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Let m1, . . . ,mn be positive integers. In the n-dimensional box Ω = [0, ω1]× · · · × [0, ωn] for the
nonlinear hyperbolic equation

u(m) = f(x, D̂m[u]) (1)

consider the initial-boundary conditions

hik(u(x1, . . . , xi−1, • , xi+1, . . . , xn)) = ϕik(x̂i) (k = 1, . . . ,mi, i = 1, . . . , n− 1),

u(0,...,0,k−1)(x1, . . . , xn−1, 0) = ϕnk(x̂n) (k = 1, . . . ,mn).
(2)

Here x = (x1, . . . , xn), x̂i = (x1, . . . , xi−1, xi+1, . . . , xn), α = (α1, . . . , αn), m̂i = m − mi and
mi = (0, . . . ,mi, . . . , 0) are multi-indices,

u(α)(x) =
∂α1+···+αnu(x)

∂xα1
1 · · · ∂x

αn
n

,

Dm[u] = (u(α))α≤m, D̂m[u] = (u(α))α<m, Ωi = [0, ω1] × · · · × [0, ωi−1] × [0, ωi+1] × · · · × [0, ωn],
f ∈ C(Ω × Rm1×···×mn), hik : Cmi−1([0, ωi]) → R (k = 1, . . . ,mi; i = 1, . . . , n − 1) are bounded
linear functionals, and ϕik ∈ Cm̂i(Ωi) (k = 1, . . . ,mi; i = 1, . . . , n). Furthermore, it is assumed
that the functions ϕik satisfy the following consistency conditions:

hik(ϕjl)(x̂ij) ≡ hjl(ϕik)(x̂ij) (k = 1, . . . ,mi; l = 1, . . . ,mj ; i, j = 1, . . . , n),

where x̂ij = x− x̂i − x̂j .

Set:

Z = (zα)α<m; fα(x,Z) =
∂f(x,Z)

∂zα
.

α = (α1, . . . , αn) ∈ Υm ⇐⇒ αi = mi for some (i = 1, . . . , n).

The variables zα (α ∈ Υm) are called principal phase variables of the function f(x,Z).

By a solution of problem (1), (2) we understand a classical solution, i.e., a function u ∈ Cm(Ω)
satisfying equation (1) and boundary conditions (2).

Two-dimensional initial-boundary value problems were studied in [4, 5].

Definition. Let n = (n1, . . . , nr), Ω = [0, ω1] × [0, . . . , ωr], y = (y1, . . . , yr), and let the function
g : C(Ω×Rn1×···×nr) be continuously differentiable with respect to the phase variables. A solution
v0 ∈ Cn(Ω) of the problem

v(n) = g(y, D̂n[v]), (3)

hij
(
v(y1, . . . , yi−1, • , yi+1, . . . , yr)

)
= ψij(ŷi) (j = 1, . . . , ni; i = 1, . . . , r) (4)
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is called strongly isolated if the linearized problem

v(n) =
∑
α<n

pα(y)v(α),

hij
(
v(y1, . . . , yi−1, • , yi+1, . . . , yr)

)
= 0 (j = 1, . . . , ni; i = 1, . . . , r),

where pα(y) = gα(y, D̂k[v0(y)]), is well-posed.

Well-posed multi-dimensional boundary value problems for higher order linear hyperbolic equa-
tions were studied in [2].

The concept of a strongly isolated solution is closely related to the concept of strongly well-
posedness. Strong well-posedness of two-dimensional boundary value problems for higher order
nonlinear hyperbolic equations were introduced in [3].

Theorem 1. Let the function f be continuously differentiable with respect to the phase variables,
and let v0 be a strongly isolated solution of the problem

v(m̂n) = p
(
x̂n, D̂m̂n [v]

)
, (5)

hik
(
u(x1, . . . , xi−1, • , xi+1, . . . , xn−1)

)
= ϕ

(mn)
ik (x̂ni) (k = 1, . . . ,mi; i = 1, . . . , n− 1), (6)

where
p
(
x̂n, D̂m̂n [v]

)
= f

(
x1, . . . , xn−1, 0,Dm−1n [u0](x1, . . . , xn−1, 0), D̂m̂n [v]

