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1 Introduction
Consider the equation

y(n) = p(x, y, y′, . . . , y(n−1))|y|k sign y, n > 4, k > 1. (1.1)

New results are proved on asymptotic behavior of blow-up and Kneser (see [7, Definition 13.1])
solutions to this equation. The same results concerning equation (1.1) with the constant potential
p = p0 > 0 are proved in [6]. In this paper one can also find the history of these problems. To prove
the results, the equation is reduced to a dynamical system on an (n−1)-dimensional compact sphere
(see [6]). We study the behavior of the trajectories of this system corresponding to constant-sign
parts of solutions to (1.1). It is a modification of the method applied for the first time in [1] for the
description of the asymptotic behavior of blow-up solutions to equation (1.1) with n = 3, 4. See
also [2]. Later an asymptotic classification of solutions to (1.1) with n = 3, 4 was obtained by that
method (see [3, 5] and the references here).

In particular, it was proved that for n = 3, 4 all blow-up and Kneser solutions to equation (1.1)
have the power-law asymptotic behavior (see [2,3]), namely, for blow-up at some point x∗ solutions
y(x) it was obtained that

y(x) = C(x∗ − x)−α(1 + o(1)) (1.2)
with

α =
n

k − 1
, Ck−1 =

1

p0

n−1∏
j=0

(j + α). (1.3)

It was also proved for equation (1.1) with (−1)np ≡ p0 > 0 for sufficiently large n (see [8]) and
for n = 12, 13, 14 (see [4]) that there exists k > 1 such that equation (1.1) has a solution with
non-power-law behavior, namely,

y(x) = (x∗ − x)−α h(log(x∗ − x)),

where h is a positive periodic non-constant function on R. We will discuss this problem for n ≥ 15.

2 Main Results
Theorem 2.1. Suppose p ∈ C(Rn+1) ∩ Lipy0,...,yn−1

(Rn) and p → p0 > 0 as x → x∗, y0 →
∞, . . . , yn−1 → ∞. Then for any integer n > 4 there exists K > 1 such that for any real k ∈ (1,K),
any solution to equation (1.1) tending to +∞ as x → x∗ − 0 has power-law asymptotic behavior
(1.2), (1.3).
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Theorem 2.2. Suppose p ∈ C(Rn+1) ∩ Lipy0,...,yn−1
(Rn) and (−1)np → p0 > 0 as x → ∞,

y0 → 0, . . . , yn−1 → 0. Then for any integer n > 4 there exists K > 1 such that all Kneser solutions
to equation (1.1) with any real k ∈ (1,K) tend to zero with power-law asymptotic behavior, namely,

y(x) = C|x|−α(1 + o(1)), x → ∞,

with α and C given by (1.3).

3 Sketch of the Proof

Proof. To prove Theorem 2.1, as in the proof of Theorem 3.1 (see [6]), we put

α =
n

k − 1
, γ =

1

α
, m = n− 1. (3.1)

Consider equation (1.1) with p = p0 > 0. Without loss of generality we can assume that p0 = 1.
To prove the theorem, an auxiliary dynamical system is investigated on the m-dimensional sphere.
To define it note that if a function y(x) is a solution to equation (1.1) with p = p0 > 0, the same
is true for the function

z(x) = Ay(Aγx+B) (3.2)

with any constants A > 0 and B.
Any non-trivial solution y(x) of equation (1.1) with p = p0 > 0 generates in Rn \ {0} the curve

given parametrically by (
y(x), y′(x), y′′(x), . . . , y(m)(x)

)
.

We can define an equivalence relation on Rn \ {0} such that all solutions obtained from y(x) by
(3.2) with A > 0 generate equivalent curves, i.e., curves passing through equivalent points (maybe
for different x). We assume the points (y0, y1, y2, . . . , ym) and (z0, z1, z2, . . . , zm) in Rn \ {0} to be
equivalent if and only if there exists a constant λ > 0 such that

zj = λn+j(k−1)yj , j ∈ {0, 1, . . . ,m}.

The obtained quotient space is homeomorphic to the m-dimensional sphere

Sm =
{
y ∈ Rn : y20 + y21 + y22 + · · ·+ y2m = 1

}
,

having exactly one representative of each equivalence class since the equation

λ2ny20 + λ2(n+2(k−1))y21 + · · ·+ λ2(n+m(k−1))y2m = 1

has exactly one positive root λ for any (y0, y1, y2, . . . , ym) ∈ Rn \ {0}.
Equivalent curves in Rn \ {0} generate the same curves in the quotient space. The last ones

are trajectories of an appropriate dynamical system, which can be described, in different charts
covering the quotient space, by different formulae using different independent variables. A unique
common independent variable can be obtained from those ones by using a partition of unity.

Within the chart that covers the points corresponding to positive values of solutions and has
the coordinate functions

uj = y(j)y−1−γj , j ∈ {1, . . . ,m},
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the dynamical system can be written as

du1
dt

= u2 − (1 + γ)u21,

duj
dt

= uj+1 − (1 + γj)u1uj , j ∈ {2, . . . ,m− 1},

dum
dt

= 1− (1 + γm)u1um

(3.3)

with the independent variable

t =

x∫
x0

y(ξ)γ dξ.

