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For the Emden-Fowler type equation

u

(n)

= p(t)ju(t)j

�

signu(t); p(t) � 0; t > 0; � > 1; n � 2; (1)

with a locally Lebesgue integrable function p(t), di�erent from zero on a set of positive

measure in any neighborhood of +1, the problem on conditions of existence of strongly

increasing solutions

(�1)

m

u

(i)

(t) > 0; i = 0; n� 1; t � a; lim

t!+1

ju

(n�1)

(t)j = +1; (2)

where m 2 f0; 1g, is considered.

I. T. Kiguradze and G. G. Kvinikadze [1, Th. 16.12] established that the condition

J(+1) < +1; J(t) �

t

Z

a

p(�)�

(n�1)�

d� (3)

guarantee the solvability of the problem (1), (2). N. A. Izobov o�ered an approach [2]

that allows to build necessary conditions of solvability of the named problem, and, as I.

T. Kiguradze [1, Th. 16.13] has noticed, an asymptotic estimate of its solutions.

In the present o�ered note, contiguous to the works [3, 4] and their continuation, the

above approach is much modi�ed, which allows to raise considerably the e�ciency of

the necessary conditions of existence of strongly increasing solutions of the equation (1),

to obtain with its help asymptotic estimates of such solutions, and to study deeper the

problem on the necessity of the condition (3).

Introduce the notation. Let u(t) be a certain determined on a half-axis t > a > 0

solution of the problem (1), (2), 0 < '(t) be any function with a range of de�nition

D

'

� [a;+1). Put v

i

(t) = ju

(i)

(t)jt

i+1�n

, v

';i

(t) = v

i

(t)'(t), i = 0; n, t 2 D

'

;

A

'

(t) = fx 2 D

'

: (x� t)'(x) > 0g, A

'

= A

'

(a).

Characteristic, from our point of view, properties of strongly increasing solutions are

given in the following simple

Lemma 1. Let u(t) be a solution of the problem (1), (2), '(t) > 0 be any nonde-

creasing on the set A

p

function satisfying 0 < t _'(t)='(t) � 1 for all t 2 A

_'

S

A

p

. Then

the functions v

i

(t), i = 0; n� 1, do not decrease, beginning from a moment t

u

> a, and

for all t 2 A

p

T

A

_'

(t

u

) and i = 0; n� 2

_v

';n�1

(t) > t

�1

v

';n

(t); _v

';i

(t)=v

';i+1

(t) > _'(t)=((n � i� 1)'(t)) (4)
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Proof. Let u(t) > 0 (the case u(t) < 0, is reduced to this one) be a strongly increasing

solution of the equation (1) de�ned for t > a. Denote R

i

(t) = _v

i

(t)t

n�i

= tu

(i+1)

(t) �

(n� i� 1)u

(i)

(t), i = 0; n� 1, t > a. It is easy to see that R

n�1

(t) = tu

(n)

(t), and also,

taking into account (2),

R

n�2

(t) � tu

(n�1)

(t) � (u

(n�2)

(a) + (t � a)u

(n�1)

(t)) >

> au

(n�1)

(t)=2 (5)

for all t > t

n�2

provided the moment t

n�2

is chosen, such that

au

(n�1)

(t

n�2

) > 2u

(n�2)

(a):

For the other values i < n � 2, the ful�lment of the inequalities R

i

(t) > 0 for large

t will be proved by induction, the checking of the inequalities (5) being its �rst step.

So, we will assume that for a natural i < n � 2 and positive constants c and t

i

the

inequality R

i

(t) > cu

(i+1)

(t) is ful�lled for all t > t

i

. Then in view of the obvious

equality

_

R

i�1

(t) = R

i

(t) we have

R

i�1

(t) = R

i�1

(t

i

) +

t

Z

t

i

R

i

(�)d� >

> R

i�1

(t

i

) + c(u

(i)

(t) � u

(i)

(t

i

)) > cu

(i)

(t)=2 > 0

for all t> t

i�1

, where a moment t

i�1

>t

i

is chosen such that cu

(i)

(t

i�1

)=2> cu

(i)

(t

i

) �

R

i�1

(t

i

). Hence, for all t > t

u

= t

0

the inequalities R

i

(t) > 0, i = 0; n� 2, R

n�1

(t) � 0,

are ful�lled ensuring the nonnegativity of the �rst derivatives of the functions v

i

(t) for

the same values of the argument. From here it follows that the functions v

i

(t) do not

decrease on the half-axis t > t

u

.

