Bounded Solutions to Systems of Nonlinear Functional Differential Equations

R. Hakl

Institute of Mathematics, Czech Academy of Sciences, Brno, Czech Republic E-mail: hakl@drs.ipm.cz

J. Vacková

 $Faculty\ of\ Science,\ Department\ of\ Mathematics\ and\ Statistics,\ Masaryk\ University,\\ Brno,\ Czech\ Republic$

E-mail: jitka@finnsub.cz

Consider the system of functional differential equations

$$x'(t) = F(x)(t) \tag{1}$$

where $F: C_{loc}(\mathbb{R}; \mathbb{R}^n) \to L_{loc}(\mathbb{R}; \mathbb{R}^n)$ is a continuous operator satisfying the local Carathéodory conditions, i.e., there exists a function $\psi: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}_+$ nondecreasing in the second argument such that $\psi(\cdot, r) \in L_{loc}(\mathbb{R}; \mathbb{R})$ for $r \in \mathbb{R}_+$ and for any $x \in C_0(\mathbb{R}; \mathbb{R}^n)$ the inequality

$$||F(x)(t)|| \le \psi(t, ||x||)$$
 for a.e. $t \in \mathbb{R}$

is fulfilled.

By a solution to the system (1) we understand a vector-valued function $x \in AC_{loc}(\mathbb{R}; \mathbb{R}^n)$ satisfying the equality (1) almost everywhere in \mathbb{R} . By a bounded solution to the system (1) it is understood a solution x to the system (1) that satisfies

$$\sup \left\{ \|x(t)\| : \ t \in \mathbb{R} \right\} < +\infty.$$

To formulate our results, we need to introduce the following definition (the complete list of notation and symbols is given at the end of this text). Let $\sigma \in \{-1, 1\}$ and put

$$I_{\sigma}(t) = \begin{cases}]-\infty, t] & \text{if } \sigma = 1, \\ [t, +\infty[& \text{if } \sigma = -1 \end{cases} \text{ for } t \in \mathbb{R}.$$

A linear continuous operator $\ell: C_{loc}(\mathbb{R};\mathbb{R}) \to L_{loc}(\mathbb{R};\mathbb{R})$ is called a σ -Volterra operator if for arbitrary $t \in \mathbb{R}$ and $v \in C_{loc}(\mathbb{R};\mathbb{R})$ such that v(s) = 0 for $s \in I_{\sigma}(t)$, the equality $\ell(v)(s) = 0$ for a.e. $s \in I_{\sigma}(t)$ is fulfilled.

Theorem 1. Let the inequality

$$\mathcal{D}(\sigma)\operatorname{Sgn}(v(t))\big[F(v)(t)-\mathcal{D}(h(t))v(t)+g_0(v)(t)\big] \leq p(|v|)(t)+\eta(t,\|v\|) \quad \textit{for a.e. } t \in \mathbb{R} \qquad (2)$$

be fulfilled for any $v \in C_0(\mathbb{R}; \mathbb{R}^n)$, where $\sigma \in \mathbb{R}^n$, $\sigma_i \in \{-1, 1\}$ (i = 1, ..., n), $h \in L_{loc}(\mathbb{R}; \mathbb{R}^n)$,

$$g_0(v)(t) \stackrel{def}{=} (g_{0i}(v_i)(t))_{i=1}^n \quad for \ a.e. \ t \in \mathbb{R}, \ v \in C_{loc}(\mathbb{R}; \mathbb{R}^n)$$

$$\mathcal{D}(\sigma)g_0 \in \mathcal{P}_n(\mathbb{R}), \ p \in \mathcal{P}_n(\mathbb{R}),$$
(3)

each g_{0i} is a σ_i -Volterra operator, and $\eta \in K_{loc}(\mathbb{R} \times \mathbb{R}_+; \mathbb{R}_+^n)$ satisfies

$$\lim_{r \to +\infty} \frac{1}{r} \int_{a}^{b} \|\eta(s, r)\| \, ds = 0 \tag{4}$$

