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1 The original central exponents
For the Euclidean space Rn, n > 1, we denote by Mn the set of bounded and piecewise continuous
operator-functions A : R+ → EndRn generating systems of the form

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,∞).

The Lyapunov and Perron exponents play an important role in the investigation of solutions
of differential equations and systems for Lyapunov and Poisson stability. From this point of view,
the so-called central exponents are no less useful, being responsible for the stability of all slightly
perturbed systems with any sufficiently close linearization (see, e.g., the monograph [1]).

Definition 1.1. The Vinograd–Millionshchikov central exponents of a system A ∈ Mn are given
by the formulas: two upper (up-limit with a hat, and low-limit with a tick) ones

Ω̂(A) ≡ inf
T>0

lim
m→∞

1

Tm

m∑
i=1

ln
∥∥XA(Ti, T (i− 1))

∥∥,
Ω̌(A) ≡ inf

T>0
lim

m→∞

1

Tm

m∑
i=1

ln
∥∥XA(Ti, T (i− 1))

∥∥,
and, respectively, two lower ones

ω̂(A) ≡ sup
T>0

lim
m→∞

1

Tm

m∑
i=1

ln
∣∣XA(Ti, T (i− 1))

∣∣,
ω̌(A) ≡ sup

T>0
lim

m→∞

1

Tm

m∑
i=1

ln
∣∣XA(Ti, T (i− 1))

∣∣,
where ∥X∥ ≡ sup

|x|=1
|Xx|, |X| ≡ ∥X−1∥−1, and XA is the Cauchy operator of the system A.

The first and the last of these four exponents are introduced by R. E. Vinograd in 1957, and
the penultimate one is suggested by V. M. Millionshchikov in 1969. The upper (lower) central
exponents coincide with the upper (lower) limits of the highest (lowest) Lyapunov and Perron
exponents at the point A in the uniform topology of the space Mn.

2 The various time scales
Non-uniform scales were employed for the first time by N. A. Izobov in 1982.
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Definition 2.1. Let T be the set of all time scales, i.e. strictly increasing unbounded sequences
of the form

τ ≡ (τk)k∈N, τk ∈ R+ (τ0 ≡ 0).

We say that the scale τ ∈ T is:

1) uniform (with the difference T > 0), if τ = τ(T ) ≡ (Tk)k∈N;

2) slowly increasing (denoted by τ ∈ T 1), if lim
k→∞

τk/τk−1 = 1.

3) dense (denoted by τ ∈ T 0), if ∥τ∥ ≡ lim
k→∞

(τk − τk−1) < ∞;

4) expanding (denoted by τ ∈ T∞), if |τ | ≡ lim
k→∞

(τk − τk−1) = ∞;

5) rarefied (denoted by τ ∈ T ∞), if |τ | < ∞ = ∥τ∥;

6) slowly expanding (denoted by τ ∈ T 1
∞ ≡ T 1∩T∞), if it is both slowly increasing and expanding.

The distribution of scales in three types (dense, expanding and rarefied ones) defines their
complete classification, i.e. the representation T = T 0 ⊔ T ∞ ⊔ T∞ holds.

3 The simplified central exponents

As we saw above, the formulas for calculating the central exponents in terms of the Cauchy operators
of the original linear system are objectively rather complex. We try to simplify those formulas by
an appropriate choice of a non-uniform scale.

Definition 3.1. For each scale τ ∈ T we define four simplified central exponents of a system
A ∈ Mn: two upper (up-limit and low-limit) ones

∆̂τ (A) ≡ lim
m→∞

1

τm

m∑
i=1

ln ∥XA(τi, τi−1)∥, ∆̌τ (A) ≡ lim
m→∞

1

τm

m∑
i=1

ln ∥XA(τi, τi−1)∥, (3.1)

and, respectively, two lower ones

δ̂τ (A) ≡ lim
m→∞

1

τm

m∑
i=1

ln |XA(τi, τi−1)|, δ̌τ (A) ≡ lim
m→∞

1

τm

m∑
i=1

ln |XA(τi, τi−1)|. (3.2)

The Vinograd–Millionshchikov central exponents (non-simplified) of a system A ∈ Mn can now
be given by the following formulas (with an additional exact bound): upper ones

Ω̂(A) ≡ inf
T>0

∆̂τ(T )(A), Ω̌(A) ≡ inf
T>0

∆̌τ(T )(A), (3.3)

and, respectively, lower ones

ω̂(A) ≡ sup
T>0

δ̂τ(T )(A), ω̌(A) ≡ sup
T>0

δ̌τ(T )(A). (3.4)
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4 The central exponents in dense scales
The properties of simplified central exponents in dense scales are similar to those of the correspond-
ing ones in uniform scales. Thus, estimates of the central exponents, which in the special case of a
uniform scale follow directly from Definition 1.1, are also valid for all dense scales.

Theorem 4.1. For any system A ∈ Mn and any dense scale τ ∈ T 0 the following inequalities
hold:

∆̂τ (A) > Ω̂(A), ∆̌τ (A) > Ω̌(A), δ̂τ (A) 6 ω̂(A), δ̌τ (A) 6 ω̌(A). (4.1)

The estimates (4.1) cannot be improved even for uniform scales, let alone for all dense ones.

Theorem 4.2. For any system A ∈ Mn the equalities hold

Ω̂(A) = inf
τ∈T 0

∆̂τ (A), Ω̌(A) = inf
τ∈T 0

∆̌τ (A), ω̂(A) = sup
τ∈T 0

δ̂τ (A), ω̌(A) = sup
τ∈T 0

δ̌τ (A). (4.2)

The exact bounds in the equalities (4.2) (just as in the equalities (3.3) and (3.4)) can be replaced
by the limits as |τ | → ∞.

