j ! 0, is denoted as

b

x

Z

a

exp(A(s)ds)

and is called the multiplicative integral ([1]).

If we consider B(E) with the operation of addition, f : [a; b] ! B(E),

and apply De�nition 1, then we obtain the ordinary Riemann integral (as

in the foregoing example):

b

R

a

f(�)d� =

�

b

R

a

f(�)d� .

Consider B(E) with the operation of composition and apply for (t; s)!

exp(A(t)s) De�nition 1. Then from the existence of

~

b

R

a

exp(A)(

 

s ds) there

follows that of

b

x

R

a

exp(A(s)ds), and hence their equality.

Example 3. (T -exponent). Let A(t), t 2 [a; b], be a piecewise-continuous

family in a noncommutative Banach algebra.

By the de�nition ([2]), the T -exponent U = Exp

t

R

a

A(s)ds is the solution

of the Cauchy problem for the evolution equation

@U

@t

= A(t)U; U j

t=a

= 1(unity of the algebra);
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and the following condition is ful�lled:

Exp

t

Z

a

A(s)ds = lim

j�j!0

exp(A(s

n

)(s

n

� s

n�1

)) � � � exp(A(s

1

)(s

1

� s

0

)):

The Banach algebra with its limiting structure and operations of composi-

tion and unity is a monoid such that one can apply De�nition 1 to the map-

ping (�; s) 7�! exp(A(�)s). Obviously, from the existence of exp

~

t

R

a

A(

 

s )ds

there follows that of Exp

t

R

a

A(s)ds and hence their equality (we can prove

that these integrals exist simultaneously).

Example 4. Let A(t), t 2 [a; b] be a family of unbounded linear operators

on the Banach space X . Under certain conditions (see [3]), for any a �

s � t � b and for su�ciently �ne � = fs = s

0

� � � � � s

n

= tg the

limit of products (2) is de�ned correctly, and there exists a strong limit

lim

j�j!0

Q

�

= U(s; t).

1.3. Algebraic Properties of Integrals. Directly from the de�nition we have

Proposition 1. Let for some � > 0 f : [a; b]� [0; �] ! M and f(t; 0) = e

for every t. Then

t

R

t

f(�; d�) = e, 8t 2 [a; b].

The following result is analogous to the formula of arrow inversion for

the chronological exponent ([4]).

Proposition 2. (Formula of arrow inversion). Let f : [a; b]� [0; �] ! M ,

� > 0, let there exist f(t; s), 8(t; s) 2 [a; b] � [0; �] and let for some t

1

,

t

2

2 [a; b] there exist

t

2

R

t

1

f(

!

� ; d�) and

t

2

R

t

1

f(

 

� ; d�). Then 9

t

1

R

t

2

f(

!

� ; d�) and

t

1

Z

t

2

f(

!

� ; d�) =

t

2

Z

t

1

f(

 

� ; d�): (3)

Proof. For the sake of simplicity, let us consider �rst the case t

1

�

t

2

. By our condition, there exists su�ciently �ne �

0

2 �(t

1

; t

2

) such

that

�

!

P

�

f

�

�

0

��2�(t

1

;t

2

)

and

�

 

P

�

f

�

�

0

��2�(t

1

;t

2

)

converge respectively to

t

2

R

t

1

f(

!

� ; d�) and

t

2

R

t

1

f(

 

� ; d�). The binary operation is continuous inM . There-

fore

��

!

X

�

1

f

�

�

�

 

X

�

2

f

��

(�

0

;�

0

)�(�

1

;�

2

)2�(t

1

;t

2

)��(t

1

;t

2

)

(4)
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converges to

�

t

2

R

t

1

f(

!

� ; d�)

�

�

�

t

2

R

t

1

f(

 

� ; d�)

�

. Consequently,

��

!

P

�

f

�

�

�

 

P

�

f

��

(�

0

;�

0

)�(�;�)2�(t

1

;t

2

)��(t

1

;t

2

)

, being the subdirectedness in (4), con-

verges to the same limit. Taking into account that for every � � �

0

�

!

P

�

f

�

�

�

 

P

�

f

�

=

�

 

P

�

f

�

�

�

!

P

�

f

�

= e, we obtain

�

t

2

R

t

1

f(

!

� ; d�)

�

�

�

t

2

R

t

1

f(

 

� ; d�)

�

= e.

Analogously we obtain that

�

t

2

R

t

1

f(

 

� ; d�)

�

�

�

t

2

R

t

1

f(

!

� ; d�)

�

= e. Thus we

have determined both sides in (3), hence (3) holds.

Let now t

2

< t

1

. By De�nition 1, from the condition of our proposition

there follows the existence of the integrals

t

1

Z

t

2

f(

!

