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The paper is devoted to the existence and uniqueness of a solution of the initial-boundary prob-
lem for one nonlinear multi-dimensional integro-differential equation of parabolic type. Construc-
tion and study of the additive averaged Rothe’s type scheme is also given. The studied equation is
based on well-known Maxwell’s system arising in mathematical simulation of electromagnetic field
penetration into a substance [10]:

∂H

∂t
= − rot(νm rotH), (1)

cν
∂θ

∂t
= νm(rotH)2, (2)

where H = (H1,H2,H3) is a vector of magnetic field, θ is temperature, cν and νm characterize
correspondingly heat capacity and electroconductivity of the medium.

The system (1), (2) is complex and its investigation and numerical resolution still yield for
special cases (see, for example, [6] and the references therein).

In [1], the Maxwell’s system (1), (2) were proposed to integro-differential form

∂H

∂t
= − rot

[
a

( t∫
0

|rotH|2 dτ
)
rotH

]
, (3)

where a = a(S) is dependent on coefficients cν , νm and is defined for S ∈ [0,∞).
Making certain physical assumptions in mathematical description of the above-mentioned pro-

cess in [12], a new integro-differential model is constructed which represents a generalization of the
system (3)

∂H

∂t
= a

(∫
Ω

t∫
0

|rotH|2 dx dτ
)
∆H. (4)

Principal characteristic peculiarity of systems (3) and (4) is connected with the appearance in
the coefficient with derivative of higher order nonlinear term depended on the integral of time and
space variables. These circumstances requires different discussions than it is usually necessary for
the solution of local differential problems.

The literature on the questions of existence, uniqueness, and regularity of solutions to the
models of above types is very rich. In [1–5, 11–13], the solvability of the initial-boundary value
problems for (3) type models in scalar cases is studied using a modified version of the Galerkin’s
method and compactness arguments that are used in [14,16] for investigation elliptic and parabolic
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equations. The uniqueness of solutions is investigated also in works [1–5, 11–13]. The asymptotic
behavior of solutions is discussed in [4,6,9] and in a number of other works as well. Note also that
to numerical resolution of (3) and (4) type one-dimensional models were devoted many works as
well (see, e.g., [5–7,9] and the references therein).

Many authors study the Rothe’s scheme, semi-discrete scheme with space variable, finite element
and finite difference approximation for a integro-differential models (see, for example, [5–9,14,15]).

It is very important to study decomposition analogs for above-mentioned multi-dimensional
differential and integro-differential models as well. At present there are some effective algorithms
for solving the multi-dimensional problems (see, for example, [14, 15] and the references therein).

This paper dedicated to the existence and uniqueness of solutions of initial-boundary value
problem. Investigations are given in usual Sobolev spaces. Main attention is also paid to investi-
gation of Rothe’s type additive averaged scheme. In this paper we shall focus our attention to (4)
type multi-dimensional integro-differential scalar equation.

Let Ω is bounded domain in the n-dimensional Euclidean space Rn with sufficiently smooth
boundary ∂Ω. In the domain Q = Ω × (0, T ) of the variables (x, t) = (x1, x2, . . . , xn, t) let us
consider the following first type initial-boundary value problem:

∂U

∂t
−

n∑
i=1

(
1 +

∫
Ω

t∫
0

∣∣∣∂U
∂xi

∣∣∣2 dx dτ)∂2U

∂x2i
= f(x, t), (x, t) ∈ Q, (5)

U(x, t) = 0, (x, t) ∈ ∂Ω× [0, T ], (6)

U(x, 0) = 0, x ∈ Ω, (7)

where T is a fixed positive constant, f is a given function of its arguments.
Since problem (5)–(7) similar to problems considered in [4], where investigation of (3) type

multi-dimensional scalar equations is given and at first is discussed unique solvability and asymp-
totic behavior of (5) type models as well, we can follow the same procedure used there. Using
modified version of the Galerkin’s method and compactness arguments [16], [14] the following
statement can be proved.

Theorem 1. If
f ∈ W 1

2 (Q), f(x, 0) = 0,

then there exists a unique solution U of problem (5)–(7) satisfying the properties:

U ∈ L4(0, T ;
◦
W 1

4(Ω)
)
∩ L2(0, T ;W

2
2 (Ω)),

∂U

∂t
∈ L2(Q),

√
T − t

∂2U

∂t∂xi
∈ L2(Q), i = 1, . . . , n.

The proof of the formulated theorem is divided into several steps. One of the basic step is to
obtain necessary a priori estimates.

Using the scheme of investigation as in, e.g., [4, 6, 9], it is not difficult to get the result of
exponentially asymptotic behavior of solution as t → ∞ for (5) equation with f(x, t) ≡ 0 and
homogeneous boundary (6) and nonhomogeneous initial (7) conditions.

On [0, T ] let us introduce a net with mesh points denoted by tj = jτ , j = 0, 1, . . . , J , with
τ = 1/J .

Coming back to problem (5)–(7), let us construct additive averaged Rothe’s type scheme:

ηi
uj+1
i − uj

τ
=

(
1 + τ

j+1∑
k=1

∫
Ω

∣∣∣∂uki
∂xi

∣∣∣2 dx) ∂2uj+1
i

∂x2i
+ f j+1

i ,

u0i = u0 = 0, i = 1, . . . , n, j = 0, 1, . . . , J − 1,

(8)
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with homogeneous boundary conditions, where uji (x), j = 1, . . . , J , is a solution of problem (8) and
the following notations are introduced:

uj(x) =

n∑
i=1

ηiu
j
i (x),

n∑
i=1

ηi = 1, ηi > 0,

n∑
i=1

f j+1
i (x) = f j+1(x) = f(x, tj+1),

where uj denotes approximation of exact solution U of problem (5)–(7) at tj . We use usual norm
∥ · ∥ of the space L2(Ω).

Theorem 2. If problem (5)–(7) has sufficiently smooth solution, then the solution of problem (8)
converges to the solution of problem (5)–(7) and the following estimate is true

∥U j − uj∥ = O(τ1/2), j = 1, . . . , J.

Using early investigated finite difference and finite element schemes for one-dimensional (5)
type models (see, for example, [5–7, 9]) now we can reduce numerical resolution of the multi-
dimensional integro-differential model (5) to one-dimensional ones. It is very important to construct
and investigate studied in this note type models for more general type nonlinearities and for (5)
type multi-dimensional systems as well.
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[8] J. Kačur, Application of Rothe’s method to evolution integro-differential equations. J. Reine
Angew. Math. 388 (1988), 73–105.

[9] Z. Kiguradze, On asymptotic behavior and numerical resolution of one nonlinear Maxwell’s
model. Recent Researches in Appl. Math., pp. 55–60, 15th WSEAS Int. Conf. Applied Math-
ematics (MATH’10), 2010.

[10] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media. (Russian)Gosudarstv.
Izdat. Tehn.-Teor. Lit., Moscow, 1957.



106 International Workshop QUALITDE – 2016, December 24 – 26, 2016, Tbilisi, Georgia

[11] G. I. Laptev, Quasilinear parabolic equations that have a Volterra operator in the coefficients.
(Russian) Mat. Sb. (N.S.) 136(178) (1988), no. 4, 530–545; translation in Math. USSR-Sb.
64 (1989), no. 2, 527–542.

[12] G. I. Laptev, Quasilinear evolution partial differential equations with operator coefficients.
(Russian) Doctoral Dissertation, Moscow, 1990.

[13] Y. P. Lin and H.-M. Yin, Nonlinear parabolic equations with nonlinear functionals. J. Math.
Anal. Appl. 168 (1992), no. 1, 28–41.
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