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Consider the differential equation

y(n) = αp(t)

n−1∏
j=0

φj(y
(j)), (1)

where n ≥ 2, α ∈ {−1, 1}, p : [a,+∞[→ ]0,+∞[ is a continuous function, a ∈ R, φj : ∆Yj → ]0;+∞[
are continuous functions regularly varying, as y(j) → Yj , of order σj , j = 0, n− 1, ∆Yj is a one-sided
neighborhood of the point Yj , Yj ∈ {0,±∞}1.

Among the set of monotone solutions of equation (1), defined in some neighborhood of +∞,
there might also be solutions for each of which there exists a number k ∈ {1, . . . , n} such that

y(n−k)(t) = c+ o(1) (c ̸= 0) as t → +∞. (2)

There have been obtained some results concerning the existence of solutions of type (2) in
Corollaries 8.2, 8.6, 8.12 [4, Ch. II, § 8, pp. 207, 214, 223] and Corollaries 9.3, 9.7 [4, Ch. II, § 9,
pp. 230, 233] of the monograph by I. T. Kiguradze and T. A. Chanturiya for the equations of general
type, in Theorem 16.9 [4, Ch. IV, § 16, p. 321] for the differential equations of Emden–Fauler type.
However, these results provide for a considerably strict restriction to the (n− k + 1)-st derivative
of a solution.

In the present paper, a question of performance of new results with less strict restrictions is
investigated. When k = 1, 2, or the functions φi(y

(i)) (i = n− k + 1, n− 2 ) tend to the positive
constants, as y(i) → Yi, in the works [2] and [5] the necessary and sufficient existence conditions
of solutions of type (2) of equation (1) and their asymptotic behaviour were obtained without
any additional assumptions for these solutions. Otherwise, the new rather wide class of so-called
Pk
+∞(λ0)-solutions, −∞ ≤ λ0 ≤ +∞, of equation (1) has been assigned in the paper [3] as follows.

Definition. A solution y of the differential equation (1) is called (for k ∈ {3, . . . , n}) a Pk
+∞(λ0)-

solution, where −∞ ≤ λ0 ≤ +∞, if it is defined on the interval [t0,+∞[⊂ [a,+∞[ and satisfies the
conditions

lim
t→+∞

y(n−k)(t) = c (c ̸= 0), lim
t→+∞

[y(n−1)(t)]2

y(n−2)(t)y(n)(t)
= λ0. (3)

In accordance with its asymptotic properties the set of all Pk
+∞(λ0)-solutions of equation (1)

breaks up to the k+1 (k ∈ {3, . . . , n} ) disjoint subsets (see [1]) that correspond to the subsequent
values of the parameter λ0:

λ0 ∈ R \
{
0,

1

2
, . . . ,

k − 3

k − 2
, 1
}
, λ0 = ±∞, λ0 = 1,

λ0 =
n− j − 1

n− j
, j ∈ {n− k + 2, . . . , n− 1}.

1For Yj = ±∞ here and in the sequel, all numbers in the neighborhood of ∆Yj are assumed to have constant sign.
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The case λ0 ∈ R \ {0, 12 , . . . ,
k−3
k−2 , 1} has been studied in the work [3]. The aim of the present

paper is to investigate the question of existence and asymptotic behaviour of Pk
+∞(λ0)-solutions

(k ∈ {3, . . . , n}) of equation (1) in special case λ0 ∈ {1,±∞}. The asymptotic, as t → +∞,
formulas of their derivatives of order up to n− 1 will be obtained too. Moreover, a question on the
quantity of the studied solutions will be solved.

It is significant to note that by virtue of the results obtained by V. M. Evtukhov [1], the solutions
of equation (1) satisfy the following a priori asymptotic conditions.

