Local Solvability of Multi Dimensional Initial-Boundary Value Problems for Higher Order Nonlinear Hyperbolic Equations

Tariel Kiguradze and Audison Beaubrun

Florida Institute of Technology, Melbourne, USA E-mail: tkigurad@fit.edu; abeaubrun2013@my.fit.edu

Let m_1, \ldots, m_n be positive integers. In the *n*-dimensional box $\Omega = [0, \omega_1] \times \cdots \times [0, \omega_n]$ for the nonlinear hyperbolic equation

$$u^{(\mathbf{m})} = f(\mathbf{x}, \widehat{\mathcal{D}}^{\mathbf{m}}[u]) \tag{1}$$

consider the initial-boundary conditions

$$h_{ik}(u(x_1, \dots, x_{i-1}, \bullet, x_{i+1}, \dots, x_n)) = \varphi_{ik}(\widehat{\mathbf{x}}_i) \quad (k = 1, \dots, m_i, \quad i = 1, \dots, n-1),$$

$$u^{(0,\dots,0,k-1)}(x_1, \dots, x_{n-1}, 0) = \varphi_{nk}(\widehat{\mathbf{x}}_n) \quad (k = 1, \dots, m_n).$$
(2)

Here $\mathbf{x} = (x_1, \ldots, x_n)$, $\widehat{\mathbf{x}}_i = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)$, $\alpha = (\alpha_1, \ldots, \alpha_n)$, $\widehat{\mathbf{m}}_i = \mathbf{m} - \mathbf{m}_i$ and $\mathbf{m}_i = (0, \ldots, m_i, \ldots, 0)$ are multi-indices,

$$u^{(\alpha)}(\mathbf{x}) = \frac{\partial^{\alpha_1 + \dots + \alpha_n} u(\mathbf{x})}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}},$$

 $\mathcal{D}^{\mathbf{m}}[u] = (u^{(\alpha)})_{\alpha \leq \mathbf{m}}, \ \widehat{\mathcal{D}}^{\mathbf{m}}[u] = (u^{(\alpha)})_{\alpha < \mathbf{m}}, \ \Omega_i = [0, \omega_1] \times \cdots \times [0, \omega_{i-1}] \times [0, \omega_{i+1}] \times \cdots \times [0, \omega_n], \\ f \in C(\Omega \times \mathbb{R}^{m_1 \times \cdots \times m_n}), \ h_{ik} : C^{m_i - 1}([0, \omega_i]) \to \mathbb{R} \ (k = 1, \dots, m_i; \ i = 1, \dots, n-1) \text{ are bounded} \\ \text{linear functionals, and } \varphi_{ik} \in C^{\widehat{\mathbf{m}}_i}(\Omega_i) \ (k = 1, \dots, m_i; \ i = 1, \dots, n). Furthermore, \text{ it is assumed} \\ \text{that the functions } \varphi_{ik} \text{ satisfy the following consistency conditions:} \end{cases}$

$$h_{ik}(\varphi_{jl})(\widehat{\mathbf{x}}_{ij}) \equiv h_{jl}(\varphi_{ik})(\widehat{\mathbf{x}}_{ij}) \quad (k = 1, \dots, m_i; \ l = 1, \dots, m_j; \ i, j = 1, \dots, n),$$

where $\widehat{\mathbf{x}}_{ij} = \mathbf{x} - \widehat{\mathbf{x}}_i - \widehat{\mathbf{x}}_j$.

Set:

$$\mathbf{Z} = (z_{\alpha})_{\alpha < \mathbf{m}}; \quad f_{\alpha}(\mathbf{x}, \mathbf{Z}) = \frac{\partial f(\mathbf{x}, \mathbf{Z})}{\partial z_{\alpha}}.$$

$$\alpha = (\alpha_1, \dots, \alpha_n) \in \Upsilon_{\mathbf{m}} \iff \alpha_i = m_i \text{ for some } (i = 1, \dots, n).$$

The variables z_{α} ($\alpha \in \Upsilon_{\mathbf{m}}$) are called *principal phase variables* of the function $f(\mathbf{x}, \mathbf{Z})$.

