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Consider the linear system of impulsive equations

dx

dt
= Q(t)x+ q(t) for t ∈ R+, (1)

x(tj+)− x(tj−) = Gjx(tj−) + gj (j = 1, 2, . . . ), (2)

where Q ∈ Lloc(R+;Rn×n), q ∈ Lloc(R+;Rn), Gj ∈ Rn×n (j = 1, 2, . . . ), gj ∈ Rn (j = 1, 2, . . . ),
tj ∈ R+ (j = 1, 2, . . . ), 0 < t1 < t2 < · · · , lim

j→+∞
tj = +∞.

We use the following notation and definitions.
R = ] − ∞,+∞[ , R+ = [0,+∞[ , [a, b] and ]a, b[ (a, b ∈ R) are, respectively, closed and open

intervals.

Rn×m is the space of all real n×mmatricesX = (xij)
n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

Rn×m
+ = {(xij)n,mi,j=1 : xij ≥ 0 (i = 1, . . . , n; j = 1, . . . ,m)}.

Rn = Rn×1 is the space of all real column n-vectors x = (xi)
n
i=1.

If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the deter-
minant of X and the spectral radius of X; In is the identity n× n-matrix.

A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its com-
ponent is such.

C̃([a, b], D), where D ⊂ Rn×m, is the set of all absolutely continuous matrix-functions X :
[a, b] → D.

C̃loc(I \ T,D), where T = {t1, t2, . . . }, is the set of all matrix-functions X : I → D whose
restrictions to an arbitrary closed interval [a, b] from I \ {τl}ml=1 belong to C̃([a, b], D).

L([a, b];D) is the set of all integrable matrix-functions X : [a, b] → D.
Lloc(I;D) is the set of all matrix-functions X : I → D whose restrictions to an arbitrary closed

interval [a, b] from It0 belong to L([a, b], D).
By a solution of the impulsive system (1), (2) we understand a continuous from the left vector

function x : R+ → Rn, x ∈ C̃loc(R+ \ T ;Rn), satisfying the system (1) a.e on ]tj , tj+1[ , and the
equality (2) at the point tj for every j ∈ {1, 2, . . . }.

Let ξ : R+ → R+, ξ ∈ C̃loc(R+;R+), be a continuous from the left nondecreasing function such
that

lim
t→+∞

ξ(t) = +∞.

Definition 1. The solution x0 of the system (1), (2) is said to be ξ-exponentially asymptotically
stable if there is η > 0 such that for every ε > 0 there exists δ = δ(ε) > 0 such that for every
solution x of the system (1), (2) satisfying the condition

∥x(t0)− x0(t0)∥ < δ
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for some t0 ∈ R+, the estimate

∥x(t)− x0(t)∥ < ε exp
(
η(ξ(t)− ξ(t0))

)
for t ≥ t0

holds.

Definition 2. The system (1), (2) is said to be ξ-exponentially asymptotically stable if every its
solution is ξ-exponentially asymptotically stable.

Definition 3. The pair (Q, {Gl}∞l=1), where Q ∈ Lloc(R+;Rn×n) and Gj ∈ Rn×n (j = 1, 2, . . . ),
is ξ-exponentially asymptotically stable if the corresponding to this pair homogeneous impulsive
system

dx

dt
= Q(t)x for t ∈ R+,

x(tj+)− x(tj−) = Gjx(tj−) (j = 1, 2, . . . )

is stable in the same sense.

Theorem. Let Q = (qik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and Gj = (gjik)

n
i,k=1 ∈ Rn×n (j = 1, 2, . . . ) be such

that the conditions

1 + gjii ̸= 0 (i = 1, . . . , n; j = 1, 2, . . . ),

r(H) < 1, (3)

sup

{
(ξ(t)− ξ(τ))−1

( t∫
τ

qii(s) ds+
∑

τ≤tj<t

ln |1 + gjii|
)

:

t ≥ τ ≥ t∗, ξ(t) ̸= ξ(τ); t, τ ∈ R+ \ T

}
< −γ (i = 1, . . . , n) (4)

and

t∫
t∗

exp

(
γ(ξ(t)− ξ(τ)) +

t∫
τ

qii(s) ds

)
|qik(τ)|

∏
τ≤tj<t

|1 + gjii| dτ

+
∑

t∗≤tl<t

exp

(
γ(ξ(t)− ξ(tl)) +

t∫
tl

qii(s) ds

)
|glik|

∏
tl<tj<t

|1 + gjii| ≤ hik,

for t ∈ [t∗,+∞[ \T (i ̸= k; i, k = 1, . . . , n)

hold, where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), H = (hik)
n
i,k=1 matrix, where hii = 0

(i = 1, . . . , n). Then the pair (Q, {Gj}+∞
j=1) is ξ-exponentially asymptotically stable.

Corollary. Let Q = (qik)
n
i,k=1 ∈ Lloc(R+;Rn×n) and Gj = (gjik)

n
i,k=1 ∈ Rn×n (j = 1, 2, . . . ) be

such that the conditions (3), (4),

−1 < gjii ≤ 0 (i = 1, . . . , n; j = 1, 2, . . . ),

qii(t) ≤ 0 (i = 1, . . . , n),

|qik(t)| ≤ −hikqii(t) (i ̸= k; i, k = 1, . . . , n),

|gjik| < −hikgjii(1 + gjii) (i ̸= k; i, k = 1, . . . , n; j = 1, 2, . . . )

hold a.e on the interval [t∗,+∞[ , where γ > 0, t∗ and hik ∈ R+ (i ̸= k; i, k = 1, . . . , n), hii = 0
(i = 1, . . . , n), and H = (hik)

n
i,k=1. Then the pair (Q, {Gj}+∞

j=1) is ξ-exponentially asymptotically
stable.
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The questions on the Lyapunov stability in this and other sense are investigated in [1, 3] (see,
also the references therein) for linear impulsive systems, and analogous questions in [2] (see, also
the references therein) for ordinary differential systems.
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