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We deal with an oscillation problem for the higher order nonlinear differential equation with a
middle term

x(n)(t) + q(t)x(n−2)(t) + r(t)f(x(t)) = 0, n ≥ 3. (0.1)

Precisely, we study the existence of oscillatory solutions of (0.1) which are bounded and not van-
ishing at infinity under the following assumptions:

(i) q ∈ C1[0,∞), q(t) ≥ q0 > 0 for large t, and

∞∫
0

|q′(t)| dt < ∞.

(ii) r ∈ C[0,∞).

(iii) f ∈ C(R) such that f(u)u > 0 for u ̸= 0.

Note that the function r may change its sign.
By a solution of (0.1) we mean a continuously differentiable function x up to n order defined

on [Tx,∞), Tx ≥ 0, such that satisfies (0.1) on [Tx,∞) and sup{|x(t)| : t ≥ T} > 0 for T ≥ Tx.
As usual, a solution x of (0.1) is said to be oscillatory if there exists a sequence {tn} tending to
infinity such that x(tn) = 0.

The assumption (i) assures that the second order linear equation

h′′(t) + q(t)h(t) = 0 (0.2)

is oscillatory. Moreover, since q is bounded and has bounded variation on [0,∞), all solutions of
(0.2) are bounded together with their derivatives.

In our approach equation (0.1) is studied as a perturbation of the linear differential equation

y(n)(t) + q(t)y(n−2)(t) = 0. (0.3)

From this point of view, our results are mainly motivated by the previous ones obtained by I. Kig-
uradze [5] for the special case q(t) ≡ 1, namely for the equation

x(n)(t) + x(n−2)(t) + r(t)f(x(t)) = 0. (0.4)
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It was shown in [5] that, if r is positive and sufficient large in some sense, then for n even
every solution of (0.4) is oscillatory and for n odd every proper solution of (0.4) is oscillatory, or is
vanishing at infinity together with its derivatives, or admits the asymptotic representation

x(t) = c(1 + sin(t− φ)) + ε(t),

where c, φ are suitable constants and ε is a continuous function for t ≥ 0 which vanishes at infinity.
The existence of bounded oscillatory solutions for equations of type (0.1) has attracted the attention
of many authors, see, e.g., the monograph [6], the papers [1–3] and references therein. Observe
that if q is a positive constant, then (0.3) has oscillatory, bounded and not vanishing at infinity
solutions. If q is not constant and (i) is satisfied, then, as already claimed, these properties remain
to hold for the second order equation (0.2). Thus, it is natural to ask under which assumptions
these properties are valid also for (0.3) and the more general case (0.1). Here, we give a positive
answer to both these questions. In particular, our main results yield the existence of oscillatory
solutions of (0.1), which are bounded and not vanishing at infinity. These results complete recent
ones in [2] and extend similar ones in [5, Theorem 1.4], which are proved for equation (0.4). An
application that concerns the influence of the perturbing term r on the change of the oscillatory
character passing from (0.3) to the linear equation

x(n)(t) + q(t)x(n−2)(t) + r(t)x(t) = 0, n ≥ 3, (0.5)

is given.
Below we use the following notation for the growth of unbounded solutions.
The symbol g1 = O(g2) as t → ∞ means, as usual, that there exists a constant M such that

|g1(t)| ≤ M |g2(t)| for large t.

1 Oscillatory solutions in the linear case

Equations (0.2) and (0.3) are strictly related. When q(t) ≡ 1, a basis of the space of solutions of
(0.3) is given by

tj , j = 0, 1, . . . , n− 3, sin t, cos t. (1.1)

In the general case, that is when q is not constant, it is easy to see that a basis of the space of
solutions of (0.3) is given by

tj , j = 0, 1, . . . , n− 3, Γu, Γv, (1.2)

where

Γu =

t∫
0

(t− s)n−3u(s) ds, Γv =

t∫
0

(t− s)n−3v(s) ds (1.3)

and u, v are two independent solutions of (0.2).
The following existence result for oscillatory solutions of (0.2), which are bounded and not

vanishing at infinity, holds.

Theorem 1.1 ([3, Theorem 2]). Let n ≥ 3, u be a nontrivial solution of (0.2) and

∞∫
0

sn−3|q′(s)| ds < ∞. (1.4)
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Then (0.3) has an oscillatory solution ϕ such that

ϕ(t) =

{
u′(t) + ε(t) for n odd,
u(t) + ε(t) for n even,

where ε is a continuous function on [0,∞) and lim
t→∞

ε(t) = 0. In particular,

0 < lim sup
t→∞

|ϕ(t)| < ∞.

The following asymptotic expressions of the integrals in (1.3) is needed for proving Theorem 1.1.

Lemma 1.1 ([3, Lemma 5]). Let n ≥ 3 and (1.4) hold. If u is a nontrivial (oscillatory) solution
of (0.2), then there exist constants ci, i = 0, 1 . . . , n− 2, cn−2 ̸= 0, and a function ε such that

Γu(t) =



n−3∑
i=0

cit
i + cn−2u

′(t) + ε(t), for n odd,

n−3∑
i=0

cit
i + cn−2u(t) + ε(t), for n even,

where lim
t→∞

ε(t) = 0.

