Asymptotics of Solutions of Second-Order Differential Equations with Regularly and Rapidly Varying Nonlinearities

V. M. Evtukhov, N. P. Kolun

Odessa I. I. Mechnikov National University, Odessa, Ukraine E-mail: evmod@i.ua; nataliiakolun@ukr.net

Consider the differential equation

$$y'' = \sum_{i=1}^{m} \alpha_i p_i(t) \varphi_i(y), \tag{1}$$

where $\alpha_i \in \{-1, 1\}$ $(i = \overline{1, m}), p_i : [a, \omega[\rightarrow]0, +\infty[(i = \overline{1, m})]$ are continuous functions, $-\infty < a < \omega \leq +\infty, \varphi_i : \Delta_{Y_0} \rightarrow]0, +\infty[(i = \overline{1, m})]$, where Δ_{Y_0} is some one-sided neighborhood of the point Y_0, Y_0 is equal either to 0 or to $\pm\infty$, are continuous functions for $i = \overline{1, l}$ and twice continuously differentiable for $i = \overline{l+1, m}$, so that

$$\lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \frac{\varphi_i(\lambda y)}{\varphi_i(y)} = \lambda^{\sigma_i} \quad (i = \overline{1, l}) \text{ for any } \lambda > 0,$$
(2)

$$\varphi_i'(y) \neq 0 \text{ as } y \in \Delta_{Y_0}, \quad \lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \varphi_i(y) \in \{0, +\infty\}, \quad \lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}}} \frac{\varphi_i''(y)\varphi_i(y)}{\varphi_i'(y)} = 1 \quad (i = \overline{l+1, m}). \tag{3}$$

It follows from the conditions (2) and (3) that φ_i $(i = \overline{1, l})$ are regularly varying functions, as $y \to Y_0$, of orders σ_i and φ_i $(i = \overline{l+1, m})$ are rapidly varying functions, as $y \to Y_0$ (see [5, Introduction, pp. 2, 4]).

Definition. A solution y of the differential equation (1) is called $P_{\omega}(Y_0, \lambda_0)$ -solution, where $-\infty \leq \lambda_0 \leq +\infty$, if it is defined on some interval $[t_0, \omega] \subset [a, \omega]$ and satisfies the following conditions

$$\lim_{t\uparrow\omega} y(t) = Y_0, \quad \lim_{t\uparrow\omega} y'(t) = \begin{cases} \text{either} & 0, \\ \text{or} & \pm\infty, \end{cases} \quad \lim_{t\uparrow\omega} \frac{y'^2(t)}{y''(t)y(t)} = \lambda_0.$$

There have been known the results of the asymptotic behavior of $P_{\omega}(Y_0, \lambda_0)$ -solutions of differential equation (1) in case when there is only one item with a regularly or rapidly varying nonlinearity on the right-hand side of the equation (1) (see [1–3]). The case l = m has been also investigated when all nonlinearities on the right-hand side of differential equation (1) are regularly varying functions (see [4]). The general case, when, in addition to items with regularly varying nonlinearities there are items with rapidly varying nonlinearities on the right-hand side of the equation (1), has not been studied yet.

In this paper, for $\lambda_0 \in \mathbb{R} \setminus \{0; 1\}$ the existence conditions of $P_{\omega}(Y_0, \lambda_0)$ -solutions of the differential equation (1) and asymptotic representations, as $t \uparrow \omega$, of such solutions and their first-order derivatives, are established in case when on each such solution the right-hand side of equation is equivalent, as $t \uparrow \omega$, to the s-th item, that is when

$$\lim_{t\uparrow\omega}\frac{p_i(t)\varphi_i(y(t))}{p_s(t)\varphi_s(y(t))} = 0 \text{ for all } i \in \{1,\dots,m\} \setminus \{s\}.$$
(4)

Let

$$\Delta_{Y_0} = \Delta_{Y_0}(b), \text{ where } \Delta_{Y_0}(b) = \begin{cases} [b, Y_0[& \text{if } \Delta_{Y_0} \text{ is a left neighborhood of } Y_0, \\]Y_0, b] & \text{if } \Delta_{Y_0} \text{ is a right neighborhood of } Y_0, \end{cases}$$

and the number b satisfy the inequalities

$$|b| < 1$$
 as $Y_0 = 0$ and $b > 1$ $(b < -1)$ as $Y_0 = +\infty$ $(Y_0 = -\infty)$.

