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The W -method, in its present form, was proposed by N. V. Azbelev, but according to his
comment in [2] it goes back to G. Fubini and F. Tricomi. The method described originally a way
to regularize boundary value problems for deterministic differential equations (see e.g. [2,3]). Later
on the method has been developed, generalized and applied in the stability theory for determinsitic
[1, 4, 5] and stochastic [6–9] functional differential equations.

Below we describe general principles of the W-method in connection with stochastic functional
differential equations.

Let (Ω,F , (Ft)t≥0,P) be a stochastic basis consisting of a probability space (Ω,F ,P) and an
increasing, right-continuous family (a filtration) (Ft)t≥0 of complete σ-subalgebras of F . By E we
denote the expectation on this probability space.

The space kn consists of all n-dimensional, F0-measurable random variables, and k = k1 is a
commutative ring of all scalar F0-measurable random variables.

By Z := (z1, . . . , zm)T we denote an m-dimensional semimartingale (see e.g. [11]). A popular
example of such Z is the vector Brownian motion (the Wiener process).

We consider the homogeneous stochastic hereditary equation

dx(t) = (Vhx)(t)dZ(t), t ≥ 0, (1)

equipped with two extra conditions

x(s) = φ(s), s < 0, (1a)

x(0) = x0. (1b)

Here Vh is a k-linear Volterra operator (see below), which is defined in certain linear spaces of
vector stochastic processes, φ is an F0-measurable stochastic process, x0 ∈ kn.

By k-linearity of the operator Vh we mean the following property:

Vh(α1x1 + α2x2) = α1Vhx1 + α2Vhx2

holding for all F0-measurable, bounded and scalar random values α1, α2 and all stochastic processes
x1, x2 belonging to the domain of the operator Vh.

The solution of the initial value problem (1), (1a), (1b) will be denoted by x(t, x0, φ), t ∈
(−∞,∞). Below the solution is always assumed to exist and be unique for an appropriate choice
of φ(s), x0.

The following kinds of stochastic Lyapunov stability are well-known:
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Definition 1. For a given real number p (0 < p < ∞) we call the zero solution of the homogeneous
equation (1)

- p-stable (w.r.t. the initial data, i.e. w.r.t. x0 and the “prehistory” function φ) if for any
ε > 0 there is δ(ε) > 0 such that E|x0|p + ess sup

s<0
E|φ(s)|p < δ implies E|x(t, x0, φ)|p ≤ ε for

all t ≥ 0 and all (admissible) φ, x0;

- asymptotically p-stable (w.r.t. the initial data) if it is p-stable and, in addition, any φ, x0
such that E|x0|p + ess sup

s<0
E|φ(s)|p < δ satisfies lim

t→+∞
E|x(t, x0, φ)|p = 0;

- exponentially p-stable (w.r.t. the initial data) if there exist positive constants c, β such that
the inequality

E|x(t, x0, φ)|p ≤ c
(
E|x0|p + ess sup

s<0
E|φ(s)|p

)
exp{−βs}

holds true for all t ≥ 0 and all φ, x0.

To be able to link stochastic Lyapunov stability and the W -method, we need to represent (1),
(1a) as a functional differential equation. Let x(t) be a stochastic process on the real semiaxis
(t ∈ [0,+∞)) and x+(t) be a stochastic process on the entire real axis (t ∈ (−∞,+∞)) coinciding
with x(t) for t ≥ 0 and equalling 0 for t < 0, while φ−(t) be a stochastic process on the axis
(t ∈ (−∞,+∞)) coinciding with φ(t) for t < 0 and equalling 0 for t ≥ 0. Then the stochastic
process x+(t) +φ−(t), defined for t ∈ (−∞,+∞) will be a solution of the problem (1), (1a), (1b) if
x(t) (t ∈ [0,+∞)) satisfies the initial value problem

dx(t) =
[
(V x)(t) + f(t)

]
dZ(t), t ≥ 0, (2)

x(0) = x0, (2a)

where
(V x)(t) := (Vhx+)(t), f(t) := (Vhφ−)(t) for t ≥ 0.