The described dynamical system has some equilibrium points corresponding to the solutions
to equation (1.1) with p = p0 > 0 having the exact power-law behavior. One of them, which
corresponds to the n-positive solutions with exact power-law behavior, can be found in terms of its
uj coordinates noted by (a1, . . . , am):

aj+1 = (1 + γj)a1aj = aj+1
1

j∏
l=1

(1 + γl), j ∈ {1, . . . ,m− 1},

a1 =
( m∏

l=1

(1 + γl)
)−1/n

.

(3.4)

Instead of system (3.3) it is more convenient for our current purposes to use another one obtained
by the substitution τ = a1t, uj = ajvj , j ∈ {1, . . . ,m}:

dv1
dτ

= (1 + γ)(v2 − v21),

dvj
dτ

= (1 + γj)(vj+1 − v1vj), j ∈ {2, . . . ,m− 1},

dvm
dτ

= (1 + γm)(1− v1vm).

The above equilibrium point has in the new chart all coordinates equal to 1.
Up to the moment, we actually considered, for each γ > 0, its own dynamical system defined

on its own quotient space homeomorphic to the m-dimensional sphere. In what follows, we need
one sphere with a γ-parameterized dynamical system having an equilibrium point common for all
γ in consideration. Thus, the points (y0, y1, . . . , ym) ∈ R \ {0} obtained while treating solutions to
(1.1) with p = p0 > 0 and different k will generate the same point on Sm if their corresponding
coordinates have the same sign and the tuples(

|y| :
∣∣∣ y′
a1

∣∣∣ 1
1+γ

: · · · :
∣∣∣y(j)
aj

∣∣∣ 1
1+γj

: · · · :
∣∣∣y(m)

am

∣∣∣ 1
1+γm

)
,

if considered as sets of projective coordinates, define the same point in the projective space RPm.
In particular, for points corresponding to n-positive solutions this means that they have the same
vj coordinates in the related charts. Hereafter, the domain consisting of all points with positive
vj coordinates is denoted by Sm

+ . The only equilibrium point in Sm
+ , which has all vj coordinates

equal to 1, is denoted by v∗.
For further proof we need the following
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Lemma 3.1 (see [6]). There exist γ2 > 0 and an open neighborhood U of the point v∗ such that
for any positive γ < γ2, any trajectory of the global dynamical system passing through the closure
U tends to v∗. If such a trajectory does not coincide with v∗, then it passes transversally, at some
time, through the boundary ∂U .

Now let us consider a solution y(x) to equation (1.1), in suggestion that P → 1 as x → x∗,
y0 → ∞, . . . , yn−1 → ∞. This solution generates in Sm a curve described in the same chart by the
system 

dv1
dτ

= (1 + γ)(v2 − v21),

dvj
dτ

= (1 + γj)(vj+1 − v1vj), j ∈ {2, . . . ,m− 1},

dvm
dτ

= (1 + γm)(q(τ)− v1vm),

(3.5)

with the function q(τ) obtained by the correspondent substitution in P , and it tends to 1 as τ → ∞.

Lemma 3.2. The set of all ω-limit points of the trajectory described by (3.5) with q(τ) tending to
1 as τ → ∞ is the union of some whole trajectories of system (3.5).

The proof of this lemma is almost the same as the proof of Lemma 5.6 in [3].
Since Sm is a compact set, any trajectory s(τ) on it has at least one ω-limit point. If this

ω-limit point is unique, then it is the limit of the trajectory. So, if the trajectory does not tend to
v∗, then it has at least one ω-limit point w ̸= v∗. If the trajectory s(τ) is generated by a solution
to equation (1.1) tending to +∞ as x → x∗ − 0, then we can assume that w ∈ Sm

+ . According to
Lemma 3.1, the trajectory s1(τ) of (3.5), passing through the point w, then it passes transversally,
at some time, through the boundary ∂U for some γ ∈ (0, γ2). When the function q(τ) is sufficiently
close to 1, then the trajectory s(τ) also passes transversally through ∂U . In this case it can enter
U but cannot leave it. So, the points s1(τ), outside of U , cannot be ω-limit points of s(τ). This
contradiction to Lemma 3.2 shows that s(τ) → v∗ as τ → ∞. In particular,

v1 =
(z1
z0

)1+γ
−→ 1 as τ → ∞.

It means that the corresponding solution y(x) to equation (1.1) satisfies the condition
y′

a1y1+γ
−→ 1 as x → x∗ − 0.

So,

y′ ∼ a1y
1+γ as x → x∗ − 0,

y ∼ (a1γ)
− 1

γ (x∗ − x)
− 1

γ ,

and from (3.1) and (3.4) we obtain

y ∼
(
α(α+ 1) · · · (α+ n− 1)

) 1
k−1 (x∗ − x)−α, x → x∗ − 0. (3.6)

It means that Theorem 2.1 for p0 = 1 is proved.
If y(x) is a solution to equation (1.1) with P tending to an arbitrary p0 > 0, then yp0

1
k−1 is a

solution to equation (1.1) with a similar function P tending to 1. So, yp0
1

k−1 satisfies (3.6), and,

y =
(α(α+ 1) · · · (α+ n− 1)

p0

) 1
k−1

(x∗ − x)−α(1 + o(1)) as x → x∗ − 0.

Theorem 2.1 is proved.
By similar considerations we can prove Theorem 2.2.
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