)
,

x̂ni = (x1, . . . , xi−1, xi+1, . . . , xn−1) and 1n = (0, . . . , 0, 1). Then there exists δ ∈ (0, ωn] such that
in the set Ωδ = [0, ω1] × · · · × [0, ωn−1] × [0, δ] problem (1), (2) has a unique solution u satisfying
the condition

u(mn)(x1, . . . , xn−1, 0) = v0(x1, . . . , xn−1). (7)

Consider the “perturbed” equation

u(m) = f
(
x, D̂m[u]

)
+ xnq

(
x, D̂m[u]

)
. (8)

Theorem 2. Let the conditions of Theorem 1 hold, and let the function q(x,Z) be continuously
differentiable with respect to the principal phase variables zα (α ∈ Υm). Then there exists δ ∈ (0, ωn]
such that in the set Ωδ = [0, ω1]× · · · × [0, ωn−1]× [0, δ] problem (8), (2) has a at least one solution
u satisfying condition (7). Moreover, if the function q is locally Lipschitz continuous with respect
to the rest of the phase variables, then such solution is unique.

The following is a particular case of conditions (2):

h1k
(
u(x1, . . . , xi−1, • , xi+1, . . . , xn)

)
= ϕ1k(x̂i) (k = 1, . . . ,mi),

u(0,...,ki−1,...,0)(x1, . . . , 0, . . . , xn) = ϕiki(x̂i) (ki = 1, . . . ,mi; i = 2, . . . , n). (9)

Corollary. Let the function f be continuously differentiable with respect to the phase variables,
and let v0 be a strongly isolated solution of the problem

v(m1) = p(x1, v, v
′, . . . , vm1−1),

h1k(v) = ϕ
(m̂1)
1k (0) (k = 1, . . . ,m1),

where

p(x1, v, v
′, . . . , vm1−1) = f

(
x1, 0, . . . , 0, D̂m̂1

[
Dm1 [u0]

]
(x1, 0, . . . , 0), v, v′, . . . , vm1−1

)
.

Then there exist δi ∈ (0, ωi] (i = 2, . . . , n) such that in the set Ωδ2···δn = [0, ω1]× [0, δ2]×· · ·× [0, δn]
problem (1), (7) has a unique solution u satisfying the condition

u(m̂1)(x1, 0, . . . , 0) = v0(x1).
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Remark. In Theorem 1 the requirement of strong isolation of the solution v0 cannot be replaced
by well-posedness of problem (5), (6). In order to illustrate this, consider the problem

u(1,1) = (u(0,1))3 − y2u(0,1), (10)

u(ω1, y)− u(0, y) =

y∫
0

t sin
1

t
dt, u(x, 0) = 0. (11)

For this case problem (5), (6) is the following one:

v′ = v3, v(ω1)− v(0) = 0. (12)

By Corollary 4.2 and Theorem 4.4 from [1], problem (12) has a unique solution v0(y) ≡ 0 and
is well-posed. On the other hand, it is clear, that v0(y) ≡ 0 is not strongly isolated.

Our goal is to show that problem (10), (11) has no solution in the rectangle Ωδ = [0, ω1]× [0, δ]
no matter how small δ > 0 is.

Assume the contrary that problem (10), (11) has a solution u in Ωδ for some δ > 0. Then for
an arbitrarily fixed y ∈ (0, δ], the function v( · ) = u(0,1)( · , y) is a solution of the problem

v′ = v3 − y2v, (13)

v(ω1)− v(0) = y sin
1

y
. (14)

containing the parameter y ∈ [0, ω2]. Moreover, if problem (10), (11) has a solution, then v is a
solution (13), (14) depending continuously on the parameter y.

For every fixed y ∈ (0, δ] equation (13) has three constant solutions: v0(x) = 0, v1(x) = y and
v2(x) = −y. Due to the existence and uniqueness theorem, a nonconstant solution v of equation
(13) intersects v0, v1 or v2, and thus v′(x) 6= 0 for x ∈ [0, ω1]. Let

k >
1

2πδ
and x ∈

( 1

π + 2πk
,

1

2πk

)
.

Then v(ω1) > v(0) and v′(x) > 0 for x ∈ [0, ω1]. Therefore, either

v(x) > y for x ∈ [0, ω1],

or
v(x) ∈ (−y, 0) for x ∈ [0, ω1].