By a solution of problem (1), (2) we understand a classical solution, i.e., a function $u \in C^{\mathbf{m}}(\Omega)$ satisfying equation (1) and boundary conditions (2).

Two-dimensional initial-boundary value problems were studied in [4, 5].

Definition. Let $\mathbf{n} = (n_1, \ldots, n_r)$, $\Omega = [0, \omega_1] \times [0, \ldots, \omega_r]$, $\mathbf{y} = (y_1, \ldots, y_r)$, and let the function $g: C(\Omega \times \mathbb{R}^{n_1 \times \cdots \times n_r})$ be continuously differentiable with respect to the phase variables. A solution $v_0 \in C^n(\Omega)$ of the problem

$$v^{(\mathbf{n})} = g(\mathbf{y}, \widehat{\mathcal{D}}^{\mathbf{n}}[v]), \tag{3}$$

$$h_{ij}(v(y_1, \dots, y_{i-1}, \bullet, y_{i+1}, \dots, y_r)) = \psi_{ij}(\widehat{\mathbf{y}}_i) \quad (j = 1, \dots, n_i; \ i = 1, \dots, r)$$
(4)

is called *strongly isolated* if the linearized problem

$$v^{(\mathbf{n})} = \sum_{\alpha < \mathbf{n}} p_{\alpha}(\mathbf{y}) v^{(\alpha)},$$

$$h_{ij} (v(y_1, \dots, y_{i-1}, \bullet, y_{i+1}, \dots, y_r)) = 0 \quad (j = 1, \dots, n_i; \ i = 1, \dots, r),$$

where $p_{\alpha}(\mathbf{y}) = g_{\alpha}(\mathbf{y}, \widehat{\mathcal{D}}^{\mathbf{k}}[v_0(\mathbf{y})])$, is well-posed.

Well-posed multi-dimensional boundary value problems for higher order linear hyperbolic equations were studied in [2].

The concept of a strongly isolated solution is closely related to the concept of strongly wellposedness. Strong well-posedness of two-dimensional boundary value problems for higher order nonlinear hyperbolic equations were introduced in [3].

Theorem 1. Let the function f be continuously differentiable with respect to the phase variables, and let v_0 be a strongly isolated solution of the problem

$$v^{(\widehat{\mathbf{m}}_n)} = p\big(\widehat{\mathbf{x}}_{\mathbf{n}}, \widehat{\mathcal{D}}^{\widehat{\mathbf{m}}_n}[v]\big),\tag{5}$$

$$h_{ik}(u(x_1,\ldots,x_{i-1},\bullet,x_{i+1},\ldots,x_{n-1})) = \varphi_{ik}^{(m_n)}(\widehat{\mathbf{x}}_{ni}) \quad (k=1,\ldots,m_i; \ i=1,\ldots,n-1),$$
(6)

where

$$p(\widehat{\mathbf{x}}_{\mathbf{n}},\widehat{\mathcal{D}}^{\widehat{\mathbf{m}}_n}[v]) = f\Big(x_1,\ldots,x_{n-1},0,\mathcal{D}^{\mathbf{m}-\mathbf{1}_n}[u_0](x_1,\ldots,x_{n-1},0),\widehat{\mathcal{D}}^{\widehat{\mathbf{m}}_n}[v]\Big),$$

 $\widehat{\mathbf{x}}_{ni} = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n-1})$ and $\mathbf{1}_n = (0, \ldots, 0, 1)$. Then there exists $\delta \in (0, \omega_n]$ such that in the set $\Omega_{\delta} = [0, \omega_1] \times \cdots \times [0, \omega_{n-1}] \times [0, \delta]$ problem (1), (2) has a unique solution u satisfying the condition

$$u^{(\mathbf{m}_n)}(x_1,\ldots,x_{n-1},0) = v_0(x_1,\ldots,x_{n-1}).$$
(7)

Consider the "perturbed" equation

$$u^{(\mathbf{m})} = f(\mathbf{x}, \widehat{\mathcal{D}}^{\mathbf{m}}[u]) + x_n q(\mathbf{x}, \widehat{\mathcal{D}}^{\mathbf{m}}[u]).$$
(8)

