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1 Introduction

The demand for smaller and faster devices has encouraged technological advances resulting in the
ability to manipulate matter at nanoscales that have enabled the fabrication of nanoscale electrome-
chanical systems. With the advances in materials synthesis and device processing capabilities, the
importance of developing and understanding nanoscale engineering devices has dramatically in-
creased over the past decade. For this purpose we shall study integro-differential equations for
solution of dynamic coupled problems in multifunctional nano-heterogeneous piezoelectric compos-
ites.

Let G € R? is a bounded piezoelectric domain with a set of inhomogeneities I = Ul € G (holes,
inclusions, nano-holes, nano-inclusions, which means that their diameter is less than 10~ "m, see
Figure 1.

Figure 1. The geometry: PEM inclusions in a bounded PEM matrix.

The aim is to find the field in every point of M = G \ I, I and to evaluate stress concentration
around the inhomogeneities. For this purpose we shall consider the case, when [ is a nano-inclusion
and we shall assume the following boundary conditions on S
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where Jli is generalized stress [3], p = 3,4, [ is the tangential vector. In [3] the above formulated

task is reduced to integro-differential equation. In this paper we shall consider CNN integro-
differential model of the problem under consideration and we shall study its dynamics. We shall
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provide computer simulations for the evaluation of dynamic SCF (stress concentration factor). This
characteristic is of interest in nano-mechanics and it is denoted by |o,3/00|. Another characteristics
of importance in nano-technology is the normalized dynamic Electric Field Concentration Field
(EFCF) |eM E,/o¢| along the perimeter of the inhomogeneity. Here ¢ is the polar angle of the
observer point.

2 Dynamics of CNN integro-differential model

In [3] a system of integro-differential equations (IDE) is obtained for the unknowns wu (displace-
ment vectors) and 7 (traction). The procedure is based on Gauss theorem [7] after finding the
fundamental solutions of the boundary value problem formulated in the introduction.

In this section we shall consider the following system of integro-differential equations which is
more general from the point of view of the applications in nano-technology:

¢
Up — Ugy = F(u, ) — b/u(s,:ﬂ) ds, (2.1)
0

u(z,t), 0 < x,t < 1, b = const. The proposed system (2.1) is a system of nonlinear integro-
differential equation, in which F'(u) is a function of displacement vectors and the traction (u,7) [3].
We shall construct CNN architecture of the above IDE (2.1). First, we map u(z,t) into a
CNN layer such that the state voltage of a CNN cell vy;(t) at a grid point (7,7) is associated
with wu(th,jh,t), h = Az and using the two-dimensional discretized Laplacian template Ay =
0 1 0
1 —4 1], it is easy to design the CNN model:
0 1 0

(1) CNN cell dynamics:

t
du;;
d;j — Iisj = F(uij,’i') — b/uij(s) ds. (2.2)
0
(2) CNN synaptic law:
s 1
Ly = 73 (wij-1 + tijen — 45 + wim1j + Uigr)- (2.3)

Let us assume for simplicity that the grid size of our CNN model is h = 1. Substituting (2.3)
into (2.2) we obtain:

duij
dt

¢
— Ag xujj = F(usj) — b/uij(s) ds, 1<i,j <N. (2.4)
0

The obtained CNN model (2.4) is actually a system of IDE which is identified as the state
equation of an autonomous CNN made of N x N cells [1,5].

We shall study the dynamics of the CNN integro-differential model (2.4) by means of the theory
of local activity [2,4]. The theory which will be presented below offers a constructive analytical
method for uncovering local activity. One can determine the domain of the cell parameters in
order for the cells to be locally active, and thus potentially capable of exhibiting complexity. This
precisely defined parameter domain is called the edge of chaos.
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Following the theory of local activity we shall find the equilibrium points E of (2.4) [6]. In gen-
eral, the equilibrium points are functions of the cell parameters. We shall consider the equilibrium
point E? = (0,0). We calculate the four cell coefficients a1, ai2, azi, age of the Jacobian matrix at
equilibrium point E° = (0,0) and as well the trace Tr(E°) and determinant A(E®).Then we define
stable and locally active region for the CNN integro-differential model (2.4).

