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Let us consider the system of ordinary differential equations:

A(z)Y ′ = B(z)Y + f(z, Y, Y ′), (0.1)

where matrices A,B : D1 → Cp×n, D1 = {z : |z| < R1, R1 > 0} ⊂ C, matrices A(z), B(z) are
analytic in the domain D10, D10 = D1 \ {0}, the pencil of matrices A(z)λ−B(z) is singular on the
condition that z → 0, function f : D1 ×G1 ×G2 → Cp, where domains Gk ⊂ Cn, 0 ∈ Gk, k = 1, 2,
function f(z, Y, Y ′) is analytic in D10 ×G10 ×G20, Gk0 = Gk \ {0}, k = 1, 2.

The system of ordinary differential equations (0.1) that satisfies conditions p < n, A(z) is
analytic matrix in the domain D1 and rangA(z) = p on condition that z ∈ D1.

Let us consider the function

Y = col
(
Y1 Y2

)
, Y1 : D1 → Cp, Y2 : D1 → Cn−p, Y1 = col

(
Y11(z), . . . , Y1p(z)

)
,

Y2 = col
(
Y21(z), . . . , Y2n−p)(z)

)
.

Without restricting the generality, assume that matrices A(z), B(z) and vector-function
f(z, Y, Y ′) take the forms:

A(z) =
(
A1(z) A2(z)

)
, B(z) =

(
B1(z) B2(z)

)
, f(z, Y, Y ′) = f∗(z, Y1, Y2, Y

′
1 , Y

′
2),

A1 : D1 → Cp×p, A2 : D1 → Cp×(n−p), B1 : D1 → Cp×p, B2 : D1 → Cp×(n−p), detA1(z) ̸= 0 on
the condition that z ∈ D1, f∗ : D1 × G11 × G12 × G21 × G22 → Cp, Gj1 × Gj2 = Gj , Gj1 ⊂ Cp,
Gj2 ⊂ Cn−p, j = 1, 2.

In this view the system (0.1) may be written as:

Y ′
1 = A−1

1 (z)B1(z)Y1 +A−1
1 (z)B2(z)Y2 −A−1

1 (z)A2(z)Y
′
2 +A−1

1 (z)f∗(z, Y1, Y2, Y
′
1 , Y

′
2). (0.2)

Let us suppose that matrices A−1
1 (z)B1(z), A−1

1 (z)A2(z), A−1
1 (z)B2(z) are analytic in the domain

D10 and have removable singularity in the point z = 0.
Let us introduce the following notation:

P (z) = A−1
1 (z)B1(z),

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) = A−1

1 (z)B2(z)Y2 −A−1
1 (z)A2(z)Y

′
2 +A−1

1 f∗(z, Y1, Y2, Y
′
1 , Y

′
2),

then the system (0.2) may be written as

Y ′
1 = P (z)Y1 + F ∗(z, Y1, Y2, Y

′
1 , Y

′
2), (0.3)

where P (z) is analytic matrix in the domain D10 and has removable singularity in the point z = 0,
F ∗(z, Y1, Y2, Y

′
1 , Y

′
2) is analytic vector-function in the domain D10 × G110 × G120 × G210 × G220,

Gjk0 = Gjk \ 0, j, k = 1, 2.
Let us introduce the following classes of functions:
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- By Hn−p
0 we basically mean class of (n−p)-dimensional analytic in the domain D10 functions

that have removable singularity in the point z = 0.

- By Hn−p
r we basically mean class of (n−p)-dimensional analytic in the domain D10 functions

that have pole of r-order in the point z = 0.

We study the system (0.3) that satisfies the hypothesis that Y2(z) is arbitrary state function
from given class of function.

Let us consider the following two cases:

• vector-function Y2 appertain to class of functions Hn−p
0 ,

• vector-function Y2 appertain to class of functions Hn−p
r .

