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Let mq, ..., my, be positive integers. In the n-dimensional box = [0,w;] x - -+ x [0, wy,] for the
nonlinear hyperbolic equation
um™ = f(x, B[] 1)

consider the initial-boundary conditions

hik(u(azl, ey Lj—1, @, L5470, ,{En)) = gplk(ﬁl) (k = 1,. <oy, My, = 1, NN 1), (2)
w0k =D (g 1.0) = k(X)) (k=1,...,my).
Here x = (21,...,2y), X; = (1, , Ti—1,Tit1,- -+, Tn), @ = (Q1,...,q,), Mm; = m — m,; and
m; = (0,...,m;,...,0) are multi-indices,

8a1+~--+anu(x)
()= 2 "\
W) = G g

D[u] = (u')a<m, D™y] = (W) gem, U = [0,w1] X -+ x [0,wi_1] X [0,wis1] X -+ x [0, wn],
f € C(Qx RmXxma) po o CMi=H([0,w]) - R (k=1,...,my;i=1,...,n — 1) are bounded
linear functionals, and @y, € C™i(Q;) (k = 1,...,my; i = 1,...,n). Furthermore, it is assumed
that the functions ¢, satisfy the following consistency conditions:

where iij =X — ﬁl — ij.

Set:
Z= (oot falx.Z) = 2L
- a)a<my « ) - 82a .
a=(a1,...,0pn) € Ty <= «a; =m; for some (i=1,...,n).

The variables z, (a € Tyy,) are called principal phase variables of the function f(x,Z).

By a solution of problem (1), (2) we understand a classical solution, i.e., a function u € C™()
satisfying equation (1) and boundary conditions (2).

Two-dimensional initial-boundary value problems were studied in [4,5].

Definition. Let n = (ny,...,n;), Q = [0,w;1] X [0,...,w:], ¥ = (y1,...,¥r), and let the function

g : C(Q2 x RM>*"r) he continuously differentiable with respect to the phase variables. A solution
vg € C™(§2) of the problem

o™ = g(y, D"[v]), (3)

hij(v(yla s Yi—1, O, Yit 1, - - 'ayr)) = T/h](?x) (] = ]-a ey TG 1= ]-7 s 7T) (4)
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is called strongly isolated if the linearized problem
(@ — ZPQ(Y)U(Q)’
a<n

hl](v(ylv yYi—1, O, Yi+1,--- a%)) =0 (.] - 177”27 1= 17' ")T)u
where pa(y) = galy, DX[vo(y)]), is well-posed.

Well-posed multi-dimensional boundary value problems for higher order linear hyperbolic equa-
tions were studied in [2].

The concept of a strongly isolated solution is closely related to the concept of strongly well-
posedness. Strong well-posedness of two-dimensional boundary value problems for higher order
nonlinear hyperbolic equations were introduced in [3].

Theorem 1. Let the function f be continuously differentiable with respect to the phase variables,
and let vy be a strongly isolated solution of the problem

o) = p (R, Do), (5)
hik(u(xl, ey Lj—1, @, 441y ,xn_l)) = @E;nn)(ﬁm) (k‘ = 1, ceey TGS 1= 1, ey — 1), (6)

where - o
p(ﬁn,Dm" [v]) = f(xl, oy Ty1,0, D™ ) (2, .. 21, 0), D™ [v]),

Xni = (T1,- -+, Ti1, Tit1y- -y Tn—1) and 1, = (0,...,0,1). Then there exists § € (0,wy] such that
in the set Q5 = [0,w1] X -+ X [0,wp—1] X [0, 0] problem (1),(2) has a unique solution u satisfying
the condition

u(mn)(g:h...,xn_l,O) :Uo(l'l,...,xn_l). (7)
Consider the “perturbed” equation
wm = f(x, ﬁm[u]) + :Bnq(x7 ﬁm[u]) (8)

Theorem 2. Let the conditions of Theorem 1 hold, and let the function q(x,Z) be continuously
differentiable with respect to the principal phase variables zo (o € Tm). Then there exists 6 € (0, wy,)
such that in the set Q5 = [0,w1] X -+ X [0,wp—1] X [0,0] problem (8),(2) has a at least one solution
u satisfying condition (7). Moreover, if the function q is locally Lipschitz continuous with respect
to the rest of the phase variables, then such solution is unique.

The following is a particular case of conditions (2):
hlk(u(azl, ey Lj—1y, O, L4415 ,CL‘n)) == @lk(ﬁz) (k‘ = ]_, PN ,mi),
w O kim0 (g0, a) = o (R) (ki=1,...,mg; i=2,...,n). (9)

Corollary. Let the function f be continuously differentiable with respect to the phase variables,
and let vg be a strongly isolated solution of the problem

! -1
p(m) = p(z1,v,0, ..., 0™ )

hir(v) = @(0) (k=1,...,m1),

9

where
p(zy,v,0,. .. 0™ = f(xl,O, A 0,73ﬁ‘1 [Dml [ug]] (21,0,...,0),0,0, ... ,Uml_l).