for every interval [a, b]. Let, moreover, there exist functions $\beta, \gamma \in AC_{loc}(\mathbb{R}; \mathbb{R}^n)$ such that

$$\beta(t) > 0, \quad \gamma(t) > 0 \quad \text{for } t \in \mathbb{R}, \quad \|\gamma\| < +\infty,$$

$$\mathcal{D}(\sigma) \left[\beta'(t) - \mathcal{D}(h(t))\beta(t) + g_0(\beta)(t) \right] \leq 0 \quad \text{for a.e. } t \in \mathbb{R},$$

$$\mathcal{D}(\sigma) \left[\gamma'(t) - \mathcal{D}(h(t))\gamma(t) - \mathcal{D}(\sigma)p(\gamma)(t) \right] \geq 0 \quad \text{for a.e. } t \in \mathbb{R}.$$

Let, in addition, for every $i \in \{1, ..., n\}$,

$$G_i(t,r) \stackrel{def}{=} \lim_{\tau \to -\sigma_i \infty} \sigma_i \int_{\tau}^{t} \exp\left(\int_{s}^{t} h_i(\xi) d\xi\right) \eta_i(s,r) ds < +\infty \quad for \ t \in \mathbb{R}, \ r \in \mathbb{R}_+,$$
 (5)

$$H_i(t) \stackrel{def}{=} \lim_{\tau \to -\sigma_i \infty} \gamma_i(\tau) \exp\left(\int_{\tau}^t h_i(s) \, ds\right) > 0 \quad \text{for } t \in \mathbb{R},$$
 (6)

and

$$\limsup_{r \to +\infty} \frac{G_i(t,r)}{rH_i(t)} < \frac{1}{\|\gamma\|} \quad uniformly \ for \ t \in \mathbb{R}.$$
 (7)

Then (1) has at least one bounded solution

Theorem 2. Let the inequality

$$\mathcal{D}(\sigma) \operatorname{Sgn}(v(t)) \big[F(v)(t) - \mathcal{D}(h(t))v(t) - \ell_0(v)(t) + g_0(v)(t) \big] \\ \leq p(|v|)(t) + \eta(t, ||v||) \quad \text{for a.e. } t \in \mathbb{R}$$

be fulfilled for any $v \in C_0(\mathbb{R}; \mathbb{R}^n)$, where $\sigma \in \mathbb{R}^n$, $\sigma_i \in \{-1, 1\}$ (i = 1, ..., n), $h \in L_{loc}(\mathbb{R}; \mathbb{R}^n)$, (3) and

$$\mathcal{D}(\sigma)\ell_0 \in \mathcal{P}_n(\mathbb{R}), \quad \mathcal{D}(\sigma)[\ell_0 - g_0] \in \mathcal{P}_n^{\sigma}(\mathbb{R}; h)$$

hold, and $\eta \in K_{loc}(\mathbb{R} \times \mathbb{R}_+; \mathbb{R}_+^n)$ satisfies (4) for every interval [a, b]. Let, moreover, there exist a function $\gamma \in AC_{loc}(\mathbb{R}; \mathbb{R}^n)$ such that

$$\gamma(t) > 0 \quad \text{for } t \in \mathbb{R}, \quad \|\gamma\| < +\infty,$$

$$\mathcal{D}(\sigma) \left[\gamma'(t) - \mathcal{D}(h(t))\gamma(t) - \ell_0(\gamma)(t) - \mathcal{D}(\sigma)p(\gamma)(t) \right] \ge 0 \quad \text{for a.e. } t \in \mathbb{R}.$$

Let, in addition, (6)–(7) be fulfilled for every $i \in \{1, ..., n\}$. Then (1) has at least one bounded solution.

