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1 Introduction
We consider the planar autonomous differential systems

dx

dt
= P (x, y, λ),

dy

dt
= Q(x, y, λ) (1.1)

depending on a scalar parameter λ ∈ R. Our goal is to derive conditions on P and Q such that
there is a λ0 ∈ R with the property that for all λ > λ0 system (1.1) has a unique limit cycle
in the phase plane which is hyperbolic and stable. Our approach to treat this problem is based
on the bifurcation theory of planar autonomous systems. The underlying idea of our approach
can be formulated as follows: We assume that λ = λ0 and λ = +∞ are bifurcation points of
system (1.1) connected with the appearance of a limit cycle which is hyperbolic and stable, and
we suppose that the interval (λ0,+∞) does not contain any bifurcation point of system (1.1). The
class of Dulac–Cherkas functions, the theory of one-parameter families of rotated vector fields and
singularly perturbed systems are key ingredients in our approach [1, 3–5, 8–10]. In the Appendix
their basic properties are summarized. We illustrate our approach by an example.

2 Assumptions. Main result
Consider system (1.1) under the following assumptions:

(A1) P,Q : R× R× R → R are sufficiently smooth.

(A2) System (1.1) has ∀λ ∈ R a unique equilibrium E(λ) in the finite part of the phase plane.

Without loss of generality we may suppose that E(λ) is located at the origin ∀λ.

(A3) The origin changes its stability at λ = λ0 and is unstable for λ > λ0.

(A4) There exists for λ > λ0 a Dulac–Cherkas function Ψ(x, y, λ) of system (1.1) in the phase plane
such that the set Wλ := {(x, y) ∈ R2 : Ψ(x, y, λ) = 0} consists of a unique oval surrounding
the origin.
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(A5) For λ > λ0 there is a one-to-one mapping

x = φ1(x, y, λ), y = ψ1(x, y, λ)

such that system (1.1) will be transformed into the system

dx

dt
= P (x, y, λ),

dy

dt
= Q(x, y, λ) (2.1)

with the following properties:

(i) The functions P and Q have for λ > λ0 the same smoothness as the functions P and Q.
(ii) The origin is the unique equilibrium of system (2.1) ∀λ > λ0.
(iii) λ0 is a Hopf bifurcation point for system (2.1) connected with the bifurcation of a stable

limit cycle Γλ from the origin for increasing λ which is positively (that is anti-clockwise)
oriented.

(iv) System (2.1) represents for λ > λ0 a one-parameter family of positively rotated vector
fields.

(A6) For λ > λ0 there is a one-to-one mapping

x̃ = φ2(x, y, λ), ỹ = ψ2(x, y, λ), τ = χ(t, λ),

where τ increases with t for any λ > λ0, such that system (1.1) will be transformed into the
system

dx̃

dτ
= P̃ (x̃, ỹ, ε), ε

dỹ

dτ
= Q̃(x̃, ỹ, ε) (2.2)

with the following properties:

(i) There is a smooth function ζ : (λ0,+∞) → R+ with ζ(λ) → 0 as λ → +∞ such that
ε = ζ(λ).

(ii) The functions P̃ and Q̃ have for ε > 0 the same smoothness as the functions P and Q.
(iii) There is a sufficiently small positive number δ such that for ε ∈ (0, δ) system (2.2) has a

family {Γ̃ε} of uniformly bounded hyperbolic stable limit cycles which surround the origin
and are positively oriented.

The following theorem is our main result.

Theorem 2.1. Under the assumptions (A1)–(A6) system (1.1) has for λ > λ0 a unique family
{Γλ} of limit cycles which are hyperbolic, stable and positively oriented, and whose amplitudes are
bounded on any bounded λ-interval.

3 Example
We present an application of Theorem 2.1 for the Liénard system

dx

dt
= −y, dy

dt
= x− λ(x2q − 1)y (3.1)

with q ∈ N. For q = 1, system (3.1) represents the famous van der Pol system. We show that
system (3.1) has the same properties as the van der Pol system. For this purpose we prove that
the assumptions (A1)–(A6) are fulfilled for system (3.1). In particular, we get the following results
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Lemma 3.1. The function
Ψ(x, y, λ) ≡ x2 + y2 − 1

is a Dulac–Cherkas function for system (3.1) in the phase plane for λ > 0.

Finally, we apply Theorem 2.1 and get the result

Theorem 3.2. System (3.1) has for all λ > 0 (λ < 0) a unique limit cycle which is hyperbolic
stable (unstable) and positively oriented.

Full version of the derived results as a corresponding paper has been submitted for publication.

4 Appendix
Suppose that P , Q satisfy assumption (A1). We denote by X(λ) the vector field defined by system
(1.1), by Λ some λ-interval and by Ω some region in R2.

Definition 4.1. A function Ψ : Ω× Λ → R with the same smoothness as P , Q is called a Dulac–
Cherkas function of system (1.1) in Ω for λ ∈ Λ if there exists a real number κ ̸= 0 such that

Φ := (gradΨ, X(λ)) + κΨdivX(λ) > 0 (< 0) for (x, y, λ) ∈ Ω× Λ. (4.1)

Remark 4.2. Condition (4.1) can be relaxed by assuming that Φ may vanish in Ω on a set of
measure zero, and that no closed curve of this set is a limit cycle of (1.1).

The following two theorems can be found in [2].

Theorem 4.3. Let Ψ be a Dulac–Cherkas function of (1.1) in Ω for λ ∈ Λ. Then any limit cycle
Γλ of (1.1) in Ω is hyperbolic and its stability is determined by the sign of the expression κΦΨ
on Γλ.