� ; d�) =

�

t

2

Z

t

1

f(

!

� ; d�)

�

;

t

1

Z

t

2

f(

 

� ; d�) =

�

t

2

Z

t

1

f(

 

� ; d�)

�

:

Applying the case considered above, we can see that

t

2

Z

t

1

f(

!

� ; d�) =

t

1

Z

t

2

f(

 

� ; d�):

Consequently,

t

1

Z

t

2

f(

!

� ; d�) =

�

t

2

Z

t

1

f(

!

� ; d�)

�

=

�

t

1

Z

t

2

f(

 

� ; d�)

�

=

=

t

2

Z

t

1

f(

 

� ; d�): �

Proposition 3. Let � > 0, f : [a; b] � [0; �] ! M and t

1

, t

2

, t

3

2 [a; b].

Then:

(a) if there exist

t

2

R

t

1

f(

!

� ; d�),

t

3

R

t

2

f(

!

� ; d�) and

t

3

R

t

1

f(

!

� ; d�), then

t

3

Z

t

1

f(

!

� ; d�) =

�

t

2

Z

t

1

f(

!

� ; d�)

�

�

�

t

3

Z

t

2

f(

!

� ; d�)

�

; (5)
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(b) if there exist

t

2

R

t

1

f(

 

� ; d�),

t

3

R

t

2

f(

 

� ; d�) and

t

3

R

t

1

f(

 

� ; d�), then

t

3

Z

t

1

f(

 

� ; d�) =

t

3

Z

t

2

f(

 

� ; d�) �

t

2

Z

t

1

f(

 

� ; d�):

Proof. Let us prove the case (a) (the case (b) can be proved analogously).

Let t

1

< t

2

< t

3

. Owing to the continuity of the binary operation in M , the

directedness

��

!

X

�

1

f

�

�

�

!

X

�

2

f

��

(�

0

1

;�

0

2

)�(�

1

;�

2

)2�(t

1

;t

2

)��(t

2

;t

3

)

converges to the right-hand side of (5). On the other hand, being the

subdirectedness of the directedness

�

!

P

�

f

�

�

0

��2�(t

1

;t

3

)

, it also converges

to the left-hand side of (5). Thus (5) holds.

The remaining �ve cases are reduced to that proven above. As an exam-

ple, consider the case t

3

< t

2

< t

1

:

t

3

Z

t

1

f(

!

� ; d�) =

�

t

1

Z

t

3

f(

!

� ; d�)

�

=

=

��

t

2

Z

t

3

f(

!

� ; d�)

�

�

�

t

1

Z

t

2

f(

!

� ; d�)

��

=

=

��

t

1

Z

t

2

f(

!

� ; d�)

�

�

��

t

2

Z

t

3

f(

!

� ; d�)

�

=

=

�

t

2

Z

t

1

f(

!

� ; d�)

�

�

�

t

3

Z

t

2

f(

!

� ; d�)

�

: �

Proposition 4. Let for some � > 0 f

i

: [a; b] � [0; �] ! M , i 2 f1; 2g,

f

1

(t; s)�f

2

(t; s) = f

2

(t; s)�f

1

(t; s), 8(t; s) 2 [a; b]�[0; �] and let t

1

; t

2

2 [a; b].

Then:

(a) if there exist

t

2

R

t

1

f

i

(

!

� ; d�), i 2 f1; 2g, then

t

2

R

t

1

(f

1

(

!

� ; d�)�f

2

(

!

� ; d�)) does

exist and equals the product

�

t

2

R

t

1

f

i

(

!

� ; d�)

�

�

�

t

2

R

t

1

f

3�i

(

!

� ; d�)

�

, 8i 2 f1; 2g.
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(b) if there exist

t

2

R

t

1

f

i

(

 

� ; d�), i 2 f1; 2g, then

t

2

R

t

1

(f

1

(

 

� ; d�)�f

2

(

 

� ; d�)) does

exist and equals the product

�

t

2

R

t

1

f

i

(

 

� ; d�)

�

�

�

t

2

R

t

1

f

3�i

(

 

� ; d�)

�

, 8i 2 f1; 2g.

Proof. We prove here only the case (a), because the case (b) can be proved

similarly.

Consider the case t

1

� t

2

. Introduce the notation

�

�

=

!

X

�

(f

1

� f

2

); �

(�

1

;�

2

)

=

�

!

X

�

1

f

1

�

�

�

!

