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In a Euclidean space Rn with n > 1, consider the set Mn of linear systems

ẋ = A(t)x, x ∈ Rn, t ∈ R+ ≡ [0,∞), (1)

with continuous operator-functions A : R+ → EndRn, identified with the systems themselves.
Developing the ideas from the papers [1–7], we study the Lyapunov type indicators which are
responsible for the oscillation of solutions: in this case, for their rotatability in a specially chosen
planes in which it is the most significant.

Let S(A) be the set of all solutions of system (1), and let Gk(A) be the set of all its k-dimensional
subspaces. The asterisk as subscript of a linear space denotes the set with the zero removed.

Definition 1. For a given linearly independent solutions x, y ∈ S∗(A) of the system A ∈ Mn and
for a moment t ∈ R+ define the angle of rotation of function x in direction of function y and,
respectively, the trace variation of function x in the time from 0 to t by the following formulas

Ψ(x, y, t) ≡
∣∣∣∣

t∫
0

(
ėx(τ), Ry(τ)ex(τ)

)
dτ

∣∣∣∣, P(x, t) ≡
t∫

0

|ėx(τ)| dτ, (2)

where ea ≡ a/|a| is a normalized vector a, and Rba is the result of rotation of the vector a by the
angle π/2 to the half-plane which contains the vector b (linearly independent of a).

Definition 2. For each plane (two-dimensional subspace) G ∈ G2(A) of solutions of the system
A ∈ Mn define the weak and, respectively, strong rotatability indicators of the plane G: the lower
one

ψ̌◦(G) ≡ lim
t→∞

inf
L∈AutRn

1

t
Ψ(Lx,Ly, t), ψ̌•(G) ≡ inf

L∈AutRn
lim
t→∞

1

t
Ψ(Lx,Ly, t) (3)

and the upper one

ψ̂◦(G) ≡ lim
t→∞

inf
L∈AutRn

1

t
Ψ(Lx,Ly, t), ψ̂•(G) ≡ inf

L∈AutRn
lim
t→∞

1

t
Ψ(Lx,Ly, t), (4)

where x and y form a basis in G.

Remark 1. If one replaces in formulas (3) and (4) for each t ∈ R+ the angle of rotation Ψ(Lx,Ly, t)
of the function Lx in direction of the function Ly in time from 0 to t by the trace variation P(Lx, t)
of the function Lx in the same time (see eq. (2)), then the resulting formulas will give corresponding
wandering indicators ρ̂◦(x), ρ̂•(x), ρ̌◦(x), ρ̌•(x) of the solution x ∈ S∗(A) of the system A ∈ Mn

(see [3] in somewhat different notation).

Definition 3. For each solution x ∈ S∗(A) of the system A ∈ Mn define weak and, respectively,
strong plain rotatability indicators of the solution x: the lower one

ψ̌◦(x,A) ≡ sup
x∈G∈G2(A)

ψ̌◦(G), ψ̌•(x,A) ≡ sup
x∈G∈G2(A)

ψ̌•(G) (5)
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and the upper one

ψ̂◦(x,A) ≡ sup
x∈G∈G2(A)

ψ̂◦(G), ψ̂•(x,A) ≡ sup
x∈G∈G2(A)

ψ̂•(G). (6)

Definition 4. If the upper indicator in Definitions 2 and 3 coincides with the similar lower one,
then it is called exact and its accent (check or hat) is removed, and in case of coincidence of weak
indicator with the similar strong one it is called absolute and its circle (empty or full) is omitted.

Definition 5. For each system A ∈ Mn, by the spectrum of an indicator defined on the set S∗(A)
or G2(A) (or perhaps only on a part of these) we mean the set of all its values on that set.

Remark 2. The case n = 2 is special in that the plane G ∈ G2(A) of solutions of the system
A ∈ M2 coincides with the whole space S(A), and hence, indicators (3) and (4) coincide with the
corresponding oriented rotatability indicators θ̌◦(x) = θ̌•(x) and θ̂◦(x) = θ̂•(x) of some solution
x ∈ G∗ (actually, of any one; see [7] in other notation), and they are the absolute lower ψ̌(G)
and upper ψ̂(G) rotatability indicators of the plane G = S(A), respectively, and have one-point
spectrum.

The apparent incorrectness of Definition 2, in the part of its possible dependence on the choice
of linearly independent solutions x, y in G and of a scalar product in Rn, is eliminated by

Theorem 1. The rotatability indicators of a plane G ∈ G2(A) of solutions of any system A ∈ Mn,
defined by formulas (3) and (4), are invariant under the choice of a basis x, y ∈ G∗ and the choice
of a Euclidean structure in Rn.

The proof of Theorem 1 is provided by

Lemma 1. For any plane G ∈ G2(A) of any system A ∈ Mn, there are a system B ∈ M2 and a
continuously differentiable family of orthogonal transformations

U(t) : G(t) → G(0) ≡ R2, t ∈ R+, U(0) = I,

sending any linearly independent solutions x, y ∈ G∗ into solutions u, v ∈ S(B) such that

u ≡ Ux, v ≡ Uy, Ψ(x, y, t) = Ψ(u, v, t), t ∈ R+.