We set

$$\nu_{0} = \operatorname{sign} b, \quad \nu_{1} = \begin{cases} 1 & \text{if } \Delta_{Y_{0}}(b) = [b, Y_{0}[, \\ -1 & \text{if } \Delta_{Y_{0}}(b) =]Y_{0}, b], \end{cases} \quad \mu_{i} = \operatorname{sign} \varphi_{i}'(y) \quad (i = \overline{l+1, m}),$$

$$\pi_{\omega}(t) = \begin{cases} t & \text{if } \omega = +\infty, \\ t-\omega & \text{if } \omega < +\infty, \end{cases} \quad J_{i}(t) = \int_{A_{i}}^{t} \pi_{\omega}(\tau)p_{i}(\tau) \, d\tau,$$

$$H_{i}(y) = \int_{B_{i}}^{y} \frac{ds}{\varphi_{i}(s)}, \quad Z_{i} = \lim_{\substack{y \to Y_{0} \\ y \in \Delta_{Y_{0}}(b)}} H_{i}(y) \quad (i = \overline{1, m}),$$

where

$$A_{i} = \begin{cases} a & \text{if } \int_{a}^{\omega} \pi_{\omega}(\tau)p_{i}(\tau) \, d\tau = \pm \infty, \\ & a \\ \omega & \text{if } \int_{a}^{\omega} \pi_{\omega}(\tau)p_{i}(\tau) \, d\tau = const, \end{cases} \qquad B_{i} = \begin{cases} b & \text{if } \int_{b}^{Y_{0}} \frac{dy}{\varphi_{i}(y)} = \pm \infty, \\ & F_{0} \\ Y_{0} & \text{if } \int_{b}^{Y_{0}} \frac{dy}{\varphi_{i}(y)} = const. \end{cases}$$

Theorem 1. Let $\lambda_0 \in \mathbb{R} \setminus \{0; 1\}$ and $\sigma_s \neq 1$ for some $s \in \{1, \ldots, l\}$. For the existence of $P_{\omega}(Y_0, \lambda_0)$ -solutions of the equation (1), satisfied the limit relations (4), it is necessary that the inequalities

$$\alpha_s \nu_0 \lambda_0 > 0, \quad \nu_0 \nu_1 \lambda_0 (\lambda_0 - 1) \pi_\omega(t) > 0 \quad as \ t \in]a, \omega[\tag{5}$$

and conditions

$$\alpha_s(\lambda_0 - 1) \lim_{t \uparrow \omega} J_s(t) = Z_s, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega(t) J_s'(t)}{J_s(t)} = \frac{(1 - \sigma_s)\lambda_0}{\lambda_0 - 1}, \tag{6}$$

$$\lim_{t\uparrow\omega}\frac{p_i(t)\varphi_i(H_s^{-1}(\alpha_s(\lambda_0-1)J_s(t)))}{p_s(t)\varphi_s(H_s^{-1}(\alpha_s(\lambda_0-1)J_s(t)))} = 0 \quad for \ all \ i \in \{1,\dots,l\} \setminus \{s\},\tag{7}$$

$$\lim_{t \uparrow \omega} \frac{p_i(t)\varphi_i(H_s^{-1}(\alpha_s(\lambda_0 - 1)J_s(t)(1 + \delta_i)))}{p_s(t)\varphi_s(H_s^{-1}(\alpha_s(\lambda_0 - 1)J_s(t)))} = 0 \text{ for all } i \in \{l+1, \dots, m\}$$

hold, where δ_i are arbitrary numbers of a one-sided neighborhood of zero. Moreover, for each of such solutions the following asymptotic representations hold

$$y(t) = H_s^{-1} \big(\alpha_s(\lambda_0 - 1) J_s(t) \big) [1 + o(1)] \quad at \ t \uparrow \omega,$$
(8)

$$y'(t) = \frac{\lambda_0 H_s^{-1}(\alpha_s(\lambda_0 - 1)J_s(t))}{(\lambda_0 - 1)\pi_\omega(t)} [1 + o(1)] \quad at \ t \uparrow \omega.$$
(9)