X

�

2

f

2

�

; u(�) = (�; �);

that is, u : �(t

1

; t

2

) ! �(t

1

; t

2

) � �(t

1

; t

2

). By the condition, �

�

= �

u(�)

,

and we can easily see that for every (�

1

; �

2

) 2 �(t

1

; t

2

) � �(t

1

; t

2

) 9b� 2

P

(t

1

; t

2

) such that u(�) � (�

1

; �

2

), 8� � b�. Hence f�

�

g

�

0

��2�(t

1

;t

2

)

is the

subdirectedness of the directedness

f�

(�

1

;�

2

)

g

(�

0

;�

0

)�(�

1

;�

2

)2�(t

1

;t

2

)��(t

1

;t

2

)

:

Taking into consideration the continuity of operation and also the equality

�

(�

1

;�

2

)

=

�

P

!

�

2

f

2

�

�

�

P

!

�

1

f

1

�

, we get

t

2

Z

t

1

(f

1

(

!

� ; d�)�f

2

(

!

� ; d�)) =

�

t

2

Z

t

1

f

i

(

!

� ; d�)

�

�

�

t

2

Z

t

1

f

3�i

(

!

� ; d�)

�

; 8i 2 f1; 2g:

If t

1

> t

2

, then with regard for the case considered above, we arrive at

t

1

Z

t

2

f

1

(

!

� ; d�)�f

2

(

!

� ; d�)) =

�

t

1

Z

t

2

f

i

(

!

� ; d�)

�

�

�

t

1

Z

t

2

f

3�i

(

!

� ; d�)

�

; 8i 2 f1; 2g:

Equating the elements inverse to the left and right-hand sides, we com-

plete the proof of the case (a). �

2. One-Parameter Integral and Formulas of Partial

Integration

2.1. One-parameter Integral. Let f : [0; �]!M , � > 0. For every interval

[a; b] we may assume f to be the mapping with respect to t : (t; s) ! f(s)

maps the rectangle [a; b]� [0; �] into M . Hence for � = fa = s

0

� �

1

� s

1

�

� � � � �

n

� s

n

= bg such that j�j < �,

P

!

�

f = f(�s

1

)�f(�s

2

)�� � ��f(�s

n

),

and

P

 

�

f = f(�s

n

) � � � � � f(�s

2

) � f(�s

1

) are de�ned correctly, and we

may speak on the integrability of f in terms of De�nition 2.

It appears that there may exist simultaneously the left and the right

integrals of such (incomplete) subintegral functions; and if they do, then

they are equal (notation, of course, reects this fact). Indeed, given a � b,

let us de�ne u : �(a; b) ! �(a; b): if � = fa = s

0

� �

1

� s

1

� � � � �
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�

n

� s

n

= bg, then u(�) = fa = u

0

� �

1

� u

1

� �

n

� u

n

= bg, where

u

k

= a+(b� s

n�k

), k 2 f0; 1; : : : ; ng, �

k

= a+(b� �

n�k+1

), k 2 f1; : : : ; ng.

Clearly, u(u(�)) = � (i.e., u is one-to-one), ju(�)j = j�j, and

P

!

u(�)

f =

P

 

�

f ,

P

!

�

f =

P

 

u(�)

f for su�ciently �ne �. Thus each of the following

directednesses

�

!

X

�

f

�

�

0

��2�(a;b)

�

 

X

�

f

�

�

0

��2�(a;b)

is a subdirectedness of the other.

The case a > b can be easily reduced to that considered above.

Proposition 5. Let for some � > 0 f : [0; �]! M , a; b 2 R, and let there

exist

b

R

a

f(d�). Then there exists

b+t

R

a+t

f(d�), 8t 2 R, and

b

Z

a

f(d�) =

b+t

Z

a+t

f(d�); 8t 2 R: (6)

Proof. Evidently, it su�ces to consider the case a � b. Denote

1

X

= �(a; b);

2

X

= �(a+ t; b+ t)

and de�ne u : �(a; b) ! �(a + t; b+ t) as follows: to every � = fa = s

0

�

�

1

� s

1

� � � � � �

n

� s

n

= bg there corresponds

u(�) = fa+ t = s

0

+ t � �

1

+ t � s

1

+ t � � � � � �

n

+ t � s

n

+ t = b+ tg:

It is clear that u is one-to-one and ju(�)j = j�j, 8� 2

P

1

. More-

over, for su�ciently �ne � 2

P

2

, we have

P

u

�1

(�)

f =

P

�

f . Therefore

�

P

�

f

�

�2

P

2

j�j<�

is the subdirectedness of the directedness

�

P

�

f

�

�2

P

1

j�j<�

.