Definition 2.1. We say that the cell is both stable and locally active at the equilibrium point E°
for the CNN integro-differential model (2.4) if

asy >0 or 4dajjass < (a2 + as)”

and
Tr(E®) <0, A(E®) >o0.

This region in the parameter space is called SLAR(E?).

According to [2,4] edge of chaos (EC) is a region in the parameter space of a dynamical system
in which emergence of complex phenomena and information processing is possible. Until now the
definition of this phenomena is known only via empirical examples. Below we give more precise
mathematical definition of EC.

Definition 2.2. CNN integro-differential model (2.4) operates in edge of chaos regime if and only
if there is least one equilibrium point such that the cell is both locally active and stable.

Then the following theorem holds:

Theorem. CNN integro-differential model (2.4) operates in edge of chaos if and only if the following
conditions are satisfied: —1 <b <1, F(0)=0, F <0¢€ (0,b), F>0¢€ (b1), F'(0) <0, F'(1) < 0.
This means that there is at least one equilibrium point which is both locally active and stable.

Remark. It is very important to have circuit model for the physical implementation. Then we can
apply results from the classical circuit theory in order to justify the cells local activity. If the cell
acts like a source of small signal for at least one equilibrium point then we can say that it is locally
active. In this case the cell can inject a net small-signal average power into the passive resistive
grids [2,4].

3 Simulations

In this section we shall consider an illustrative example. Let us consider the domain G1G2G3G4 in
Figure 2, which is a square elastic isotropic plate under uniform uni-axial time-harmonic traction
of magnitude o( applied to the vertical boundaries.

The heterogeneity is presented by a circular nano-inclusion with radius a. The size of the
square plate is 10d, where d = 2a. A dimensionless parameter is introduced and it is defined as
s = Cg/2uMa, where ;™ is the shear modulus of the plate material, Cs = A% + 2u°. When the
heterogeneity is presented by the inclusion the stiffness ratio of both phases is u!/u™ = 0.2 and
the densities correspond to frequency ratio of Qf /QM = 3.0, where Q7 = wa+/p’/pu’, J = I, M.
In all simulations the material damping is set to 5% and Poisson’s ratio is 0.26 for both matrix and
inclusion. The normalized hoop stresses spectra for representative point with polar angle ¢ = 7/2
of the heterogeneity interface versus normalized frequency for a single hole and inclusion cases are
plotted in Figure 3. The dynamic SCF is defined as |044/00|. Four different values of the surface
parameter are considered namely s = 0;0.1;0.5; 1.0. The problem is solved for frequency range up
to QM =0.8.
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Figure 2. Rectangular PEM matrix with circle heterogeneity.
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Figure 3. SCF versus frequency at observer point ¢ = 7/2 along interface between finite
elastic isotropic matrix for nano-inclusion.

4 Conclusion

Time-harmonic elastodynamic analysis of anisotropic finite solids with defects such as nano-sized
inclusions is presented in this work. The mathematical model combines classical 2D elastodynamic
theory and surface elasticity model [3] allowing in such way to treat heterogeneities at nano-level.
The analysis is carried out on IDE that employed the appropriate frequency-dependent fundamental
solution, obtained with Radon transform [7]. The CNN architecture is implemented numerically by
discretization of the IDE under consideration (2.1). Finally, numerical simulations show that the
stress concentration field near defects is strongly influenced by the type and the size of the inclusion,
the material anisotropy, the defect location and geometry, the dynamic load characteristics and the
mutual interactions between defects and between them and the solid’s boundary. The results of
the present methodology are with application in the fields of computational fracture mechanics,
geotechnical engineering and non-destructive testing evaluation of anisotropic composite materials.
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