Lemma. Let k ∈ {3, . . . , n} and y : [t0k,+∞[→ R be an arbitrary Pk
+∞(λ0)-solution of equation

(1). Then the following, as t → +∞, assertions hold:

• if λ0 = ±∞, then

y(l−1)(t) ∼ tn−l

(n− l)!
y(n−1) (t) (l = n− k + 2, n− 1 ), y(n)(t) = o

(y(n−1)(t)

t

)
;

• if λ0 = 1, then

y(n−k+2)(t)

y(n−k+1)(t)
∼ y(n−k+3)(t)

y(n−k+2)(t)
∼ · · · ∼ y(n)(t)

y(n−1)(t)
and lim

t→+∞

ty(n−k+2)(t)

y(n−k+1)(t)
= +∞.

It readily follows from the form of equation (1) that y(n)(t) has a constant sign in some neigh-
borhood of +∞. Then y(n−l)(t) (l = 1, k − 1 ) are strictly monotone functions in the neighborhood
of +∞ and, by virtue of (2), can tend only to zero, as t → +∞. Therefore, it is necessary that

Yj−1 = 0 for j = n− k + 2, n. (4)

Let us assume here and in the sequel that the numbers µj (j = 0, n− 1 ), defined in the following
way

µj =

{
1 if Yj = +∞, or Yj = 0 and ∆Yj is a right neighborhood of the point 0,

−1 if Yj = −∞, or Yj = 0 and ∆Yj is a left neighborhood of the point 0

are such that

µjµj+1 > 0 for j = 0, n− k − 1, µjµj+1 < 0 for j = n− k + 1, n− 2, (5)
αµn−1 < 0. (6)

These conditions on µj (j = 0, n− 1 ) and α are necessary for the existence of Pk
+∞(λ0)-solutions

of equation (1) as long as for each of them in some neighborhood of +∞

sign y(j)(t) = µj (j = 0, n− 1 ), sign y(n)(t) = α.

It is obvious that by virtue of the first relative (3), for these solutions the following representations

y(l−1)(t) =
ctn−l−k+1

(n− l − k + 1)!
[1 + o(1)] (l = 1, n− k ) as t → +∞ (7)

hold, c ∈ ∆Yn−k and then

Yj−1 =

{
+∞ if µn−k > 0,

−∞ if µn−k < 0,
for j = 1, n− k. (8)
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We say that a continuous function L : ∆Y0 → ]0,+∞[ , slowly varying as y → Y0, satisfies the
condition S0 if

L
(
µe[1+o(1)] ln |y|) = L(y)[1 + o(1)] as y → Y0 (y ∈ ∆Y0),

where µ = sign y.
The condition S0 is necessarily satisfied for functions L that have a nonzero finite limit, as

y → Y0, for functions of the form

L(y) = | ln |y||γ1 , L(y) = | ln |y||γ1
∣∣ ln | ln |y||∣∣γ2 ,

where γ1, γ2 ̸= 0, and for many other functions.
Consider the case λ0 = ±∞. The following statement holds for equation (1).

Theorem 1. For k ∈ {3, . . . , n} equation (1) doesn’t have Pk
+∞(±∞)-solutions.

To investigate the case λ0 = 1, besides the above-mentioned facts about the functions, regularly
and slowly varying as y(j) → Yj (j = 0, n− 1 ), we need the following auxiliary notations:

γk = 1−
n−1∑

j=n−k+1

σj , νk =

n−2∑
j=n−k+1

σj(n− j − 1), Mk(c) =

n−k∏
j=1

∣∣∣ c

(n− j − k + 1)!

∣∣∣σj−1

,

Ik(t) = φn−k(c)Mk(c)

t∫
A0k

p(τ)
n−k−1∏
j=0

φj(µjτ
n−k−j) dτ, I1k(t) =

t∫
A1k

Ik(τ) dτ,

where A0k (A1k) is chosen equal either to a0k ≥ a (a1k ≥ a0k) or to +∞ so as to ensure that the
integral tends either to zero or to +∞ as t → +∞.