Consequently, (6) holds. �

Proposition 6. Let for some � > 0 f : [0; �]! M and let for every t � 0

there exist

t

R

0

f(d�). Then

�

t

R

0

f(d�)

�

t�0

is a one-parameter semigroup in

M , i.e.,

t

1

+t

2

Z

0

f(d�) =

�

t

1

Z

0

f(d�)

�

�

�

t

2

Z

0

f(d�)

�

; 8t

1

; t

2

� 0:
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Proof. Combining the results of Propositions 3 and 5, we can prove the

above proposition:

t

1

+t

2

Z

0

f(d�) =

�

t

1

Z

0

f(d�)

�

�

�

t

1

+t

2

Z

t

1

f(d�)

�

=

=

�

t

1

Z

0

f(d�)

�

�

�

t

2

Z

0

f(d�)

�

: �

Corollary 1. If in the conditions of Proposition 6 there is also f(0) = e,

then

�

t

R

0

f(d�)

�

t�0

is a one-parameter submonoid in M .

Denote by

b

�(a; b) the set of all partitions of the interval [a; b] of the form

� = fa = t

0

< � � � < t

n

= bg (we imply that a < b). As usual,

�t

i

= t

i

� t

i�1

; j�j = maxf�t

i

ji = 1; : : : ; ng:

b

�(a; b) is ordered as follows: �

1

� �

2

if j�

1

j � j�

2

j.

Lemma 1. Let for some � > 0 f : [0; �]! M , f(0) = e and t � 0. Then

each of the following two directednesses

�

X

�

f

�

�

0

��2�(0;t)

and

ff(��

1

) � f(��

2

) � � � � � f(��

n

)g

b��f0=�

0

<���<�

n

=tg2

b

�(0;t)

is the subdirectedness of the other.

Proof. Denote

�

�

=

X

�

f; �

0

� � 2 �(0; t);

�

�

= f(��

1

) � f(��

2

) � � � � � f(��

n

);

�

0

� � = f0 = �

0

< � � � < �

n

= tg 2

b

�(0; t);

and construct the mappings u : �(0; t) !

b

�(0; t) and v :

b

�(0; t) ! �(0; t)

as follows.

Let � = f0 = �

0

� �

1

� �

1

� � � � � �

n

� �

n

= tg 2 �(0; t). Denote

s

0

= �

0

, s

1

=

�

�

j

2 f�

0

; : : : ; �

n

gj�

j�1

= s

0

; �

j

> s

0

	

and so on. If the

constructed in such a way set fs

0

; : : : ; s

k

g does not involve f�

0

; : : : ; �

n

g,

then s

k+1

=

�

�

j

2 f�

0

; : : : ; �

n

gj�

j�1

= s

k

; �

j

> s

k

	

.

Not more than in n steps we obtain fs

0

; : : : ; s

p

g such that

fs

0

; : : : ; s

p

g = f�

0

; : : : ; �

n

g:

Now we can determine u : u(�) = f0 = s

0

< � � � < s

p

= tg 2

b

�(0; t).
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The mapping v can be de�ned in a more simple manner: to every � =

f0 = �

0

< � � � < �

n

= tg there corresponds

v(�) = f0 = �

0

� �

1

= �

1

� � � � � �

n

= �

n

= tg 2 �(0; t):

Taking into account the properties of u and v, the following identities

complete the proof:

�

v(�)

= �

�

; �

0

� � = f0 = �

0

< � � � < �

n

= tg 2

b

�(0; t);

�

u(�)

= �

�

; �

0

� � 2 �(0; t): �

Corollary 2. Under the conditions of the lemma, g 2M is the integral of

the function f on [0; t] (from 0 to t) if and only if the directedness

ff(��

1

) � f(��

2

) � � � � � f(��

n

)g

�

0

�f0=�

0

<���<�

n

=tg2

b

�(0;t)

converges to g.

Proposition 7. Let for some � > 0 f : [0; �] ! M , f(0) = e and t � 0.

Then the existence of each of the following two integrals

t

Z

0

f(d�) and

1

Z

0

f(t � d�)

implies the existence of the other one and their equality.

Proof. Consider the nontrivial case t > 0 and introduce the notation:

�

�

= f(�s

1

) � f(�s

2

) � � � � � f(�s

m

);

�

0

� � = f0 = s

0

< � � � < s

m

= tg 2

b

�(0; t);

�

�

= f(t ���

1

) � f(t ���

2

) � � � f(t ���

n

);

�

0

� � = ff0 = �

0

< � � � < �

n

= 1g 2

b

�(0; 1)g;

where �

0

and �

0

are �xed su�ciently �ne partitions.