Theorem 2. Let the conditions of Theorem 1 hold, and let the function $q(\mathbf{x}, \mathbf{Z})$ be continuously differentiable with respect to the principal phase variables z_{α} ($\alpha \in \Upsilon_{\mathbf{m}}$). Then there exists $\delta \in (0, \omega_n]$ such that in the set $\Omega_{\delta} = [0, \omega_1] \times \cdots \times [0, \omega_{n-1}] \times [0, \delta]$ problem (8), (2) has a at least one solution u satisfying condition (7). Moreover, if the function q is locally Lipschitz continuous with respect to the rest of the phase variables, then such solution is unique.

The following is a particular case of conditions (2):

$$h_{1k}(u(x_1, \dots, x_{i-1}, \bullet, x_{i+1}, \dots, x_n)) = \varphi_{1k}(\widehat{\mathbf{x}}_i) \quad (k = 1, \dots, m_i),$$
$$u^{(0,\dots,k_i-1,\dots,0)}(x_1,\dots,0,\dots,x_n) = \varphi_{ik_i}(\widehat{\mathbf{x}}_i) \quad (k_i = 1,\dots,m_i; \ i = 2,\dots,n).$$
(9)

Corollary. Let the function f be continuously differentiable with respect to the phase variables, and let v_0 be a strongly isolated solution of the problem

$$v^{(m_1)} = p(x_1, v, v', \dots, v^{m_1 - 1}),$$

$$h_{1k}(v) = \varphi_{1k}^{(\widehat{\mathbf{m}}_1)}(\mathbf{0}) \quad (k = 1, \dots, m_1)$$

where

$$p(x_1, v, v', \dots, v^{m_1 - 1}) = f\left(x_1, 0, \dots, 0, \widehat{\mathcal{D}}^{\widehat{\mathbf{m}}_1}\left[\mathcal{D}^{\mathbf{m}_1}[u_0]\right](x_1, 0, \dots, 0), v, v', \dots, v^{m_1 - 1}\right).$$

Then there exist $\delta_i \in (0, \omega_i]$ (i = 2, ..., n) such that in the set $\Omega_{\delta_2 \dots \delta_n} = [0, \omega_1] \times [0, \delta_2] \times \dots \times [0, \delta_n]$ problem (1), (7) has a unique solution u satisfying the condition

$$u^{(\mathbf{m}_1)}(x_1, 0, \dots, 0) = v_0(x_1).$$

Remark. In Theorem 1 the requirement of strong isolation of the solution v_0 cannot be replaced by well-posedness of problem (5), (6). In order to illustrate this, consider the problem

$$u^{(1,1)} = (u^{(0,1)})^3 - y^2 u^{(0,1)},$$
(10)

$$u(\omega_1, y) - u(0, y) = \int_0^s t \sin \frac{1}{t} dt, \quad u(x, 0) = 0.$$
(11)

For this case problem (5), (6) is the following one:

$$v' = v^3, \quad v(\omega_1) - v(0) = 0.$$
 (12)

By Corollary 4.2 and Theorem 4.4 from [1], problem (12) has a unique solution $v_0(y) \equiv 0$ and is well-posed. On the other hand, it is clear, that $v_0(y) \equiv 0$ is not strongly isolated.

Our goal is to show that problem (10), (11) has no solution in the rectangle $\Omega_{\delta} = [0, \omega_1] \times [0, \delta]$ no matter how small $\delta > 0$ is.

Assume the contrary that problem (10), (11) has a solution u in Ω_{δ} for some $\delta > 0$. Then for an arbitrarily fixed $y \in (0, \delta]$, the function $v(\cdot) = u^{(0,1)}(\cdot, y)$ is a solution of the problem

$$v' = v^3 - y^2 v, (13)$$

$$v(\omega_1) - v(0) = y \sin \frac{1}{y}$$
 (14)

containing the parameter $y \in [0, \omega_2]$. Moreover, if problem (10), (11) has a solution, then v is a solution (13), (14) depending continuously on the parameter y.