We will proceed to the proof of the inequalities (4). For any non-negative i < n � 2

and t 2 A

_'

T

A

p

(t

u

) we have

_v

';i

(t)t

n�i

� R

';i

(t) = '(t)(R

i

(t) + t _'(t)u

(i)

(t)='(t)) =

= '(t)

�

t

2

_'(t)u

(i+1)

(t)

(n� i� 1)'(t)

+

�

1�

t _'(t)

'(t)

�

R

i

(t)

�

>

t

2

_'(t)u

(i+1)

(t)

n� i� 1

;

whence it follows (4).

The case i = n� 2 is considered much easier:

_v

';n�2

(t) =

1

t

2

(t _'(t)u

(n�2)

(t) + '(t)R

n�2

(t)) =

'(t)

t

2

�

tu

(n�2)

(t) _'(t)

'(t)

+

+R

n�2

(t)

�

> '(t)u

n�1

(t) + (1� t _'(t)='(t))R

n�2

(t) > v

';n�1

(t) _'(t)='(t):

To complete the proof, it remains to notice that the �rst inequality in (4) is evident. �

The basic result of this article is the following

Theorem 1. Let u(t) be a solution of the problem (1), (2), '(t) > 0 be any nonde-

creasing on the set A

p

function satisfying t _'(t)='(t) � 1 for all t 2 A

_'

S

A

p

. Then for

any numbers � 2 (0; 1=n) and " > 0 we have

lim

t!+1

F

�;"

('(t)) = 0 (6)

and, begincning from a moment t

u

> a, the estimate

u(t) < t

n�1

[F

�;"

('(t))]

1=(1��)�

(7)
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where

F

�;"

('(t)) = '

"

(t)

+1

Z

t

(p(�)�

(n�1)�

)

�

'

�"

(�)( _'(�)='(�))

1��

d�

and  > 0 is a constant dependent on the initial values of u and on n, �, �.

Proof. Assume that the problem (1), (2) has a solution u(t), which, not losing generality,

we will assume to be positive. Choose any satisfying the conditions of the theorem

function '(t) and numbers � and ", and de�ne a sequence f�

i

g

n

i=1

by �

i

= �+(n�i)�, i =

1; n, where � = 2(1�n�)=(n(n�1)) > 0. Taking a number "

1

< n

�1

minf"; n�; (��1)�g,

we obviously have

��

n

� �

1

> "

1

; �

i

� �

i+1

> "

1

; i = 1; n� 1: (8)

For the �rst derivative of the auxiliary function !

'

(t) =

n�1

Q

i=0

v

';i

(t), by virtue of (8)

and Lemma 1 for all t > t

u

we have

_!

'

(t)

!

'

(t)

=

n�1

X

i=0

_v

';i

(t)

v

';i

(t)

>

v

';n

(t)

v

';n�1

(t)

+

n�2

X

i=0

v

';i+1

(t) _'(t)

(n� i� 1)v

';i

(t)'(t)

�

�

�

v

';n

(t)

v

';n�1

(t)

�

�

n�2

Y

i=0

�

v

';i+1

(t) _'(t)

(n� i� 1)v

';i

(t)'(t)

�

�

i+1

=

= c

�

_'(t)

'(t)

�

1��

�

v

';n

(t)

t

�

�

v

��

1

';0

(t)

n�1

Y

i=1

v

�

i

��

i+1

';i

(t);

where c is a positive constant dependent only on n; �; �. From here it easily follows

_!

'

(t)!

�1�"

1

'

(t)'

n"

1

�"

(t) � c( _'(t)='(t))

1��

�

�'

�"

(t)(p(t)t

(n�1)�

)

�

v

����

1

�"

1

0

(t)

n�1

Y

i=1

v

�

i

��

i+1

�"

1

i

(t):

Integrating this inequality from t to +1, by virtue of (8), monotonicity the of functions

'(t), v

i

(t), i = 1; n� 1, and the following from the proof of Lemma 1 inequalities v

i

(t) >

v

0

(t), t > t

u

, i = 1; n� 1, gives the equality (6) and the estimate (7). �

Results of the works [3, 4] are consequences of Theorem 1 whith '(t) = t

"

.