Indeed, by linearity Vh(x+ + φ−) = Vh(x+) + Vh(φ−) = V x + f , which gives (2). Note that f is
uniquely defined by the stochastic process φ, “the prehistory function”. Let us also observe that
the initial value problem (2), (2a) is equivalent to the initial value problem (1), (1a), (1b) only for
f , which have representation f = Vhφ

′, where φ′ is an arbitrary extension of the function φ to the
real axis (−∞,∞).

In the sequel the following linear spaces of stochastic processes will be used:

- Ln(Z) consists of all predictable n ×m-matrix stochastic processes on [0,+∞), the rows of
which are locally integrable w.r.t. the semimartingale Z (see e.g. [11]);

- Dn consists of all n-dimensional stochastic processes on [0,+∞), which can be represented as

x(t) = x(0) +

t∫
0

H(s) dZ(s),

where x(0) ∈ kn, H ∈ Ln(Z).

Let B be a linear subspace of the space Ln(Z) equipped with some norm ∥ · ∥B. For a given
positive and continuous function γ(t) (t ∈ [0,∞)) we define Bγ = {f : f ∈ B, γf ∈ B}. The
latter space becomes a linear normed space if we put ∥f∥Bγ := ∥γf∥B.
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We will also need the following linear subspaces of “the space of initial values” kn and “the
space of solutions” Dn:

knp =
{
α : α ∈ kn, E|α|p < ∞

}
, Mγ

p =
{
x : x ∈ Dn, sup

t≥0
E|γ(t)x(t)|p < ∞

}
, M1

p = Mp.

For 1 ≤ p < ∞ the linear spaces knp , M
γ
p become normed spaces if we define

∥α∥knp =
(
E|α|p

)1/p
, ∥x∥Mγ

p
= sup

t≥0

(
E|γ(t), x(t)|p

)1/p
.

In the sequel, we will always assume that the operator V : Dn → Ln(Z) in the equation (2)
is a k-linear Volterra operator, f ∈ Ln(Z) and x0 ∈ kn. Recall that V : Dn → Ln(Z) is said to
be Volterra if for any (random) stopping time τ , τ ∈ [0,+∞) a.s. and for any stochastic processes
x, y ∈ Dn the equality x(t) = y(t) (t ∈ [0, τ ] a.s.) implies the equality (V x)(t) = (V y)(t) (t ∈ [0, τ ]
a.s.).

A solution of (2), (2a) is a stochastic process from the space Dn satisfying the equation

x(t) = x0 + (Fx)(t), t ≥ 0,

where

(Fx)(t) =

t∫
0

[
(V x)(s) + f(s)

]
dZ(s)

is a k-linear Volterra operator in the space Dn and the integral is understood as a stochastic one
w.r.t. the semimartingale Z (see e.g. [11]).

Below xf (t, x0) stands for the solution of the initial value problem (2), (2a).

Definition 2. Let 1 ≤ p < ∞. We say that the equation (2) is input-to-state stable (ISS) w.r.t. the
pair (Mγ

p , Bγ) if there exists c > 0, for which x0 ∈ knp and f ∈ Bγ imply the relation xf ( · , x0) ∈ Mγ
p

and the following estimate:

∥xf ( · , x0)∥Mγ
p
≤ c

(
∥x0∥knp + ∥f∥Bγ

)
.

This definition says that the solutions belong to Mγ
p whenever f ∈ Bγ and x0 ∈ knp and that

they continuously depend on f and x0 in the appropriate topologies. The choice of the spaces is
closely related to the kind of stability we are interested in.

The following result describes connections between Lyapunov stability of the zero solution of
the equation (1) and input-to-state stability of the equation (2) with the operator V which is
constructed from the operator Vh in (1).

Theorem 3. Let γ(t) (t ≥ 0) be a positive continuous function and 1 ≤ p < ∞. Assume that
the equation (2) is constructed from (1), (1a) and f(t) ≡ (Vhφ−)(t) ∈ Bγ whenever φ satisfies the
condition ess sup

s<0
E|φ(s)|p < ∞, and ∥f∥Bγ ≤ K ess sup

s<0
E|φ(s)|p for some constant K > 0.

1) If γ(t) = 1 (t ≥ 0) and the equation (2) is ISS w.r.t. the pair (Mγ
p , Bγ), then the zero solution

of (1) is p-stable.

2) If γ(t) = exp{βt} (t ≥ 0) for some β > 0 and the equation (2) is ISS w.r.t. the pair (Mγ
p , Bγ),

then the zero solution of (1) is exponentially p-stable.