1 Case when the function Y2 has removable singularity
at the point z = 0

In the case Y2 ∈ Hn−p
0 , let us study question on the existence of the analytic solutions of Cauchy’s

problem {
Y ′
1 = P (z)Y1 + F ∗(z, Y1, Y2, Y

′
1 , Y

′
2),

Y1(z) → 0 on the condition that z → 0, z ∈ D10,
(1.1)

that satisfies the additional condition

Y ′
1(z) → 0 on the condition that z → 0, z ∈ D10. (1.2)

Let us choose such vector-function Y2 ∈ Hn−p
0 that after regularization in the point z = 0,

becomes analytic function in the domain D1 and Y2(0) = 0.
In this case, the function F ∗ may be written as

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) = F ∗

(
z, Y1,

∞∑
k=1

Akz
k, Y ′

1 ,
∞∑
k=1

k ·Akz
k−1

)
= F (z, Y1, Y

′
1),

where F : D1 ×G11 ×G21 → Cp.
Thus the problem (1.1) could be reduce to Cauchy’s problem:{

Y ′
1 = P (z)Y1 + F (z, Y1, Y

′
1),

Y1(z) → 0 on the condition that z → 0, z ∈ D10.
(1.3)

The sufficient conditions were found in which for each arbitrary fixed function Y2 ∈ Hn−p
0 ,

Y2(0) = 0, there exists at least one analytic solution of Cauchy’s problem (1.3) with the additional
condition (1.2) in some subdomain of the domain D10 with point z = 0 at the domain boundary.

2 Case when the function Y2 has the pole of r-order
at the point z = 0

In this case, let us study question on existence of the analytic solutions of Cauchy’s problem (1.1)
satisfying the additional condition (1.2) for each arbitrary fixed function Y2 ∈ Hn−p

r .
By condition, the function Y2 ∈ Hn−p

r may be written as

Y2(z) = z−rY ∗
2 (z),



112 International Workshop QUALITDE – 2017, December 24 – 26, 2017, Tbilisi, Georgia

where Y ∗
2 (z) is a analytic function in the domain D1, and Y ∗

2 (0) ̸= 0, moreover, function Y ∗
2 (z)

may be submitted in convergent power series on the condition that z ∈ D1.
Let us suppose that the power series expansion of function F ∗ in the domain of point (0, 0, 0, 0, 0)

has finite number of summand containing vector-functions Y2 and Y ′
2 .

Then vector-function F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) may be written as

F ∗(z, Y1, Y2, Y
′
1 , Y

′
2) = z−l · F (z, Y1, Y

∗
2 , Y

′
1 , Y

∗
2
′),

where vector-function F (z, Y1, Y
∗
2 , Y

′
1 , Y

∗
2
′) is analytic function in the domain D1 × G11 × G12 ×

G21 ×G22, l ∈ N, l ≥ r + 1.
The system (0.3) may be written as

zlY ′
1 = zlA−1

1 (z)B1(z)Y1 − zl−r−1A−1
1 (z)A2(z)Y

∗
2
′

+ zl−rA−1
1 (z)B2(z)Y

∗
2 + F (z, Y1, Y

∗
2 , Y

′
1 , Y

∗
2
′). (2.1)

Let us introduce the following notation

P (z) = A−1
1 (z)B1(z), R(z) = A−1

1 (z)A2(z), C(z) = A−1
1 (z)B2(z).

Then the system (2.1) may be written

zlY ′
1 = zlP (z)Y1 − zl−r−1R(z)Y ∗

2
′ + zl−rC(z)Y ∗

2 + F (z, Y1, Y
∗
2 , Y

′
1 , Y

∗
2
′), (2.2)

where P (z), R(z), C(z) are analytic matrices in the domain D1.
The questions on the analytic solutions of Cauchy’s problem existence (2.2) that satisfy the

initial condition
Y1(z) → 0 on the condition that z → 0, z ∈ D10, (2.3)

and the additional condition:

Y ′
1(z) → 0 on the condition that z → 0, z ∈ D10, (2.4)

are considered.
The sufficient conditions were found on which for each arbitrary fixed function Y2 ∈ Hn−p

r , there
exists at least one analytic solution of Cauchy’s problem (2.2), (2.3) with the additional condition
(2.4) in some subdomain of the domain D10 with point z = 0 at the domain boundary.

For each of these cases we researched the properties of the relevant solutions of the system (0.1).
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