According to the notation given in Definition 3 for the plane rotatability indicator of a solution
of a system, it is not uniquely determined by that solution alone and may depend on the other
solutions of the system, which is justified by

Theorem 2. There exist an autonomous system A ∈ M3 and a non-autonomous system B ∈ M3,
having a common solution x ∈ S∗(A) ∩ S∗(B) with exact, absolute, but different plane rotatability
indicators

ψ(x,A) > ψ(x,B).

There exists a usual order in the set of plane indicators [3]: the lower indicators do not exceed
the upper ones and the weak indicators do not exceed the strong ones. In addition, the seminorm

∥A∥I ≡ lim
t→∞

1

t

t∫
0

∥A(τ)∥ dτ <∞, ∥A(τ)∥ ≡ sup
|e|=1

|A(τ)e|, (7)

in the space Mn gives the upper bound for all the wandering indicators and hence for all the
indicators introduced in Definitions 2 and 3, since the following assertion holds.
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Theorem 3. For any solution x ∈ G∗ from any plane G ∈ G2(A) of solutions of any system
A ∈ Mn the following estimates hold

0 ≤ ψ̌◦(G) ≤ ψ̌◦(x,A) ≤ ρ̌◦(x), ψ̌•(G) ≤ ψ̌•(x,A) ≤ ρ̌•(x),

ψ̂◦(G) ≤ ψ̂◦(x,A) ≤ ρ̂◦(x), ψ̂•(G) ≤ ψ̂•(x,A) ≤ ρ̂•(x) ≤ ∥A∥I .

The inequalities in Theorem 3 between the plane rotatability indicators and the wandering
indicators are not equalities in general, already for solutions of two-dimensional systems (but non-
autonomous, according to Theorem 10 below) as shown by

Theorem 4. There exists a system A ∈ M2 such that the plane rotatability indicators of all
solutions x ∈ S∗(A) are exact, absolute, and the same but do not coincide with the wandering
indicators, which are also exact, absolute, and the same:

ψ(x,A) < ρ(x).

If in Definition 2 instead of the exact lower bounds over all automorphisms of the phase space
the upper bounds are taken, then so defined indicators are upper estimated neither by the seminorm
(7) nor by anything else, as shown by

Theorem 5. For any ε > 0 there exists a system A ∈ M3 satisfying the conditions

∥A(t)∥ ≤

{
ε, t ∈ [0, 1],

0, t ≥ 1,
∥A∥I = 0,

such that all the indicators of some plane G ∈ G2(A) obtained from formulas (3) and (4) by
replacement of all the exact lower bounds by the upper ones equal ∞.

If in Definition 3 instead of the exact upper bounds over all planes of solution space (containing
the given solution) the lower bounds are taken, then so defined indicators are too less informative,
already for three-dimensional autonomous systems as shown by

Theorem 6. All the indicators of all solutions x ∈ S∗(A) of any autonomous A ∈ M3 obtained
from formulas (5) and (6), with the exact upper bounds replaced by the lower ones, equal 0.

In the case of an autonomous system A ∈ Mn all the spectra of various indicators from Defin-
itions 2–4 are closely related to the spectrum | ImSp(A)| – the set of absolute values of imaginary
parts of the eigenvalues of the operator A ∈ EndRn. This relationship is described by the next
three theorems.

Theorem 7. For any autonomous system A ∈ Mn the spectrum of the exact absolute rotatability
indicator of a plane includes the spectrum | ImSp(A)|.

Theorem 8. There exists an autonomous system A ∈ Mn with the spectrum of the exact absolute
rotatability indicator of a plane not included in the spectrum | ImSp(A)|.

Theorem 9. For any autonomous system A ∈ Mn the spectrum of the exact weak, as well as
strong, plane rotatability indicator of a solution coincides with the spectrum | ImSp(A)|.

As an example confirming the validity of Theorem 8, it suffices to take a four-dimensional
autonomous system with eigenvalues ±i,±2i: its exact absolute rotatability indicators for at least
one of planes equal zero. The proof of Theorem 9 is provided by
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Theorem 10. For each solution x ∈ S∗(A) of any autonomous system A ∈ Mn the weak and
strong plane rotatability indicators are exact and coincide with the similar wandering indicators

ψ◦(x,A) = ρ◦(x), ψ•(x,A) = ρ•(x). (8)

To prove Theorem 10 it is enough, in its turn, to make sure that the next assertion is true.

Lemma 2. For each solution x ∈ S∗(A) of any autonomous system A ∈ Mn there exists a linearly
independent with x solution y ∈ S∗(A) satisfying the condition

Ψ(Lx,Ly, t) = P(Lx, t), L ∈ AutRn, t ∈ R+.

In Lemma 2, in the case when the initial value x(0) of a solution x is an eigenvector for
A ∈ EndRn corresponding to a real eigenvalue, any nonzero solution is suitable as a solution y
related to the solution x, otherwise there is a suitable one, for example, the function y = Ax.

Remark 3. Applying Theorem 10 and the results of the papers [3, 4] to each of the indicators
(8), we can describe the distribution of its values over the space S∗(A), namely, on the steps of
some flag of subspaces in S(A) it takes constant values ranging in some special order over all the
numbers of the spectrum | ImSp(A)|.

Theorems 9 and 10 justify the introduction of the plain rotatability indicators of a solution in
Definition 3. But equalities (8) do not extend to non-autonomous systems A ∈ Mn: by Theorem 4
already for n = 2 and by Theorem 2 even when the function x is a solution of some autonomous
system.
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