Determine u :

b

�(0; 1)!

b

�(0; t) as follows: to every � = f0 = �

0

< � � � <

�

n

= 1g 2

b

�(0; 1) there corresponds u(�) = f0 = t�

0

< � � � < t�

n

= tg 2

b

�(0; t). Obviously, u is one-to-one and

ju(�)j = tj�j; 8� 2

b

�(0; 1); ju

�1

(�)j = t

�1

j�j; 8� 2

b

�(0; t):

The identities

�

u(�)

= �

�

; 8� 2

b

�(0; 1); � � �

0

;

�

u

�1

(�)

= �

�

; 8� 2

b

�(0; t); � � �

0

;

with regard for the properties of the mapping u prove that

f�

�

g

�

0

��2

b

�(0;t)

and f�

�

g

�

0

��2

b

�(0;1)
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are subdirectednesses of each other, which by virtue of Lemma 1 proves out

proposition. �

2.2. Formulas of \Partial Integration". For every invertible g 2 M , let us

determine an automorphism of the monoid M :

Ad

g

f = g � f � g; 8f 2M:

It is easily seen that Ad

g

e = e, Ad

g

(f

1

�f

2

) = Ad

g

f

1

�Ad

g

f

2

, Ad

g

(f) = Ad

g

f

when f is invertible in M and if fp(t)g

t�0

is a one-parameter semi-group in

M , then fAd

g

p(t)g

t�0

is also a one-parameter semi-group.

Proposition 8. Let g : [0; �] ! M , � > 0, fp(t)g

t�0

be a one-parameter

subgroup inM , and for some a; b2R let there exist the integral

b

R

a

Ad

p(

!

� )

g(d�)

�

b

R

a

Ad

p(

 

� )

g(d�)

�

. Then 9

b+t

R

a+t

Ad

p(

!

� )

g(d�)

�

b+t

R

a+t

Ad

p(

 

� )

g(d�)

�

, and 8t 2 R

we have.

b+t

Z

a+t

Ad

p(

!

� )

g(d�) = Ad

p(t)

�

b

Z

a

Ad

p(

!

� )

g(d�)

�

(7)

�

b+t

Z

a+t

Ad

p(

 

� )

g(d�) = Ad

p(t)

�

b

Z

a

Ad

p(

 

� )

g(d�)

��

:

Proof. Let a � b and let there exist

b

R

a

Ad

p(

!

� )

g(d�). Take some t 2 R and

determine u : �(a+ t; b+ t)! �(a; b) as follows: to every � = fa+ t = s

0

�

�

1

� s

1

� � � � � �

n

� s

n

= b + tg there corresponds u(�) = fa = s

0

� t �

�

1

� t � s

1

� t � � � � � �

n

� t � s

n

� t = bg. Clearly, ju(�)j = j�j and u is

one-to-one. For the sake of simplicity we also denote f(�; s) = Ad

p(�)

g(s).

The evident equality

P

!

�

f = Ad

p(t)

P

!

u(�)

f , with regard for the properties

of u, proves that

�

!

X

�

f

�

�2�(a+t;b+t);j�j<�

(8)

is a subdirectedness of the directedness

�

Ad

p(t)

P

!

�

f

�

�2�(a;b);j�j<�

which converges to the right-hand side of (7). Consequently, (8) also con-

verges to the right-hand side of (7). By the de�nition of the integral, this

means that (8) converges to the left-hand side (7) as well. Thus, by virtue

of the uniqueness of the limit, (7) holds.
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Let now a > b, and let there exist

b

R

a

Ad

p(

!

� )

g(d�). Hence there also exists

its inverse

b

R

a

Ad

p(

!

� )

g(d�). Since b < a, for every t we have

a+t

Z

b+t

Ad

p(

!

� )

g(d�) = Ad

p(t)

�

a

Z

b

Ad

p(

!

� )

g(d�)

�

;

and both sides are invertible. Equating their inverse elements, we obtain

(7).

The version of Proposition 8 given in square brackets is proved in a similar

way. �

Proposition 9. Let fp(t)g

t�0

and fq(t)g

t�0

be one-parameter subgroups

inM , and for some a; b 2 R let there exist the integral

b

R

a

Ad

q(

!

� )

p(d�). Then

there exists

b

R

a

Ad

p(

!

� )

q(d�), and the equality

b

Z

a

Ad

p(

!

� )

q(d�) = p(a) � q(�a) �

�

b

Z

a

Ad

q(

!

� )

p(d�)

�

� q(b) � p(�b) (9)

takes place.

Proof. Let a � b and there exist

b

R

a

Ad

q(

!

� )

p(d�). We construct u :�(a; b)!

�(a; b) as follows: to every � = fa = s

0

� �

1

� s

1

� � � �

n

� s

n

= bg there

corresponds u(�) = fa = �

0

= s

0

� �

1

� s

1

� � � � � �

n

� s

n

= �

n+1

= bg.