Theorem 2. Let $\lambda_0 \in \mathbb{R} \setminus \{0; 1\}$ and $\sigma_s \neq 1$ for some $s \in \{1, \ldots, l\}$, the conditions (5)–(7) hold and

$$\lim_{t \uparrow \omega} \frac{p_i(t)\varphi_i(H_s^{-1}(\alpha_s(\lambda_0 - 1)J_s(t)(1 + u)))}{p_s(t)\varphi_s(H_s^{-1}(\alpha_s(\lambda_0 - 1)J_s(t)))} = 0 \text{ for all } i \in \{l + 1, \dots, m\}$$

uniformly with respect to $u \in [-\delta, \delta]$ for any $0 < \delta < 1$. Let also one of the following two conditions hold

or
$$\lambda_0 \neq -1$$
, or $\lambda_0 = -1$ and $\sigma_s < 1$.

Then the differential equation (1) has $P_{\omega}(Y_0, \lambda_0)$ -solutions that admit the asymptotic representations (8) and (9). Moreover, there is a one-parameter family of such solutions in case $\lambda_0(1 - \sigma_s) < 0$ and two-parameter one in case $\lambda_0(1 - \sigma_s) > 0$ and $\pi_{\omega}(t)(1 - \lambda_0^2) < 0$ as $t \in]a, \omega[$.

Besides the above-mentioned facts we also need the following auxiliary notations

$$\begin{aligned} J_{0i}(t) &= \int_{A_i}^t \pi_{\omega}(\tau) p_{0i}(\tau) \, d\tau, \\ q_{0i}(t) &= \frac{\alpha_i(\lambda_0 - 1)\pi_{\omega}^2(t)p_{0i}(t)\varphi_i(H_i^{-1}(\alpha_i(\lambda_0 - 1)J_{0i}(t)))}{H_i^{-1}(\alpha_i(\lambda_0 - 1)J_{0i}(t))} \,, \\ G_{0i}(t) &= \frac{y\varphi_i'(y)}{\varphi_i(y)} \bigg|_{y=H_i^{-1}(\alpha_i(\lambda_0 - 1)J_{0i}(t))}, \quad \psi_{0i}(t) &= \int_{t_0}^t \frac{|G_{0i}(\tau)|^{\frac{1}{2}} \, d\tau}{\pi_{\omega}(\tau)} \,, \\ \Phi_{0i}(t) &= \frac{y(\frac{\varphi_i'(y)}{\varphi_i(y)})'}{\frac{\varphi_i'(y)}{\varphi_i(y)}} \bigg|_{y=H_i^{-1}(\alpha_i(\lambda_0 - 1)J_{0i}(t))} \quad (i = \overline{l+1, m}), \end{aligned}$$

where $p_{0i} : [a, \omega[\rightarrow]0, +\infty[$ are continuous functions so that $p_{0i}(t) \sim p_i(t)$ as $t \uparrow \omega$, t_0 is some number of $[a, \omega[$.