Then there exist 0; € (0,w;] (i = 2,...,n) such that in the set Qs,...5, = [0,w1] x [0, d2] x - - x [0, d,]
problem (1), (7) has a unique solution u satisfying the condition

u™(z1,0,...,0) = vo(x1).
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Remark. In Theorem 1 the requirement of strong isolation of the solution vy cannot be replaced
by well-posedness of problem (5), (6). In order to illustrate this, consider the problem

u(171) _ (u(O,l))?: - y2u(0,1), (10)
i 1
u(wr,y) —u(0,y) = /tsint dt, wu(z,0)=0. (11)
0

For this case problem (5), (6) is the following one:
v =03 w(wr) —v(0) = 0. (12)

By Corollary 4.2 and Theorem 4.4 from [1], problem (12) has a unique solution vg(y) = 0 and
is well-posed. On the other hand, it is clear, that vy(y) = 0 is not strongly isolated.

Our goal is to show that problem (10), (11) has no solution in the rectangle €25 = [0, w1] x [0, ]
no matter how small § > 0 is.

Assume the contrary that problem (10), (11) has a solution u in €5 for some § > 0. Then for
an arbitrarily fixed y € (0, 6], the function v(-) = u(®V (-, %) is a solution of the problem

3

v =3 — P, (13)

o(wr) — v(0) = ysin;. (14)

containing the parameter y € [0,ws]. Moreover, if problem (10),(11) has a solution, then v is a
solution (13), (14) depending continuously on the parameter y.

For every fixed y € (0, ] equation (13) has three constant solutions: vo(x) = 0, vi1(z) = y and
va(x) = —y. Due to the existence and uniqueness theorem, a nonconstant solution v of equation
(13) intersects vg, v1 or ve, and thus v'(x) # 0 for x € [0,w;]. Let

1 1 1
k> g5 d v e (o o)
Then v(w1) > v(0) and v'(z) > 0 for = € [0,w;]. Therefore, either

v(x) >y for x € [0,w],

v(x) € (—y,0) for z € [0,w].

Ify then v(w1) — v(0) = y, and consequently,

_ 1
T St2mk>
v(z) & (—y,0) for z € [0,w].

From the aforesaid, in view of continuity of w0 in Qy, it follows that

1 1
(071) T a9 1.0 1.
u (x,y) >y for y€(7r+27rk’27rk)'

Similarly, one can show that

1 1
u®D(z,y) < —y for y e (27T(k+ 1)’ m+ 27Tk>.

However, the latter two inequalities imply that u(o’l)(x, y) is discontinuous along the lines y = #

(k=1,2,...). Thus we have proved that problem (10), (11) has no solution in s for any ¢ > 0.
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In conclusion, as examples, consider the following initial-boundary value problems.

Example 1.

w2 = 220D 4 (104,021 _ (O0DY6 o0y 7y g u, w00 4 OLO) L 1LLO)  (15)
U(O,IEQ,IE?,) — 05 U(W1,I’2,l’3) — Oa U(l’l,O,.’Eg) — Oa U(IEl,WQ,I’g) — Oa

u(z1,x2,0) = Y(x1, 22). (16)

Let the function ¢ be continuous. Then, by Corollary 4 from [2] and Theorem 2, there exists

d € (0,ws] such that in the set Q5 = [0,w;] X [0,w2] x [0,d] problem (15),(16) has a at least one

solution. Moreover, if the function ¢ is locally Lipschitz continuous with respect to the phase
variables, then problem (15), (16) is uniquely solvable.

Example 2.
w221) — 4, (20.0) 4 (u(2,0,1))5 4021 _,00,1) | q(ﬂcl, o, T3, U, u(l,o,o),u(0,1,0)7u(171,0))’ (17)
ul 000, 29, 23) = w00 (wy, wa, w3); w0 (21,0, 23) = w0 (@), w9, w5) (i = 0,1);
u(r1,72,0) = (1, 22). (18)

Let the function ¢ be continuous. Then, by Corollary 5 from [2] and Theorem 2, there exists
d € (0,ws] such that in the set Q5 = [0,w;] X [0,w2] x [0,0] problem (17),(18) has a at least one
solution. Moreover, if the function ¢ is locally Lipschitz continuous with respect to the phase
variables, then problem (17), (18) is uniquely solvable.

Example 3. Let p, be smooth functions, ¢ be a continuous function, m = (mq,..., my,0) and
1,+1) = (0,...,0). For the equation

y (2Pt Las) — Z (pa(x,u)u(a+1n+1))(o‘) +q(x, D™ " ). (19)

a<m

consider the initial-boundary value problems with the Dirichlet and periodic boundary conditions

U(kli)(wla...707-..,$n+1):Oy u(kli)(xla'-'awia"'7xn+1):0
(k=0,...,mi—1;i=1,....n); u(z,...,2,,0) = ¢(z), (20)

and

u(kli)(:rl,...,0,...,xn+1):u(kli)(afl,...,wi,...,xnﬂ)
(k=0,....2m; — 1; i=1,...,n); wu(x,...,2,,0) =p(z). (21)

Let (—1)Imi+lely, <o ((=1)lmI+lelp, < 0) for & < m. Then, by Theorem 2 from [2] and
Theorem 2, there exists § € (0,wy,+1] such that in the set Q5 = [0,w1] X -+ x [0,wy] % [0,]
problem (19),(20) (problem (19),(21)) has a at least one solution. Moreover, if the function ¢ is
locally Lipschitz continuous with respect to the phase variables, then problem (19), (20) (problem
(19), (21)) is uniquely solvable.
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