Theorem 4.3. For any system A ∈ Mn the equalities hold

Ω̂(A) = lim
τ∈T 0, |τ |→∞

∆̂τ (A), Ω̌(A) = lim
τ∈T 0, |τ |→∞

∆̌τ (A),

ω̂(A) = lim
τ∈T 0, |τ |→∞

δ̂τ (A), ω̌(A) = lim
τ∈T 0, |τ |→∞

δ̌τ (A).

The exact bounds in the equalities (4.2), generally speaking, are not attained and, moreover,
for some system all four bounds are not attained at once.

Theorem 4.4. There exists a diagonal system A ∈ M2 such that for each dense scale τ ∈ T 0 all
the inequalities (4.1) are strict.

The assertion of Theorem 4.4 extends to systems of an arbitrary order n > 1. Theorems 5.2
and 5.5–6.2 below admit a similar generalization.

5 The central exponents in expanding scales
Simplified central exponents in slowly expanding scales are also estimated by the corresponding
central ones, but from the other side, opposite to the estimates (4.1).

Theorem 5.1. For any system A ∈ Mn and any expanding scale τ ∈ T∞ the inequalities

∆̂τ (A) 6 Ω̂(A), δ̌τ (A) > ω̌(A) (5.1)

hold and for any slowly expanding scale τ ∈ T 1
∞ additional inequalities hold:

∆̌τ (A) 6 Ω̌(A), δ̂τ (A) > ω̂(A). (5.2)

The requirement that an expanding scale be slowly increasing is not superfluous for the validity
of the inequalities (5.2) in Theorem 5.1.

Theorem 5.2. For any not slowly increasing scale τ ∈ T \ T 1 there exists a diagonal system
A ∈ M2 such that both the inequalities (5.2) are not true.
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The estimates (5.1) and (5.2) in Theorem 5.1 cannot be improved. Moreover, for none of them
there is an assertion analogous to Theorem 4.4 (for dense scales).

Theorem 5.3. For any system A ∈ Mn there exists a slowly expanding scale τ ∈ T 1
∞ such that

the following equalities hold:

∆̂τ (A) = Ω̂(A), ∆̌τ (A) = Ω̌(A), δ̂τ (A) = ω̂(A), δ̌τ (A) = ω̌(A). (5.3)

Thus, one more view is possible on the central exponents (3.3) and (3.4).

Theorem 5.4. For any system A ∈ Mn the following equalities hold:

max
τ∈T∞

∆̂τ (A) = Ω̂(A) = max
τ∈T 1

∞
∆̂τ (A), Ω̌(A) = max

τ∈T 1
∞
∆̌τ (A),

ω̂(A) = min
τ∈T 1

∞
δ̂τ (A), min

τ∈T∞
δ̌τ (A) = ω̌(A) = min

τ∈T 1
∞
δ̌τ (A).

The inequalities (5.1) and (5.2) under the conditions of Theorem 5.1 do not, in general, turn
into equalities for any fixed expanding scale.

Theorem 5.5. For any expanding scale τ ∈ T∞ there exists a diagonal system A ∈ M2 such that
all the inequalities (5.1) and (5.2) are strict.

6 The central exponents in rarefied scales
Rarefied scales, occupying, by definition, an intermediate position between dense and expanding
ones, may possess the properties of both the types of scales. In particular, none of Theorems 4.1
and 5.1 applies to all rarefied scales.

Theorem 6.1. For some rarefied scale τ ∈ T ∞ there exist two diagonal systems A′, A′′ ∈ M2 such
that for A = A′ all the inequalities (4.1) are strict and for A = A′′ all the inequalities (5.1) and
(5.2) are strict.

No rarefied scale ensures any of the equalities (5.3) for all systems at once.

Theorem 6.2. For any rarefied scale τ ∈ T ∞ there exists a diagonal system A ∈ M2 such that
either all the inequalities (4.1) are strict or all the inequalities (5.1) and (5.2) are strict.

7 Universal scales on a subset
We consider the possibility of completely removing exact bounds or limits appearing explicitly in
the formulas (3.3), (3.4) for central exponents, by replacing them with simplified ones (3.1), (3.2)
with a well-chosen scale.

Definition 7.1. The scale τ ∈ T will be called universal on a subset M ⊂ Mn if for any system
A ∈ M it satisfies all the equalities (5.3).

On the one hand, Theorems 4.4, 5.5 and 6.2 imply that there is no universal scale on the entire
set Mn. On the other hand, such scales still exist on certain standard subsets of it, as the following
three theorems say.

Theorem 7.1. Each scale τ ∈ T is universal on the subset of autonomous diagonal systems
A ∈ Mn.



168 International Workshop QUALITDE – 2017, December 24 – 26, 2017, Tbilisi, Georgia

Theorem 7.2. Each expanding scale τ ∈ T∞ is universal on the subset of autonomous systems
A ∈ Mn.

Theorem 7.3. Each slowly expanding scale τ ∈ T 1
∞ is universal on the subset of exponentially

separated systems A ∈ Mn.

We note that the subset of exponentially separated systems is open and everywhere dense in
the topological space Mn (the last assertion was proved by V. M. Millionshchikov in 1969).

Finally, according to Theorem 5.3, on each one-point subset, regardless of the properties of
the corresponding system, there is an individual universal slowly expanding scale. This statement
extends to arbitrary compact subsets.

Theorem 7.4. For any compact set K ⊂ Mn there is slowly expanding scale τ ∈ T 1
∞ that is

universal on K.
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