By the construction, ju(�)j � 2j�j.

!

X

�

�

Ad

p(�)

q(d�)

�

=

=p(�

1

) � q(�s

0

) � q(s

1

) � p(��

1

) � � � � � p(�

n

) � q(�s

n�1

) � q(s

n

) � p(��

n

)=

= p(�

0

) � q(�s

0

) � [q(s

0

) � p(��

0

) � p(�

1

) � q(�s

0

)] �

�[q(s

1

) � p(��

1

) � p(�

2

) � q(�s

1

)] �

� � � � � [q(s

n�1

) � p(��

n�1

) � p(�

n

) � q(�s

n�1

)] �

�[q(s

n

) � p(��

n

) � p(�

n+1

) � q(�s

n

)] � q(s

n

) � p(��

n+1

) =

= p(a) � q(�a) �

�

!

X

u(�)

(Ad

q(�)

p(d�))

�

� q(b) � p(�b):
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Consequently,

�

!

X

�

(Ad

p(�)

q(d�))

�

�2�(a;b)

(10)

is a subdirectedness of the directedness

�

p(a) � q(�a) �

�

!

X

�

(Ad

q(�)

p(d�))

�

� q(b) � p(�b)

�

�2�(a;b)

;

which, by the conditions of the proposition and due to the continuity of

the binary operation in M , converges to the right-hand side of (9). Hence,

(10) converges to the right-hand side of (9) which, by the de�nition of the

integral, proves (9).

The case where a > b easily follows from the above proven. �

Proposition 10. Let fp(t)g

t�0

and fq(t)g

t�0

be one-parameter subgroups

in M and for some a; b 2 R let there exist the integral

b

R

a

Ad

q(�

 

� )

p(�d�).

Then there exists

b

R

a

Ad

p(

 

� )

q(d�), and

b

Z

a

Ad

p(

 

� )

q(d�) = p(b) � q(b) �

�

b

Z

a

Ad

q(�

 

� )

p(�d�)

�

� q(�a) � p(�a):

Proof. Just as in the case of Proposition 9, the proof is actually a simple

checking. �

The results proved in Propositions 9 and 10 are naturally associated

with the formulas of partial integration. As is seen, the formula for the left

integral is of more familiar form.

3. Integral representation of c

0

-subgroups of operators

Let A : D(A) ! X be a linear operator acting in the Banach space X .

One of the basic results of the theory of subgroups of operators, the Hille-

Iosida-Phillips theorem ([5], Ch. VIII. p. 1), states that the linear (possibly

unbounded) operator A in the Banach space X generates a strongly contin-

uous semi-group of operators fU(t)g

t�0

(i.e., a c

0

-semi-group) if and only

if A is densely de�ned, closed and has a resolvent satisfying

j(��A)

�n

j

B(x)

� �(� � �)

�n

; n = 1; 2; : : : ; � > �; (11)

for some constants � � 1 and � � 0.

In this case, U(t) is a strong limit of operators of the type

�

I �

t

n

A

�

�n

as n ! 1 ([6], Ch. IX), where I is the identical mapping of the space

X onto itself. This fact is contained in the de�nition of the exponent of
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the unbounded operator A and also in the notation U(t) = exp(tA) (some

authors write U(t) = exp(�tA)).

Despite the fact that such a de�nition of the exponent for an unbounded

generating operator is accepted and widespread, it gives rise to a dissatis-

faction: in the general case, for calculation of exp(tA) it is impossible to use

the series

P

n

i=0

t

i

A

i

i!

or the strong limit of operators of the type

�

I +

t

n

A

�

n

(as n!1), since the domain of de�nition of A

n

contracts with the growth

of n. Thus the de�nition of the exponent of the unbounded operator con-

tains certain conditionality. In our opinion, application of the Riemann

chronological integral allows us to achieve as much clearness as possible.

Theorem 1. Let a linear operator A in the Banach space X generate the

strongly continuous semi-group fU(s)g

s�0

. Then

U(s) =

s

}

Z

0

(I � dt � A)

�1

; 8s � 0: (12)

The integral is taken in the monoid B(X) (which is considered to have the

unity I, operation of composition and the strong convergence).

Proof. Let us consider the case nontrivial s > 0 and divide the proof into

several parts.

(a) For any su�ciently �ne partition �

0

2

b

�(0; s), the following direct-

edness is de�ned correctly:

fS(�)g

�

0

��2

b

�(0;s)

; (13)

where

S(�) = (I ���

1

�A)

�1

� � � (I ���

m

�A)

�1

; � = f0 = �

0

< � � � < �

m

= sg:

A generates a c

0

-semi-group. Therefore, by the Hille-Iosida-Phillips the-

orem, A is closed, densely de�ned, and for some � � 1 and � � 0 there

takes place (11).