The necessary condition (6), due to a wide arbitrariness in the choice of the function

'(t), allows to solve some remaining till now open problems, connected with the neces-

sity of the su�cient condition (3) of solvability of the problem (1), (2). For example, it

appeared, that for a wide class of functions p(t) (in particular, those having a power ma-

jorant), the condition (3) is necessary and su�cient for the problem under consideration

to have a solution.

The classical case p(t) < ct

�1�(n�1)�

, t > a, partially investigated in [5], is completely

considered in

Theorem 2. If a function p(t) satis�es p(t) < ct

�1�(n�1)�

, t > a, and J(+1) =

+1, then the problem (1), (2) has no solution.
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Proof. Assume that the conditions of the theorem are ful�lled. Then the function '(t) =

J(t) monotonically increases on a the half-axis t>a and t _'(t)='(t)=p(t)t

1+(n�1)�

=J(t)

< c=J(t) < 1 for t > b, where b > a is such that J(b) > c. Therefore t _'(t)='(t) � 1 and

it is enough to be convinced that the condition (6) is not ful�lled. Really,

lim

t!1

J

"

(t)

+1

Z

t

(J

0

(�))

�

J

"

(�)

�

J

0

(�)

J(�)

�

1��

d� = lim

t!+1

J

"

(t)

+1

Z

t

dJ(�)

J

1��+"

(�)

= +1

provided " � �. �

Thus, the su�cient condition (3) of solvability of the problem (1), (2) becomes necessary

and su�cient provided in a neighborhood of +1 p(t) < ct

�1�(n�1)�

.

A more common situation is considered in

Theorem 3. If there is a function  : A

p

!]0; 1[ such that J

 

(+1) = +1, J

0

 

(t)=

J

 

(t) < 1=�t, � > 0, t 2 A

p

, where J

 

(t) �

t

R

a

p(�)�

(n�1)�

�  (�)d� , then the problem

(1), (2) is unsolvable.

Proof. De�ne '(t) = J

�

 

(t). Then _'(t)='(t) = �J

0

 

(t)=J

 

(t) < 1=t for all t 2 A

 

and, if � 6= "�, F

�;"

('(t)) = cJ

"�

 

(t)

+1

R

t

J

0

 

(�) 

��

(�)� �J

�1+��"�

 

(�)d� > cJ

"�

 

(t),

+1

R

t

J

�1+��"�

 

(�)d[J

 

(�)] > cJ

�

 

(t) " +1 as it t " +1, whence it is clear that in the

considered case the condition (6) of Theorem 1 is not ful�lled and, hence, the problem

(1), (2) is unsolvable. �

One of the possible even more general situations is considered in

Theorem 4. If there are functions  (t) and f(t) satisfying at large t

 (t) > 1 > f(t) > 0; P

f; 

(t) �

J

0

f

(t)

 (J

f

(t))

<

1

t

;

+1

Z

a

P

f; 

(�)d� = +1;

the problem (1), (2) is unsolvable.

Proof. Assume that the conditions of the theorem are ful�lled and show that in this case

the condition (6) of Theorem 1 is not ful�lled for '(t) = exp (

t

R

1

dJ

p;f

(�)

�

 (J

p;f

(�))).

Really, in this case _'(t)='(t) = J

0

p;f

(t)=J

p;f

(t) < 1=t for all t 2 A

p

and the estimate

F

�;"

('(t)) = '

"

(t)

+1

Z

t

�

 (J

p;f

(�))

f(�)

�

�

J

0

p;f

(�)d�

 (J

p;f

(�))'

"

(�)

>

> '

"

(t)

+1

Z

t

d'(�)

'

1+"

(�)

= "

�1

> 0

is true for all � 2 (0; 1=n)" > 0 and all rather large values of t. From here it follows that

the condition (6) is not ful�lled and, by Theorem 1, the problem (1), (2) is unsolvable. �
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