Existence of Optimal Control on an Infinitive Interval for Systems of Differential Equations with Pulses at Non-Fixed Times

A. O. Ivashkevych

Taras Shevchenko National University of Kiev, Kiev, Ukraine E-mail: annatytarenko@bigmir.net

T. V. Kovalchuk

Kiev National University of Trade and Economics, Kiev, Ukraine E-mail: annatytarenko@bigmir.net

We consider two problems of optimal control for systems of differential equations with pulse action $\dot{x} = A(x, t) + B(x, t)u$, $x \notin S$

$$\begin{aligned} c &= A(x,t) + B(x,t)u, \quad x \notin S, \\ \Delta x \big|_{x \in S} &= g(x), \\ x(0) &= x_0. \end{aligned}$$
(1)

In the first problem for the system (1) the quality criteria is the following

$$J(u) = \int_{0}^{\infty} \nu(t) L(t, x(t), u(t)) dt \to \inf,$$
(2)

where S – some hypersurface in the space \mathbb{R}^d , $x_0 \in \mathbb{R}^d$ – a fixed vector, $t \in [0, \infty)$, $x \in \mathbb{R}^d$, L(t, x, u) – a limited function, $u \in U \subset \mathbb{R}^m$, U – a closed, convex set in the space \mathbb{R}^m , $0 \in U$, A(x,t) – d-dimensional vector function, $B(x,t) - d \times m$ -dimensional matrix, g – d-dimensional vector function.

In the second problem for the system (1) we consider the quality criteria

$$J(u) = \int_{0}^{\theta} \nu(t) L(t, x(t), u(t)) dt \longrightarrow \inf,$$
(3)

where $t \in [0, \infty)$, $x \in D$, D – a limited area in the space R^d , $D \cap S$ – is not empty, $x_0 \in R^d$ – a fixed vector, θ – a moment of leaving the solution x(t) the area D.

We consider the problem (1), (2) with the following conditions: functions A(x,t), B(x,t) are continuous for a set of variables $t \in [0, \infty)$, $x \in \mathbb{R}^d$, g(x) is continuous by $x \in \mathbb{R}^d$ and the condition of Lipschitz is satisfied, there is a constant H > 0 such that for any $x_1, x_2 \in \mathbb{R}^d$, $t \ge 0$ and $u \in U$ the conditions:

$$|A(t,x_1) - A(t,x_2)| \le H|x_1 - x_2|, \quad ||B(t,x_1) - B(t,x_2)|| \le H|x_1 - x_2|$$
(4)

hold.

Functions L(t, x, u), $L_x(t, x, u)$ and $L_u(t, x, u)$ are continuous for a set of variables, for any $t \in [0, \infty)$, $x \in \mathbb{R}^d$ and $u \in U$, the following conditions are satisfied:

1) $L(t, x, u) \ge 0$ for any $t \in [0, \infty)$, $x \in \mathbb{R}^d$ and $u \in U$;

2) there are constants R > 0 and p > 2 such that for any $t \in [0, \infty)$, $x \in \mathbb{R}^d$ and $u \in U$, the inequality

$$L(t, x, u) \ge R(1 + |u|^p)$$

is fulfilled;

3) there is M > 0 such that for any $t \in [0, \infty)$, $x \in \mathbb{R}^d$ and $u \in U$,

$$|L_x(t, x, u)| + |L_u(t, x, u)| \le M(1 + |u|^{p-1});$$

4) L(t, x, u) is convex by u for any fixed $t \in [0, \infty), x \in \mathbb{R}^d$.

For the problem (1), (3) conditions are similar to the problem (1), (2) for $x \in D$. Acceptable for problems (1), (2) and (1), (3) are such controls u = u(t) that:

- (a) $u(t) \in L_p([0,\infty)), u(t) \in U, t \in [0,\infty);$
- (b) there is a constant $C_1 > 0$ which does not depend on u(t) and the following condition holds:

$$\int_{0}^{\infty} |u(t)|^p \, dt \le C_1.$$

The set of acceptable controls will be named acceptable for (1), (2) and (1), (3) and will be denoted by F.

We assume that the hypersurface S is a compact set and is given by s(x) = 0, where s is a continuous function.