(I � tA) = t(t

�1

�A). Therefore for every t 2 (0; �

�1

), 9(I � tA)

�1

and

(I � tA)

�1

=

1

t

�

1

t

�A

�

�1

: (14)

Thus, if �

0

2

b

�(0; s) such that j�

0

j �

1

�+1

(in the sequel, this will be

assumed to be the case), then every term of the directedness (13) is de�ned

correctly.

(b) Directedness (13) is bounded in B(X).

(11) is equivalent to the following condition ([3], p. 244, Prop. 3.3):

�

�

�

�

k

Y

j=1

(�

j

�A)

�1

�

�

�

�

B(X)

� �

k

Y

j=1

(�

j

� �)

�1

; �

j

> �; k = 1; 2; : : :
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which along with (14) for every � = f0 = t

0

< � � � < t

m

= sg � �

0

yields

jS(�)j

B(X)

= j(I ��t

1

�A)

�1

� � � (I ��t

m

� A

�1

)j

B(X)

�

� �(1��t

1

� �)

�1

� � � (1��t

m

� �)

�1

:

For an arbitrary j 2 f1; : : : ;mg, we have

1

1��t

j

� �

= 1 +

�t

j

� �

1��t

j

� �

� 1 +

�t

j

� �

1�

�

�+1

=

= 1 +�t

j

� �(� + 1) � exp(�t

j

(� + �

2

)):

Consequently,

j(I ��t

1

� A)

�1

� � � (I ��t

m

� A)

�1

j

B(X)

�

� � � exp((�t

1

+ � � �+�t

m

)(� + �

2

)); (15)

jS(�)j

B(X)

� � � exp(s(� + �

2

)): (16)

(c) D(A

2

) is dense in X since for every � > �

D(A

2

) = (��A)

�1

D(A); D(A) = (��A)

�1

X;

where D(A) is dense and (��A)

�1

is the bounded operator.

(d) For every x 2 D(A

2

),

fS(�)xg

�

0

�

b

�(0;s)

(17)

is a converging directedness.

Let x 2 D(a

2

), � = f0 = �

0

< � � � < �

m

= sg, and let �

1

be a re�nement

of �:

�

1

= f0 = �

0

< �

1 0

< � � � < �

1 p(1)

= �

1

= �

2 0

< � � � < �

m p(m)

= �

m

= sg;

and �, �

1

� �

0

.

jS(�)x� S(�

1

)xj =

�

�

(I ���

1

� A)

�1

� � � (I ���

m

�A)

�1

x�

�(I ���

1 1

� A)

�1

(I ���

1 2

�A)

�1

� � � (I ���

mp(m)

�A)

�1

x

�

�

�

�

�

�

((I ���

1

� A)

�1

� (I ���

1 1

� A)

�1

) � � � (I ���

1 p(1)�A

)

�1

) �

�(I ���

2

�A)

�1

� � � (I ���

m

� A)

�1

x

�

�

+

+j(I ���

1 1

� A)

�1

� � � (I ���

1 p(1)

� A)

�1

�

�((I ���

2

� A)

�1

� (I ���

2 1

� A)

�1

� (I ���

2 p(2)

� A)

�1

) �

�(I ���

3

� A)

�1

� � � (I ���

m

�A)

�1

xj+

+ � � �+ j(I ���

1 1

� A)

�1

� � � (I ���

(m�1)p(m�1)

�A)

�1

�

(I ���

m

� A)

�1

� (I ���

m 1

�A)

�1

� � � (I ���

mp(m)

�A)

�1

�

xj: (18)

For an arbitrary � > �,

A(��A)

�1

x = (��A)

�1

Ax; 8x 2 D(A): (19)
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Therefore for every t

1

; t

2

2 (0; �

�1

=2), on D(A

2

) there takes place the

following operator equality:

(I � (t

1

+ t

2

) � A)

�1

� (I � t

1

�A)

�1

(I � t

2

� A)

�1

=

= (I � (t

1

+ t

2

) �A)

�1

� (I � (t

1

+ t

2

) � A)

�1

(I � (t

1

+ t

2

) � A) �

�(I � t

1

�A)

�1

(I � t

2

� A)

�1

= (I � (t

1

+ t

2

) �A)

�1

�

�(I � (t

1

+ t

2

) �A)

�1

��

(I � (t

1

+ t

2

) �A)� (I � t

2

�A)(I � t

1

� A)

�

+

+(I � t

2

�A)(I � t

1

� A)

	

(I � t

1

� A)

�1

(I � t

2

�A)

�1

=

= t

1

t

2

(I � (t

1

+ t

2

) � A)