For every fixed $y \in (0, \delta]$ equation (13) has three constant solutions: $v_0(x) = 0$, $v_1(x) = y$ and $v_2(x) = -y$. Due to the existence and uniqueness theorem, a nonconstant solution v of equation (13) intersects v_0, v_1 or v_2 , and thus $v'(x) \neq 0$ for $x \in [0, \omega_1]$. Let

$$k > \frac{1}{2\pi\delta}$$
 and $x \in \left(\frac{1}{\pi + 2\pi k}, \frac{1}{2\pi k}\right)$.

Then $v(\omega_1) > v(0)$ and v'(x) > 0 for $x \in [0, \omega_1]$. Therefore, either

$$v(x) > y$$
 for $x \in [0, \omega_1]$,

or

$$v(x) \in (-y, 0)$$
 for $x \in [0, \omega_1]$.

If $y = \frac{1}{\frac{\pi}{2} + 2\pi k}$, then $v(\omega_1) - v(0) = y$, and consequently,

$$v(x) \notin (-y, 0)$$
 for $x \in [0, \omega_1]$.

From the aforesaid, in view of continuity of $u^{(0,1)}$ in Ω_{δ} , it follows that

$$u^{(0,1)}(x,y) > y$$
 for $y \in \left(\frac{1}{\pi + 2\pi k}, \frac{1}{2\pi k}\right)$.

Similarly, one can show that

$$u^{(0,1)}(x,y) < -y$$
 for $y \in \left(\frac{1}{2\pi(k+1)}, \frac{1}{\pi+2\pi k}\right).$

However, the latter two inequalities imply that $u^{(0,1)}(x,y)$ is discontinuous along the lines $y = \frac{1}{\pi k}$ (k = 1, 2, ...). Thus we have proved that problem (10), (11) has no solution in Ω_{δ} for any $\delta > 0$. In conclusion, as examples, consider the following initial-boundary value problems.

Example 1.

$$u^{(2,2,1)} = u^2 u^{(2,0,1)} + (u^{(1,1,0)})^4 u^{(0,2,1)} - (u^{(0,0,1)})^6 + q(x_1, x_2, x_3, u, u^{(1,0,0)}, u^{(0,1,0)}, u^{(1,1,0)}), \quad (15)$$
$$u(0, x_2, x_3) = 0, \quad u(\omega_1, x_2, x_3) = 0; \quad u(x_1, 0, x_3) = 0, \quad u(x_1, \omega_2, x_3) = 0;$$

$$u(x_1, x_2, 0) = \psi(x_1, x_2).$$
(16)

Let the function q be continuous. Then, by Corollary 4 from [2] and Theorem 2, there exists $\delta \in (0, \omega_3]$ such that in the set $\Omega_{\delta} = [0, \omega_1] \times [0, \omega_2] \times [0, \delta]$ problem (15), (16) has a at least one solution. Moreover, if the function q is locally Lipschitz continuous with respect to the phase variables, then problem (15), (16) is uniquely solvable.

Example 2.

$$u^{(2,2,1)} = u^{(2,0,1)} + (u^{(2,0,1)})^5 + u^{(0,2,1)} - u^{(0,0,1)} + q(x_1, x_2, x_3, u, u^{(1,0,0)}, u^{(0,1,0)}, u^{(1,1,0)}),$$
(17)
$$u^{(i,0,0)}(0, x_2, x_3) = u^{(i,0,0)}(\omega_1, x_2, x_3); \quad u^{(0,i,0)}(x_1, 0, x_3) = u^{(0,i,0)}(x_1, \omega_2, x_3) \quad (i = 0, 1);$$

$$u(x_1, x_2, 0) = \psi(x_1, x_2).$$
(18)

Let the function q be continuous. Then, by Corollary 5 from [2] and Theorem 2, there exists $\delta \in (0, \omega_3]$ such that in the set $\Omega_{\delta} = [0, \omega_1] \times [0, \omega_2] \times [0, \delta]$ problem (17), (18) has a at least one solution. Moreover, if the function q is locally Lipschitz continuous with respect to the phase variables, then problem (17), (18) is uniquely solvable.