Theorem 2. Let k ∈ {3, . . . , n} and γk ̸= 0. Then, for existence of Pk
+∞(1)-solutions of equation

(1), it is necessary that c ∈ ∆Yn−k, along with (4)–(6), (8) the following conditions

I ′k(t)

Ik(t)
∼ Ik(t)

I1k(t)
as t → +∞, lim

t→+∞
|Ik(t)|

1
γk = 0 (j = n− k + 1, n− 1 ) (9)

and the inequalities, as t ∈ ]a,+∞[ ,

γkIk(t) < 0, I1k(t) > 0, (−1)n−j−1µjµn−1 > 0 (j = n− k + 1, n− 3 ) (10)

hold. Moreover, each solution of that kind admits along with (2) and (7) the asymptotic, as t → +∞,
representations

y(j)(t) =
(γkI1k(t)

Ik(t)

)n−j−1
y(n−1)(t)[1 + o(1)] (j = n− k + 1, n− 2 ),

|y(n−1)(t)|γk
n−1∏

j=n−k+1

Lj

((γkI1k(t)
Ik(t)

)n−j−1
y(n−1)(t)

) = αµn−1γkIk(t)
∣∣∣γkI1k(t)

Ik(t)

∣∣∣νk [1 + o(1)].

Theorem 3. Let k ∈ {3, . . . , n}, γk ̸= 0 and functions Lj (j = n− k + 1, n− 1 ), slowly varying
as y(j) → Yj, satisfy the condition S0. Then, in case of existence of Pk

+∞(1)-solutions of equation
(1), the following condition

+∞∫
a2k

(I1k(τ)
Ik(τ)

)k−2
∣∣∣∣γkIk(τ)∣∣∣ γkI1k(τ)Ik(τ)

∣∣∣νk n−1∏
j=n−k+1

Lj

(
µj |Ik(τ)|

1
γk

)∣∣∣∣ 1
γk

dτ < +∞ (11)
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holds, where a2k ≥ a1k such that µj−1|Ik(t)|
1
γk ∈ ∆Yj−1 (j = n− k + 2, n ) for t ≥ a2k, and each

solution of that kind admits along with (7) the following asymptotic, as t → +∞, representations

y(n−k)(t) = c+ µn−1γ
k−2
k Wk(t)[1 + o(1)], (12)

y(l−1)(t) = µn−1γ
n−l
k

(I1k(t)
Ik(t)

)n−l−k+2
W ′

k(t)[1 + o(1)] (l = n− k + 2, n ), (13)

where

Wk(t) =

t∫
+∞

(I1k(τ)
Ik(τ)

)k−2
∣∣∣∣γkIk(τ)∣∣∣γkI1k(τ)Ik(τ)

∣∣∣νk n−1∏
j=n−k+1

Lj

(
µj |Ik(τ)|

1
γk

)∣∣∣∣ 1
γk

dτ.

In the next theorem the sufficient existence conditions of Pk
+∞(1)-solutions of equation (1) with

mentioned in Theorem 3 asymptotic representations are presented.

Theorem 4. Let k ∈ {3, . . . , n}, γk ̸= 0, c ∈ ∆Yn−k, the conditions (4)–(6), (8)–(10), (11) hold
and the functions Lj (j = n− k + 1, n− 1 ), slowly varying as y(j) → Yj, satisfy the condition S0.
In addition, let the inequality σn−1 ̸= 1 holds and the algebraic relative to ρ equation

k−1∑
l=2

σn−l(ρ+ 1)k−l−1 − (1− σn−1 + ρ)(ρ+ 1)k−2 = 0 (14)

has no roots with zero real part. Then equation (1) has a (n− k+m)-parameter family of Pk
+∞(1)-

solutions that admit the asymptotic, as t → +∞, representations (7), (12), (13), where m is a
number of roots (taking into account divisible) with positive real part of the algebraic equation (14).

Remark. In fact, the algebraic equation (14) has no roots with zero real part if

k−1∑
l=2

|σn−l| < |1− σn−1|.
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