Consider the nonlinear differential system with argument deviation

$$x_{i}'(t) = h_{i}(t)x_{i}(t) + \sum_{j=1}^{n} p_{ij}(t)x_{j}(\tau_{ij}(t)) - \sum_{j=1}^{n} g_{ij}(t)x_{j}(\mu_{ij}(t)) + f_{i}(t, x(t), x(\nu_{1}(t)), \dots, x(\nu_{m}(t))) \quad (i = 1, \dots, n), \quad (8)$$

where $h = (h_i)_{i=1}^n \in L_{loc}(\mathbb{R}; \mathbb{R}^n)$, $P = (p_{ij})_{i,j=1}^n \in L_{loc}(\mathbb{R}; \mathbb{R}^{n \times n})$, $G = (g_{ij})_{i,j=1}^n \in L_{loc}(\mathbb{R}; \mathbb{R}^{n \times n})$, $f = (f_i)_{i=1}^n \in K_{loc}(\mathbb{R} \times \mathbb{R}^{(m+1)n}; \mathbb{R}^n)$, $t_{ij}, \mu_{ij}, \nu_k : \mathbb{R} \to \mathbb{R}$ $(i, j = 1, \dots, n; k = 1, \dots, m)$ are locally essentially bounded functions, and $x = (x_i)_{i=1}^n$. Then Theorems 1 and 2 imply in particular the following corollaries.

Corollary 1. Let the inequality

$$\operatorname{Sgn}(v(t))f(t,v(t),v(\nu_1(t)),\ldots,v(\nu_m(t))) \le q(t) \quad \text{for a.e. } t \in \mathbb{R}$$
(9)

be fulfilled for any $v \in C_0(\mathbb{R}; \mathbb{R}^n)$, $q \in L_{loc}(\mathbb{R}; \mathbb{R}^n_+)$. Let, moreover,

$$P(t) \ge \Theta, \quad G(t) \ge \Theta \quad \text{for a.e. } t \in \mathbb{R},$$
 (10)

$$g_{ij}(t) = 0 \quad \text{for a.e. } t \in \mathbb{R} \ (i \neq j; i, j = 1, \dots, n),$$
 (11)

$$g_{ii}(t)[\mu_{ii}(t) - t] \le 0 \quad \text{for a.e. } t \in \mathbb{R} \ (i = 1, \dots, n), \tag{12}$$

and

$$\int_{\mu_{ii}(t)}^{t} g_{ii}(s) \exp\left(-\int_{\mu_{ii}(s)}^{s} h_{i}(\xi) d\xi\right) ds \leq \frac{1}{e} \quad \text{for a.e. } t \in \mathbb{R}, \quad (i = 1, \dots, n),$$

$$\int_{t}^{\tau_{ij}(t)} \widetilde{p}(s) ds \leq \frac{1}{e} \quad \text{for a.e. } t \in \mathbb{R} \quad (i, j = 1, \dots, n), \tag{13}$$

where

$$\widetilde{p}(t) \stackrel{def}{=} \max \left\{ \sum_{k=1}^{n} p_{ik}(t) \exp\left(\int_{t}^{\tau_{ik}(t)} \widetilde{h}(s) \, ds\right) : i = 1, \dots, n \right\} \quad \text{for a.e. } t \in \mathbb{R},$$
 (14)

$$\widetilde{h}(t) \stackrel{def}{=} \max \left\{ h_i(t) : i = 1, \dots, n \right\} \quad \text{for a.e. } t \in \mathbb{R}.$$
(15)

Let, in addition,

$$\sup \left\{ \int_{0}^{t} \left[\widetilde{h}(s) + e \widetilde{p}(s) \right] ds : t \in \mathbb{R} \right\} < +\infty, \quad \int_{-\infty}^{0} \widetilde{p}(s) ds < +\infty, \tag{16}$$

$$\int_{-\infty}^{+\infty} q(s) \exp\left(-\int_{0}^{s} h_i(\xi) d\xi\right) ds < +\infty \quad (i = 1, \dots, n). \tag{17}$$

Then (8) has at least one bounded solution.