3) If lim
t→+∞

γ(t) = +∞, γ(t) ≥ δ > 0, t ∈ [0,+∞) (t ≥ 0) for some δ, and the equation (2) is

ISS w.r.t. the pair (Mγ
p , Bγ), then the zero solution of (1) is asymptotically p-stable.
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The main idea of the W -method is to convert the given property of Lyapunov stability – via
the property of ISS – into the property of invertibility of a certain regularized operator in a suitable
functional space. This operator can be constructed with the help of an auxiliary equation. The
latter is similar to the equation (2), but it is “simpler”, so that the required ISS property is already
established for this equation:

dx(t) =
[
(Qx)(t) + g(t)

]
dZ(t), t ≥ 0, (3)

where Q : Dn → Ln(Z) is a k-linear Volterra operator, and g ∈ Ln(Z). For the equation (3) it
is always assumed the existence and uniqueness assumption, i. e. that for any x(0) ∈ kn there
is the only (up to a P -equivalence) solution x(t) satisfying (3), so that we have the following
representation:

x(t) = U(t)x0 + (Wg)(t), t ≥ 0, (4a)

where U(t) is the fundamental matrix of the associated homogeneous equation, and W is the
corresponding Cauchy operator for the equation (3).

Now, let us rewrite the equation (2) in the following way:

dx(t) =
[
(Qx)(t) + ((V −Q)x)(t) + f(t)

]
dZ(t), t ≥ 0,

or

x(t) = U(t)x(0) + (W (V −Q)x)(t) + (Wf)(t), t ≥ 0.

Denoting W (V −Q) = Θ, we obtain the operator equation

((I −Θ)x)(t) = U(t)x(0) + (Wf)(t).

Theorem 4. Given a weight γ (i. e. a positive continuous function defined for t ≥ 0), let us
assume that the equation (2) and the reference equation (3) satisfy the following conditions:

1) the operators V , Q act continuously from Mγ
p to Bγ;

2) the reference equation (3) is ISS w.r.t. the pair (Mγ
p , Bγ).

If now the operator I − Θ : Mγ
p → Mγ

p has a bounded inverse in this space, then the equation
(2) is ISS w.r.t. the pair (Mγ

p , Bγ).

Proof. Under the above assumptions we have that U( · )x0 ∈ Mγ
p whenever x0 ∈ knp and also that

xf (t, x0) =
(
(I −Θ)−1(U( · )x0)

)
(t) +

(
(I −Θ)−1Wf

)
(t) (t ≥ 0)

for an arbitrary x0 ∈ knp , f ∈ Bγ . Taking the norms and using the assumptions put on the reference
equation, we, as in the previous theorem, obtain the inequality

∥xf ( · , x0)∥Mγ
p
≤ c

(
∥x0∥knp + ∥f∥Bγ

)
,

where x0 ∈ knp , f ∈ Bγ . Thus, the equation (2) is ISS w.r.t. the pair (Mγ
p , Bγ).

The choice of the space B and the weight γ depend on the asymptotic property one is studying.

In the theorem below we use the universal constants cp (1 ≤ p < ∞) from the Burkholder–
Davis–Gandy inequalities to estimate stochastic integrals, see e.g. [11].
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Theorem 5. The zero solution of the equation

dx(t) =
(
aξ(t)x(t) + bξ(t)x

( t

τ0

))
dt+ c

√
ξ(t)x

( t

τ1

)
dB(t) (t ≥ 0),

where ξ(t) = I[0,r](t) + tI[r,∞](t), t ≥ 0 (IA(t) is the indicator of A), B(t) is the standard scalar
Brownian motion, a, b, c, τ0, τ1, r are real numbers (τ0 > 1, τ1 > 1), is asymptotically 2p-stable
(with respect to x0, as φ is not needed in this case) if there exists α > 0 for which

|a+ b+ α|+ cp|c|
√
0.5α+

(
|ab|+ b2

)
δ0 + cp|bc|

√
δ0 < α,

where
δ0 = max

{
log τ0, (1− τ−1

0 )r
}
.

The proof of the result can be found in [8].
The W -method is also proven to be efficient in the difficult case of stochastic differential equa-

tions with impulses, see [10].
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