Example 3. Let p_{α} be smooth functions, q be a continuous function, $\mathbf{m} = (m_1, \ldots, m_n, 0)$ and $\mathbf{1}_{n+1} = (0, \ldots, 0)$. For the equation

$$u^{(2\mathbf{m}+\mathbf{1}_{n+1})} = \sum_{\alpha < \mathbf{m}} \left(p_{\alpha}(x,u) u^{(\alpha+\mathbf{1}_{n+1})} \right)^{(\alpha)} + q(\mathbf{x}, \mathcal{D}^{\mathbf{2m}-\mathbf{1}}[u]).$$
(19)

consider the initial-boundary value problems with the Dirichlet and periodic boundary conditions

$$u^{(k\mathbf{1}_{i})}(x_{1},\ldots,0,\ldots,x_{n+1}) = 0, \quad u^{(k\mathbf{1}_{i})}(x_{1},\ldots,\omega_{i},\ldots,x_{n+1}) = 0$$

(k = 0, ..., m_i - 1; i = 1, ..., n); $u(x_{1},\ldots,x_{n},0) = \varphi(x),$ (20)

and

$$u^{(k\mathbf{1}_{i})}(x_{1},\ldots,0,\ldots,x_{n+1}) = u^{(k\mathbf{1}_{i})}(x_{1},\ldots,\omega_{i},\ldots,x_{n+1})$$

(k = 0,..., 2m_i - 1; i = 1,...,n); $u(x_{1},\ldots,x_{n},0) = \varphi(x).$ (21)

Let $(-1)^{\|\mathbf{m}\|+\|\alpha\|}p_{\alpha} \leq 0$ $((-1)^{\|\mathbf{m}\|+\|\alpha\|}p_{\alpha} < 0)$ for $\alpha < \mathbf{m}$. Then, by Theorem 2 from [2] and Theorem 2, there exists $\delta \in (0, \omega_{n+1}]$ such that in the set $\Omega_{\delta} = [0, \omega_1] \times \cdots \times [0, \omega_n] \times [0, \delta]$ problem (19), (20) (problem (19), (21)) has a at least one solution. Moreover, if the function q is locally Lipschitz continuous with respect to the phase variables, then problem (19), (20) (problem (19), (21)) is uniquely solvable.

References

I. T. Kiguradze, Boundary value problems for systems of ordinary differential equations. (Russian) Translated in J. Soviet Math. 43 (1988), no. 2, 2259–2339. Itogi Nauki i Tekhniki, Current problems in mathematics. Newest results, Vol. 30 (Russian), 3–103, 204, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987.

- T. Kiguradze and N. Al-Jaber, Multi dimensional boundary value problems for linear hyperbolic equations of higher order. Abstracts of the International Workshop on the Qualitative Theory of Differential Equations QUALITDE-2016, pp. 127-131, Tbilisi, Georgia, December 24-26, 2016; http://rmi.tsu.ge/eng/QUALITDE-2016/Kiguradze_T_Al-Jaber_workshop_2016.pdf; http://rmi.tsu.ge/eng/QUALITDE-2016/Abstracts_workshop_2016.pdf.
- [3] T. Kiguradze and R. Ben-Rabha, On well-posed boundary value problems for higher order nonlinear hyperbolic equations with two independent variables. *Abstracts of the International Workshop on the Qualitative Theory of Differential Equations - QUALITDE-2016*, pp. 132-136; http://rmi.tsu.ge/eng/QUALITDE-2016/Kiguradze_T_Ben-Rabha.pdf; http://rmi.tsu.ge/eng/QUALITDE-2016/Abstracts_workshop_2016.pdf.
- [4] T. Kiguradze and R. Ben-Rabha, On strong well-posedness of initial-boundary value problems for higher order nonlinear hyperbolic equations with two independent variables. *Georgian Math. J.* 24 (2017), no. 3, 409–428.
- [5] T. I. Kiguradze and T. Kusano, On the well-posedness of initial-boundary value problems for higher-order linear hyperbolic equations with two independent variables. (Russian) *Differ. Uravn.* **39** (2003), no. 4, 516–526; translation in *Differ. Equ.* **39** (2003), no. 4, 553–563.