Theorem 4.4. Let Ω be a p-connected region, let Ψ be a Dulac–Cherkas function of (1.1) in Ω
such that the set Wλ := {(x, y) ∈ Ω : Ψ(x, y, λ) = 0} consists of s ovals in Ω. Then system (1.1)
has at most p− 1 + s limit cycles in Ω.

The following facts can be found in [7].

Definition 4.5. Let the assumption (A1) be satisfied. System (1.1) is said to define a one-
parameter family of negatively (positively) rotated vector fields for λ ∈ Λ if for λ ∈ Λ the equilibria
of system (1.1) are isolated and at all ordinary points it holds

∆(x, y, λ) := P (x, y, λ)
∂Q(x, y, λ)

∂λ
−Q(x, y, λ)

∂P (x, y, λ)

∂λ
< 0 (> 0).

Remark 4.6. This condition can be relaxed by assuming that ∆ vanishes on a set of measure zero
and that no closed curve of this set is a limit cycle of (1.1).

Theorem 4.7. Suppose that the assumptions (A1) and (A2) are satisfied and that system (1.1)
represents a one-parameter family of negatively (positively) rotated vector fields. Let {Γλ} be a family
of hyperbolic stable limit cycles of system (1.1) with positive orientation. Then the amplitude of Γλ

decreases monotonically with decreasing (increasing) λ, and the family terminates at λ = λ∗ when
Γλ∗ represents an equilibrium.
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Consider the singularly perturbed system

dx

dt
= f(x, y), ε

dy

dt
= g(x, y) (4.2)

under the following assumptions

(C1) f, g : R2 → R are sufficiently smooth, ε is a small positive parameter.

(C2) The origin is the unique equilibrium of system (4.2) in the finite part of the phase plane. It
is unstable for ε > 0. The trajectories are positively oriented near the origin.

(C3) g(x, y) = 0 has the unique simple solution x = φ(y), where φ is sufficiently smooth and
satisfies

φ(0) = 0, φ′(0) < 0.

φ′(y) = 0 has exactly two real roots y− and y+ satisfying

y− < 0, φ′′(y−) < 0, y+ > 0, φ′′(y+) > 0.

Remark 4.2. Condition (4.1) can be relaxed by assuming that Φ may vanish in Ω on a set of measure
zero, and that no closed curve of this set is a limit cycle of (1.1).

The following two theorems can be found in [2].

Theorem 4.3. Let Ψ be a Dulac-Cherkas function of (1.1) in Ω for λ ∈ Λ. Then any limit cycle Γλ

of (1.1) in Ω is hyperbolic and its stability is determined by the sign of the expression κΦΨ on Γλ.

Theorem 4.4. Let Ω be a p-connected region, let Ψ be a Dulac-Cherkas function of (1.1) in Ω such
that the set Wλ := {(x, y) ∈ Ω : Ψ(x, y, λ) = 0} consists of s ovals in Ω. Then system (1.1) has at
most p− 1 + s limit cycles in Ω.

The following facts can be found in [7].

Definition 4.5. Let the assumption (A1) be satisfied. System (1.1) is said to define a one-parameter
family of negatively (positively) rotated vector fields for λ ∈ Λ if for λ ∈ Λ the equilibria of system
(1.1) are isolated and at all ordinary points it holds

∆(x, y, λ) := P (x, y, λ)
∂Q(x, y, λ)

∂λ
−Q(x, y, λ)

∂P (x, y, λ)

∂λ
< 0 (> 0).

Remark 4.6. This condition can be relaxed by assuming that ∆ vanishes on a set of measure zero
and that no closed curve of this set is a limit cycle of (1.1).

Theorem 4.7. Suppose that the assumptions (A1) and (A2) are satisfied and that system (1.1)
represents a one-parameter family of negatively (positively) rotated vector fields. Let {Γλ} be a family
of hyperbolic stable limit cycles of system (1.1) with positive orientation. Then the amplitude of Γλ

decreases monotonically with decreasing (increasing) λ, and the family terminates at λ = λ∗ when
Γλ∗ represents an equilibrium.

Consider the singularly perturbed system

dx

dt
= f(x, y), ε

dy

dt
= g(x, y)(4.2)

under the following assumptions
(C1). f, g : R2 → R are sufficiently smooth, ε is a small positive parameter.
(C2). The origin is the unique equilibrium of system (4.2) in the finite part of the phase plane. It is
unstable for ε > 0. The trajectories are positively oriented near the origin.
(C3). g(x, y) = 0 has the unique simple solution x = φ(y), where φ is sufficiently smooth and satisfies

φ(0) = 0, φ′(0) < 0.

φ′(y) = 0 has exactly two real roots y− and y+ satisfying

y− < 0, φ′′(y−) < 0, y+ > 0, φ′′(y+) > 0.
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Fig.1. Closed curve Z0.

Using assumption (C3) we can define a closed curve Z0 in the phase plane consisting of two finite
segments of the curve x = φ(y) bounded by the points D = (y−−, φ(y+)), A = (y−, φ(y−)) and

3

Figure 1. Closed curve Z0.

Using assumption (C3) we can define a closed curve Z0 in the phase plane consisting of two
finite segments of the curve x = φ(y) bounded by the points D = (y−, φ(y+)), A = (y−, φ(y−)) and
C = (y+, φ(y+)), B = (y++, φ(y−)) and of two finite segments of the straight lines x = φ(y−) and
x = φ(y+) bounded by the points A, B and D, C, respectively (see Figure 1).

The following theorem is a special case of a more general theorem by E. F. Mishchenko and
N. Kh. Rozov in [6].

Theorem 4.8. Under the assumptions (C1)–(C3), system (4.2) has for sufficiently small ε a unique
limit cycle Γε in a small neighborhood of Z0 which is stable and positively oriented
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