2 Oscillatory solutions in the nonlinear case
Let

F (u) = max
{
|f(v)| : −u ≤ v ≤ u

}
.

The following criterion concerns the nonexistence of solutions of (0.1) vanishing at infinity.

Theorem 2.1 ([3, Theorem 1]). Let n ≥ 3, f ∈ C1(R) and
∞∫
0

tn−3|r(t)| dt < ∞. (2.1)

Then (0.1) does not have nontrivial solutions x (oscillatory or nonoscillatory) satisfying
lim
t→∞

x(t) = 0.

The following existence theorems hold.

Theorem 2.2 ([2, Theorem 1]). Assume n ≥ 3. Let for any positive constant λ and for some
j = 0, . . . , n− 3

∞∫
0

tn−3F (λtj)|r(t)| dt < ∞.

Then for any solution y of (0.3) such that y(t) = O(tj) as t → ∞, there exists a solution x of (0.1)
such that for large t

x(i)(t) = y(i)(t) + εi(t), i = 0, . . . , n− 1,

where εi are functions of bounded variation for large t and lim
t→∞

εi(t) = 0, i = 0, . . . , n− 1.

Using Theorem 2.2 and Lemma 1.1 we get the asymptotic representations for solutions of (0.1).
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Theorem 2.3 ([3, Theorem 4]). Let n ≥ 3 and u, v be two linearly independent solutions of (0.2).
Assume (1.4) and for any positive constant λ

∞∫
0

tn−3(λtn−3)|r(t)| dt < ∞. (2.2)

Then for any vector (c0, c1, . . . , cn−1) ∈ Rn there exists a solution x of (0.1) such that

x(t) =



n−3∑
i=0

cit
i + cn−2u

′(t) + cn−1v
′(t) + ε(t) for n odd,

n−3∑
i=0

cit
i + cn−2u(t) + cn−1v(t) + ε(t) for n even,

(2.3)

where lim
t→∞

ε(t) = 0. If, in addition, f ∈ C1(R) and there exists M > 0 such that

|f ′(u)| ≤ MF (u) for large |u|, (2.4)

then the solution x given by (2.3) is unique.

Theorem 2.3 extends [5, Theorem 1.4] stated for (0.4) with r(t) > 0.
The argument for proving Theorems 2.2 and 2.3 is based on the Ascoli theorem and an iterative

method, which can be also useful for a numerical estimation of solutions. Moreover, in [2] the cases
n = 3 and n = 4 are studied in details.

As application, consider the Emden–Fowler type equation

x(n)(t) + q(t)x(n−2)(t) + r(t)|x(t)|λ sgnx(t) = 0, λ > 0. (2.5)

Then (2.4) is satisfied for any λ > 0 and (2.2) reads as
∞∫
0

t(n−3)(λ+1)|r(t)| dt < ∞.

Thus, according to Theorem 2.3, for a fixed vector (c0, c1, . . . , cn−1) there exists a unique solution
of (2.5) which has the asymptotic representation (2.3).

Another consequence of our results is the following.
Denote by Sy and Sx the solution space of (0.3) and (0.5), respectively. We say that (0.3) and

(0.5) are asymptotically equivalent, if there exists a 1 − 1 map T : Sy → Sx such that for every
y ∈ Sy there exists a unique x ∈ Sx such that T (y) = x and

lim
t→∞

(x(t)− y(t)) = 0.

Applying Theorems 2.1 and 2.2 we get the following.

Theorem 2.4 ( [3, Theorem 5]). Assume n ≥ 3 and
∞∫
0

t2n−6|r(t)| dt < ∞.

Then linear equations (0.3) and (0.5) are asymptotically equivalent.
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The following example illustrates Theorem 2.3 and it is inspired from [4, page 113].

Example. Consider the equation

x(5)(t) + q(t)x(3)(t) + r(t)x3(t) = 0. (2.6)

where
q(t) = 1 +

(
t+

1

2

)−3
sin t+

2

3

(
t+

1

2

)−4
cos t− 1

9

(
t+

1

2

)−5
cos2 t

and r ∈ C[0,∞) and t8r(t) ∈ L1[0,∞). A standard calculation shows that q(t) > 1/2 for large t
and q′ ∈ L1[0,∞). Thus, assumption (i) is satisfied. Moreover, also (1.4) and (2.2) are verified.
Since the function

u(t) = (cos t)

[
exp

(
8

t∫
0

1

(2s+ 1)3
cos s ds

)]
is a solution of (0.2), see [4, page 113] with minor changes, in view of Theorem 2.3, for any vector
(c0, . . . , c3), equation (2.6) has the solution x given by

x(t) = c0 + c1t+ c2t
2 + c3u

′(t) + ε(t)

where lim
t→∞

ε(t) = 0.
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