Let τ_u^k be moments in which the solution x(t, u) hit on the hypersurface S.

Theorem 1. Let the system (1) with the quality criteria (2), for functions A(x,t), B(x,t), $\nu(t)$ and L(t,x,u) satisfy the condition (4) and 1)–3), the function $\nu(t) \in L_1([0,\infty))$, $0 \le \nu(t) \le 1$ for any $t \ge 0$. Then the problem (1), (2) has a solution in the set of acceptable controls F.

Theorem 2. Let the system (1) with the quality criteria (3), for functions A(x,t), B(x,t), $\nu(t)$ and L(t,x,u) satisfy the condition of Theorem 1 for $t \ge 0$, $x \in D$. Then the problem (1), (3) has a solution in the set of acceptable controls F.

Proof for the problem (1), (2). Since $J(u) \ge 0$, then there exists a non-negative lower bound m of values J(u). Let u_n be the sequence of acceptable controls such that: $J(u_n) \to m, n \to \infty$. Namely,

$$J(u_n) = \int_0^\infty \nu(t) L(t, x_n(t), u_n(t)) dt \longrightarrow m, \quad n \to \infty,$$

where $x_n(t)$ are solutions of the system (1) which correspond to controls $u_n(t)$.

The condition (b) guarantees a weak compactness of the sequence $u_n(t)$. Thus the sequence $u_n(t)$ converge weakly to $u^*(t) \in L_p([0,\infty))$. It is easy to show that $u^*(t) \in U$ for almost all $t \in [0,\infty)$.

We take an arbitrary T > 0 and fix. Since in the interval [0, T] all the conditions of the Theorem 1 are fulfilled, then there exists $x_T^*(t)$ – the solution of the system (1) at [0, T], which correspond to control $u^*(t)$ and $x_n(t) \Rightarrow x_T^*(t)$, $n \to \infty$ for any $t \in [0, T]$.

We show that there is a subsequence of functions $x_{n_n}(t)$ which pointwise converges to the function $x^*(t)$ for any $t \in [0, \infty)$.

For T = 1 there exists the subsequence $x_{n_1}(t)$ of the sequence $x_{n_n}(t)$, $n \ge 1$ such that $x_{n_1}(t) \Rightarrow x_1^*(t)$ for any $t \in [0, 1]$.

For T = 2 there exists the subsequence $x_{n_2}(t)$ of the sequence $x_{n_1}(t)$, $n \ge 1$ such that $x_{n_2}(t) \Rightarrow x_2^*(t)$ for any $t \in [0, 2]$, where $x_2^*(t) = x_1^*(t)$, $t \in [0, 1]$.

Similarly, for any natural N there exists the subsequence $x_{n_N}(t)$ of the sequence $x_{n_{N-1}}(t)$ such that $x_{n_N}(t) \rightrightarrows x_N^*(t)$ for any $t \in [0, N]$, where $x_N^*(t) = x_{N-1}^*(t)$, $t \in [0, N-1]$.

Using the diagonal method of this sequences, we can distinguish the following subsequence $x_{n_n}(t), n \ge 1$

$$x_{1_1}(t), x_{2_2}(t), x_{3_3}(t), \dots, x_{n_n}(t), \dots$$

This sequence pointwise converges to the function $x^*(t)$ for any $t \in [0, \infty)$.

Similarly to [3], it can be shown that the control $u^*(t)$ is optimal for the problem (1), (2), that $J(u^*) = m$.

Proof for the problem (1), (3). The proof of Theorem 2 is similar to the proof of Theorem 1, but it must be taken into account the moment of coming out the solution of the area.

References

- [1] A. Ivashkevych and T. Kovalchuk, The existence of optimal control for systems of differential equations with pulses at non-fixed times. (Ukrainian) *Neliniyni kolivannya* (to appear).
- [2] A. M. Samoilenko and N. A. Perestyuk, Impulsive differential equations. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, 14. World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
- [3] O. Samoilenko, Sufficient conditions for the existence of optimal control for some classes of differential equations. (Ukrainian) Vsnik Odeskogo Natsonalnogo Unversitetu, 2012.