Theorem 3. Let $\lambda_0 \in \mathbb{R} \setminus \{0, 1\}$ and for some $s \in \{l + 1, ..., m\}$ the conditions

$$\frac{\varphi_s(y)\varphi_i'(y)}{\varphi_s'(y)\varphi_i(y)} = O(1) \quad as \quad y \to Y_0 \quad (y \in \Delta_{Y_0}(b)) \quad for \ all \quad i \in \{l+1,\dots,m\}$$
(10)

hold. For the existence of $P_{\omega}(Y_0, \lambda_0)$ -solutions of the equation (1) that admit the limit relations (4), it is necessary that for some continuous function $p_{0s} : [a, \omega[\rightarrow]0, +\infty[$ such that $p_{0s}(t) \sim p_i(t)$ as $t \uparrow \omega$ the conditions

$$\alpha_s \nu_0 \lambda_0 > 0, \quad \alpha_s \mu_s(\lambda_0 - 1) J_{0s}(t) < 0 \quad at \ t \in]a, \omega[, \qquad (11)$$

$$\alpha_s(\lambda_0 - 1) \lim_{t \uparrow \omega} J_{0s}(t) = Z_s, \quad \lim_{t \uparrow \omega} \frac{\pi_\omega(t) J_{0s}(t)}{J_{0s}(t)} = \pm \infty, \quad \lim_{t \uparrow \omega} q_{0s}(t) = \frac{\lambda_0}{\lambda_0 - 1}, \tag{12}$$

$$\lim_{t\uparrow\omega}\frac{p_i(t)\varphi_i(H_s^{-1}(\alpha_s(\lambda_0-1)J_{0s}(t)))}{p_{0s}(t)\varphi_s(H_s^{-1}(\alpha_s(\lambda_0-1)J_{0s}(t)))} = 0 \quad for \ all \ i \in \{1,\ldots,m\} \setminus \{s\}$$
(13)

hold. Moreover, for each of such solutions the following asymptotic representations hold

$$y(t) = H_s^{-1}(\alpha_s(\lambda_0 - 1)J_{0s}(t)) \left[1 + \frac{o(1)}{G_{0s}(t)} \right] \quad at \ t \uparrow \omega,$$
$$y'(t) = \frac{\lambda_0 H_s^{-1}(\alpha_s(\lambda_0 - 1)J_{0s}(t))}{(\lambda_0 - 1)\pi_\omega(t)} \left[1 + o(1) \right] \quad at \ t \uparrow \omega.$$

Theorem 4. Let $\lambda_0 \in \mathbb{R} \setminus \{0, 1\}$, for some $s \in \{l + 1, ..., m\}$ the function p_s might be represented in the form

$$p_s(t) = p_{0s}(t)[1+r_s(t)], \quad where \quad \lim_{t\uparrow\omega} r_s(t) = 0$$

 $p_{0s}: [a, \omega[\rightarrow]0, +\infty[$ is a continuously differentiable function, $r_s: [a, \omega[\rightarrow]-1, +\infty[$ is a continuous function, the conditions (10)–(13) hold and there exist finite or equal to infinity limits

.....

$$\gamma_s = \lim_{t \uparrow \omega} \Phi_{0s}(t), \quad \lim_{t \uparrow \omega} \pi_\omega(t) q_{0s}'(t), \quad \lim_{\substack{y \to Y_0 \\ y \in \Delta_{Y_0}(b)}} \frac{\left(\frac{\varphi_s(y)}{\varphi_s(y)}\right)'}{\left(\frac{\varphi'_s(y)}{\varphi_s(y)}\right)^2} \sqrt{\left|\frac{y\varphi'_s(y)}{\varphi_s(y)}\right|}, \quad \lim_{t \uparrow \omega} \frac{\psi_{0s}(t)\psi_{0s}'(t)}{\psi_{0s}'(t)}.$$

Then

1) if $\alpha_s \mu_s = 1$, the differential equation (1) has a one-parameter family of $P_{\omega}(Y_0, \lambda_0)$ -solutions with asymptotic representations

$$y(t) = H_s^{-1}(\alpha_s(\lambda_0 - 1)J_{0s}(t)) \left[1 + \frac{o(1)}{G_{0s}(t)} \right] \quad at \ t \uparrow \omega,$$

$$y'(t) = \frac{\lambda_0 H_s^{-1}(\alpha_s(\lambda_0 - 1)J_{0s}(t))}{(\lambda_0 - 1)\pi_\omega(t)} \left[\frac{\lambda_0 - 1}{\lambda_0} q_{0s}(t) + |G_{0s}(t)|^{-\frac{1}{2}} o(1) \right] \quad at \ t \uparrow \omega;$$

