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Consider the linear differential system

ẋ = A(t)x, x ∈ Rn, t ≥ 0, (1)

with a piecewise continuous bounded coefficient matrix A such that ∥A(t)∥ ≤ a < +∞ for all t ≥ 0.
Together with system (1), consider the perturbed system

ẏ = A(t)y +Q(t)y, y ∈ Rn, t ≥ 0, (2)

with a piecewise continuous bounded perturbation matrix Q. For the higher exponent of system
(2), we use the notation λn(A+Q). By Rn×n we denote the set of all real n× n-matrices with the
spectral norm ∥ · ∥.

Let M be a class of perturbations. The number Λ(M) := sup{λn(A + Q) : Q ∈ M} is
an important asymptotic characteristics for system (1). Many authors investigated how to find
Λ(M) for various M, see, e.g., the monographs [3, p. 157], [7, p. 39], the review [5], and the
papers [1, 2, 4, 6, 8–16], where the following M are considered:

• vanishing at infinity perturbations [15]

Q(t) → 0, t → +∞;

• exponentially small perturbations [6]

∥Q(t)∥ ≤ NQ exp(−σQt), σQ > 0, t ≥ 0;

• σ-perturbations [4] (with fixed σ > 0)

∥Q(t)∥ ≤ NQ exp(−σt), t ≥ 0;

• power perturbations [1] with arbitrary γ > 0

∥Q(t)∥ ≤ NQt
−γ , t ≥ 1;

• some generalized classes of perturbations [1, 9] similar to previous ones;

• classes defined by various integral conditions [2, 8, 10–13,16].
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Note that everywhere in the above formulas, NQ > 0 is some number depending on Q.
In [1] sharp upper estimates for higher exponent of system (2) with perturbations of the class

B[β] defined by the condition
∥Q(t)∥ ≤ NQβ(t), t ≥ 0, (3)

are obtained when β is some fixed positive piecewise continuous bounded function defined for all
t ≥ 0 and monotone decreasing to 0 with the rate of decrease less than exponential.

Non-monotonic case is partially considered in [11], where β instead of monotonicity obeys the
following conditions:

(i) there exists 0<ε0<1 such that for each ε∈ ]0, ε0[ the equality lim
m→∞

m−1
m−1∑
k=0

βε
k=0 is valid;

(ii) there exists ρ > 0 such that for any k ∈ N the inequality βk ≤ ρβ(t) holds for each t ∈ [k−1, k]
with the possible exception of a finite number of points.

In these conditions we use the notation βk =
k+1∫
k

β(t) dt.

It should be stressed that in [1] as well as in [11] the algorithm for evaluation of Λ(M) is similar
to the algorithm for evaluation of sigma-exponent due to N. A. Izobov [4].

All the above listed perturbation classes are nondegenerate in the sense that their definitions
do not contain any restrictions on the sets M(t) := {Q(t) : Q ∈ M}, t ≥ 0. Indeed, for each
of them we have M(t) = Rn×n for all t ≥ 0. In this report we consider perturbations satisfying
the condition (3) with non-negative β. It can be easily seen that B[β](t) = 0 ∈ Rn×n for all t
such that β(t) = 0. Hence, we can assume that B[β] is to be be considered as one of the simplest
examples of perturbation classes with degeneracies. In the future we plan to give a comprehencive
consideration of such classes and as a first step in this direction we provide here an estimation of
Λ(B[β]) for the functions β subject to the natural condition

lim
m→∞

1

t

t∫
0

β(s) ds = 0. (4)

We show that N. A. Izobov’s algorithm is also applicable in this case.
To obtain the required estimation we use the approach developed in [8,11–13]. Let X(t, τ) and

Y (t, τ) be the Cauchy matrices for systems (1) and (2) respectively. Denote Xk := X(k + 1, k),
Yk := Y (k + 1, k) for k ∈ N0 := N ∪ {0}. Take some non-negative piecewise continuous function

β defined for all t ≥ 0 and satisfying condition (4). Put βk :=
k+1∫
k

β(τ) dτ , k ∈ N0, b := sup
t≥0

β(t).