�1

(I � t

1

�A)

�1

(I � t

2

�A)

�1

A

2

: (20)

Taking into account (19) and (20), for every j 2 f1; : : : ;mg on D(A

2

) we

have

(I ���

i

�A)

�1

� (I ���

i 1

� A)

�1

� � � (I ���

i p(i)

� A)

�1

=

=

�

(I ���

i

�A)

�1

� (I ���

i 1

� A)

�1

(I � (��

i 2

+ � � �+��

i p(i)

)A)

�1

	

+

+

�

(I ���

i 1

� A)

�1

�

I � (��

i 2

+ � � �+��

i p(i)

)A

�

�1

�

�(I ���

i 1

�A)

1

(I ���

i 2

� A)

�1

�

�

�

I � (��

i 3

+ � � �+��

i p(i)

)A

�

�1

	

+ � � �+

+

�

(I ���

i 1

�A)

�1

� � � (I ���

i(p(i)�2)

� A)

�1

�

�

�

I � (��

i

(p(i)� 1) +��

i p(i)

)A

�

�1

�

�(I ���

i 1

�A)

�1

� � � (I ���

i p(i)

�A)

�1

	

=

= ��

i 1

(��

i 2

+ � � �+��

i p(i)

) � (I ���

i

� A)

�1

(I ���

i 1

� A)

�1

�

�

�

I � (��

i 2

+ � � �+��

i p(i)

)A

�

�1

A

2

+

+��

i 2

(��

i 3

+ � � ���

i p(i)

) �

�(I ���

i 1

� A)

�1

�

I � (��

i 2

+ � � �+��

i p(i)

)A

�

�1

�

�(I ���

i 2

�A)

�1

�

I � (��

i 3

+ � � �+��

i p(i)

)A

�

�1

A

2

+

+ � � �+��

i(p(i)�1)

��

i p(i)

�

�(I ���

i 1

�A)

�1

� � � (I ���

i(p(i)�2)

� A)

�1

�

�

�

I � (��

i(p(i)�1)

+��

i p(i)

)A

�

�1

�

�(I ���

i(p(i)�1)

A)

�1

(I ���

i p(i)

� A)

�1

A

2

:

By virtue of this fact and because of (15), the inequality (18) results in

jS(�)x � S(�

1

)xj � s�

2

� exp(3s(� + �

2

))j�jjA

2

xj: (21)

Given an arbitrary " > 0, let A

2

x 6= 0. We take b� 2

b

�(0; s) such that

jb�j � min

�

j�

0

j;

�

2s�

2

� exp(3s(� + �

2

))jA

2

xj

�

�1

	

:
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Then for any �

1

� b� and �

2

� b� we have

jS(�

1

)x� S(�

2

)xj � jS(�

1

)x� S(�

3

)xj+ jS(�

2

)x� S(�

3

)xj � ";

where the partition �

3

is inscribed in �

1

and �

2

simultaneously. Due to the

arbitrariness of ", the directedness (17) is fundamental. If A

2

x = 0, then

the fundamentality (17) is obvious.

ThusX is a complate space, and therefore the directedness (17) converges

for every x 2 D(A

2

). Denote its limit by Sx.

(e) In the monoid B(X) with the operation of composition and with a

strong convergence there exists

}

s

R

0

(I � dt �A).

Indeed, the directedness (13) is bounded in B(X), the directedness (17)

converges for every x 2 D(A

2

) and D(A

2

) is dense in X . Therefore, accord-

ing to the well-known corollary of the principle of uniform boundedness ([5],

Ch. II, p. 1), there exists the limit Sx = lim

�

S(�)x for every x 2 X and S

is a continuous operator. Hence (13) converges strongly to some operator

S from B(X). By the de�nition of the integral, this implies that there ex-

ists

}

s

R

0

(I � dt �A)

�1

which is equal to S.

(f) Prove �nally that the equality (12) holds.

fS

n

g

n2N

is a subdirectedness of the directedness (13), where S

n

= (I �

s

n

A)

�1

� � � (I �

s

n

A)

�1

= (I �

s

n

A)

�n

(this is obvious if we consider the

mapping n ! f0 <

s

n

<

2s

n

< � � �

ns

n

= sg : N !

b

�(0; s)). Consequently, in

the monoid B(X)

}

s

Z

0

(I � dt � A)

�1

= lim

n!1

S

n

= lim

n!1

(I �

s

n

A)

�n

: (22)

On the other hand, the semi-group U(�) generated by the operator A is

constructed with the help of the strong limit U(t) = lim

n!1

(I �

t

n

A)

�n

([6], Ch. IX, p. 594), which together with (22) provides us with (12). �
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