If y = 1
π
2
+2πk , then v(ω1)− v(0) = y, and consequently,

v(x) 6∈ (−y, 0) for x ∈ [0, ω1].

From the aforesaid, in view of continuity of u(0,1) in Ωδ, it follows that

u(0,1)(x, y) > y for y ∈
( 1

π + 2πk
,

1

2πk

)
.

Similarly, one can show that

u(0,1)(x, y) < −y for y ∈
( 1

2π(k + 1)
,

1

π + 2πk

)
.

However, the latter two inequalities imply that u(0,1)(x, y) is discontinuous along the lines y = 1
πk

(k = 1, 2, . . . ). Thus we have proved that problem (10), (11) has no solution in Ωδ for any δ > 0.
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In conclusion, as examples, consider the following initial-boundary value problems.

Example 1.

u(2,2,1) = u2u(2,0,1) + (u(1,1,0))4u(0,2,1) − (u(0,0,1))6 + q
(
x1, x2, x3, u, u

(1,0,0), u(0,1,0), u(1,1,0)
)
, (15)

u(0, x2, x3) = 0, u(ω1, x2, x3) = 0; u(x1, 0, x3) = 0, u(x1, ω2, x3) = 0;

u(x1, x2, 0) = ψ(x1, x2). (16)

Let the function q be continuous. Then, by Corollary 4 from [2] and Theorem 2, there exists
δ ∈ (0, ω3] such that in the set Ωδ = [0, ω1] × [0, ω2] × [0, δ] problem (15), (16) has a at least one
solution. Moreover, if the function q is locally Lipschitz continuous with respect to the phase
variables, then problem (15), (16) is uniquely solvable.

Example 2.

u(2,2,1) = u(2,0,1) + (u(2,0,1))5 + u(0,2,1) − u(0,0,1) + q
(
x1, x2, x3, u, u

(1,0,0), u(0,1,0), u(1,1,0)
)
, (17)

u(i,0,0)(0, x2, x3) = u(i,0,0)(ω1, x2, x3); u(0,i,0)(x1, 0, x3) = u(0,i,0)(x1, ω2, x3) (i = 0, 1);

u(x1, x2, 0) = ψ(x1, x2). (18)

Let the function q be continuous. Then, by Corollary 5 from [2] and Theorem 2, there exists
δ ∈ (0, ω3] such that in the set Ωδ = [0, ω1] × [0, ω2] × [0, δ] problem (17), (18) has a at least one
solution. Moreover, if the function q is locally Lipschitz continuous with respect to the phase
variables, then problem (17), (18) is uniquely solvable.

Example 3. Let pα be smooth functions, q be a continuous function, m = (m1, . . . ,mn, 0) and
1n+1) = (0, . . . , 0). For the equation

u(2m+1n+1) =
∑
α<m

(
pα(x, u)u(α+1n+1)

)(α)
+ q
(
x,D2m - 1[u]

)
. (19)

consider the initial-boundary value problems with the Dirichlet and periodic boundary conditions

u(k1i)(x1, . . . , 0, . . . , xn+1) = 0, u(k1i)(x1, . . . , ωi, . . . , xn+1) = 0

(k = 0, . . . ,mi − 1; i = 1, . . . , n); u(x1, . . . , xn, 0) = ϕ(x), (20)

and

u(k1i)(x1, . . . , 0, . . . , xn+1) = u(k1i)(x1, . . . , ωi, . . . , xn+1)

(k = 0, . . . , 2mi − 1; i = 1, . . . , n); u(x1, . . . , xn, 0) = ϕ(x). (21)

Let (−1)‖m‖+‖α‖pα ≤ 0 ((−1)‖m‖+‖α‖pα < 0) for α < m. Then, by Theorem 2 from [2] and
Theorem 2, there exists δ ∈ (0, ωn+1] such that in the set Ωδ = [0, ω1] × · · · × [0, ωn] × [0, δ]
problem (19), (20) (problem (19), (21)) has a at least one solution. Moreover, if the function q is
locally Lipschitz continuous with respect to the phase variables, then problem (19), (20) (problem
(19), (21)) is uniquely solvable.
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