(2) if $\alpha_s \mu_s = -1$ and

$$\begin{split} \gamma_{s} \neq \lim_{\lambda \to \lambda_{0}} \frac{(\lambda - 1)(2 - 3\lambda)}{\lambda(5\lambda - 4)}, \quad \lim_{t \uparrow \omega} \psi_{0s}(t) \Big[q_{0s}(t)[1 + r_{s}(t)] - \frac{\lambda_{0}}{\lambda_{0} - 1} \Big] &= 0, \\ \lim_{t \uparrow \omega} \psi_{0s}^{2}(t) \Big[\Big(\frac{\lambda_{0}}{\lambda_{0} - 1} - q_{0s}(t) \Big) q_{0s}(t) + \frac{q_{0s}(t)r_{s}(t)}{\lambda_{0} - 1} - \pi_{\omega}(t)q_{0s}'(t) \Big] &= 0, \\ \lim_{t \uparrow \omega} \psi_{0s}^{2}(t) \sum_{\substack{i=1\\i \neq s}}^{m} \frac{p_{i}(t)\varphi_{i}(H_{s}^{-1}(\alpha_{s}(\lambda_{0} - 1)J_{0s}(t)))}{p_{0s}(t)\varphi_{s}(H_{s}^{-1}(\alpha_{s}(\lambda_{0} - 1)J_{0s}(t)))} = 0, \end{split}$$

the differential equation (1) has a $P_{\omega}(Y_0, \lambda_0)$ -solution with asymptotic at $t \uparrow \omega$ representations

$$y(t) = H_s^{-1}(\alpha_s(\lambda_0 - 1)J_{0s}(t)) \Big[1 + \frac{o(1)}{\psi_{0s}(t)G_{0s}(t)} \Big],$$

$$y'(t) = \frac{\lambda_0 H_s^{-1}(\alpha_s(\lambda_0 - 1)J_{0s}(t))}{(\lambda_0 - 1)\pi_\omega(t)} \Big[\frac{\lambda_0 - 1}{\lambda_0} q_{0s}(t) + \frac{o(1)}{\psi_{0s}(t)|G_{0s}(t)|^{\frac{1}{2}}} \Big].$$

Moreover, there exists a two-parameter family of such solutions in case when

$$\beta \left(\lambda_0^2 (5\gamma_s + 3) + \lambda_0 (-4\gamma_s - 5) + 2 \right) < 0 \ as \ \gamma_s = const, \quad \frac{4}{5} < \lambda_0 < 1 \ as \ \gamma_s = \pm \infty.$$

References

- A. G. Chernikova, Asymptotics of rapidly varying solutions of second-order differential equations with rapidly varying nonlinearity. (Russian) Visnik Od. nat. un-tu. Mat. i meh. 20 (2015), no. 2, 52–68.
- [2] V. M. Evtukhov and V. M. Khar'kov, Asymptotic representations of solutions of second-order essentially nonlinear differential equations. (Russian) *Differ. Uravn.* 43 (2007), no. 10, 1311– 1323, 1437.

- [3] V. M. Evtukhov and L. A. Kirillova, Asymptotic representations for unbounded solutions of second order nonlinear differential equations close to equations of Emden–Fowler type. *Mem. Differential Equations Math. Phys.* **30** (2003), 153–158.
- [4] V. A. Kasyanova, Asymptotic representations of solutions of non-autonomous second-order ordinary differential equations with nonlinearities asymptotically close to power-mode. (Russian) *Candidate (Phys. Math.) Dissertation*, 01.01.02, Odessa, 2009.
- [5] V. Marić, Regular Variation and Differential Equations. Lecture Notes in Mathematics, 1726. Springer-Verlag, Berlin, 2000.