Obviously, b ≥ 0 and βk ≤ b for all k ∈ N0. Now choose arbitrary perturbation Q ∈ B[β] satisfying
the inequality ∥Q(t)∥ ≤ NQβ(t) for all t ≥ 0 with some NQ > 0.

Lemma 1. For each k ∈ N0 the matrix Yk can be represented in the form Yk = Xk(E + Vk) where
Vk ∈ Rn×n is such that ∥Vk∥ ≤ Mβk ≤ Mb and M := NQe

2a+NQb.

Note that unlike [8,11–13], there is an opportunity for some Vk to be zero for any perturbations
Q ∈ B[β]. Indeed, we have Vk = 0 for each k ̸∈ Nβ

0 := {k ∈ N0 : βk ̸= 0}.
Denote ⟨m⟩ = {0, 1, . . . ,m−1} for m ∈ N. Let d be any subset of ⟨m⟩. Further we assume that

for d ̸= ∅ the elements of d are arranged in the increasing order, so that d1 < d2 < · · · < d|d| =:
H(d), where |d| is the number of elements of the set d. Thus, d = {d1, d2, . . . , H(d)}.

Define the multipliers Vk, k ∈ N0, corresponding to the given perturbation Q by Lemma 1.

Consider matrices Sm
d :=

m−1∏
k=0

XkWk(d), m ∈ N, where Wk(d) = Vk if k ∈ d and Wk(d) = E if i ̸∈ d.



International Workshop QUALITDE – 2017, December 24 – 26, 2017, Tbilisi, Georgia 129

Hereinafter we suppose that
∏

denotes the product of the factors arranged in descending order of
indices. Since Xk+s · · ·Xk+1Xk = X(k + s + 1, k) for any k, s ∈ N0, multiplying all Xk with no
intermediate multipliers Vk we get

Sm
d = X(m,H(d))VH(d) · · ·X(d2, d1)Vd1X(d1, 0).

Unlike [8, 11–13], here some Vk can be zero and, therefore, Sm
d is nonzero only when d ⊂ NV

0 :=
{k ∈ N0 : Vk ̸= 0}. Nevertheless, the inequality

∥Sm
d ∥ ≤ ∥X(m,H(d))∥ ∥VH(d)∥ · · · ∥X(d2, d1)∥ ∥Vd1∥ ∥X(d1, 0)∥ =: Zd(m)

remains valid. Since

Y (m, 0) =

m−1∏
i=0

Xi(E + Vi) =
∑

d⊂⟨m⟩

Sm
d ,

we can estimate the value of ∥Y (m, 0)∥ by means of Zd(m).

Theorem 1. Let hi, i ∈ N0, be a sequence of non-negative numbers such that hi > 0 for i ∈ NV
0 .

Then the Cauchy matrix Y of system (2) satisfies the inequality

∥Y (m, 0)∥ ≤ eK(m) max
d⊂⟨m⟩

R(d)Zd(m), m ∈ N,

where R(d) =
∏
i∈d

hi, K(m) =
∑

i∈⟨m,V ⟩
h−1
i , ⟨m,V ⟩ := ⟨m⟩ ∩ NV

0 .

The following Lemma is a necessary tool to remove condition (i) posed on β in [11].

Lemma 2. If a sequence of non-negative numbers uk, k ∈ N0, satisfies the condition

lim
m→∞

1

m

m−1∑
k=0

uk = 0, (5)

then for any ε ∈ ]0, 1] the sequence uεk, k ∈ N0 satisfies condition (5) too.

As in [12], put

Γφ
d (m) = ∥X(m,H(d))∥φ(H(d)) · · · ∥X(d2, d1)∥φ(d1) ∥X(d1, 0)∥,

where φ : N0 → [0,+∞[ , d ⊂ ⟨m⟩, m ∈ N. The main result of our work is given by the following
statement.

Theorem 2. The inequality

Λ(B[β]) ≤ lim
m→∞

m−1 ln max
d⊂⟨m,β⟩

Γβ
d (m) (6)

holds for any non-negative piecewise continuous function β defined for all t ≥ 0 and satisfying
condition (4).

Attainability of the above estimation (6) is a separate problem to be solved by a special version
of Millionshchikov’s rotation method [14].
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