Corollary 2. Let the inequality (9) be fulfilled for any $v \in C_0(\mathbb{R}; \mathbb{R}^n)$, $q \in L_{loc}(\mathbb{R}; \mathbb{R}^n_+)$. Let, moreover, (10) hold,

$$p_{ik}(t) \exp \left(\int_{\mu_{ik}(t)}^{\tau_{ik}(t)} h_k(s) \, ds \right) \ge g_{ik}(t), \quad g_{ik}(t) \left[\tau_{ik}(t) - \mu_{ik}(t) \right] \ge 0 \quad \text{for a.e. } t \in \mathbb{R} \ (i, k = 1, \dots, n),$$

and let (13) be fulfilled, where \tilde{p} is given by (14) and (15). Let, in addition, (16) and (17) hold. Then (8) has at least one bounded solution.

Corollary 3. Let the inequality

$$\mathcal{D}(\sigma)\operatorname{Sgn}(v(t))f(t,v(t),v(\nu_1(t)),\ldots,v(\nu_m(t))) \le q(t) \quad \text{for a.e. } t \in \mathbb{R}$$
(18)

be fulfilled for any $v \in C_0(\mathbb{R}; \mathbb{R}^n)$, $q \in L_{loc}(\mathbb{R}; \mathbb{R}^n_+)$, where $\sigma \in \mathbb{R}^n$, $\sigma_i \in \{-1, 1\}$ (i = 1, ..., n). Let, moreover,

$$\mathcal{D}(\sigma)P(t) \ge \Theta, \quad \mathcal{D}(\sigma)G(t) \ge \Theta \quad \text{for a.e. } t \in \mathbb{R},$$
 (19)

(11) and (12) hold, and

$$\int_{-\infty}^{\infty} |g_{ii}(s)| \exp\left(-\int_{\mu_{ii}(s)}^{s} h_i(\xi) d\xi\right) ds < 1 \quad (i = 1, \dots, n).$$

Furthermore, let there exist $A = (a_{ij})_{i,j=1}^n \in \mathbb{R}_+^{n \times n}$ such that r(A) < 1 and

$$\int_{-\infty}^{+\infty} |p_{ij}(s)| \exp\left(\int_{0}^{\tau_{ij}(s)} h_{j}(\xi) d\xi - \int_{0}^{s} h_{i}(\xi) d\xi\right) ds \le a_{ij} \quad (i, j = 1, \dots, n).$$
 (20)

Let, in addition,

$$\sup \left\{ \int_{0}^{t} h_i(s) \, ds : t \in \mathbb{R} \right\} < +\infty \quad (i = 1, \dots, n)$$
 (21)

and (17) hold. Then (8) has at least one bounded solution.

Corollary 4. Let (18) be fulfilled for any $v \in C_0(\mathbb{R}; \mathbb{R}^n)$, $q \in L_{loc}(\mathbb{R}; \mathbb{R}^n_+)$, where $\sigma \in \mathbb{R}^n$, $\sigma_i \in \{-1, 1\}$ (i = 1, ..., n). Let (19) hold and, moreover,

$$\sigma_i p_{ik}(t) \exp\left(\int_{\mu_{ik}(t)}^{\tau_{ik}(t)} h_k(s) ds\right) \ge \sigma_i g_{ik}(t), \quad \sigma_i \sigma_k g_{ik}(t) \left[\tau_{ik}(t) - \mu_{ik}(t)\right] \ge 0 \quad (i, k = 1, \dots, n)$$

for a.e. $t \in \mathbb{R}$. Furthermore, let there exist $A = (a_{ij})_{i,j=1}^n \in \mathbb{R}_+^{n \times n}$ such that r(A) < 1 and (20) hold. Let, in addition, (21) and (17) hold. Then (8) has at least one bounded solution.

Notation

If $x = (x_i)_{i=1}^n \in \mathbb{R}^n$, then

$$\mathcal{D}(x) = \begin{pmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{pmatrix}, \quad \operatorname{Sgn}(x) = \mathcal{D}(\operatorname{sgn} x), \text{ where } \operatorname{sgn} x = (\operatorname{sgn} x_i)_{i=1}^n.$$

 Θ is a zero matrix, r(X) is a spectral radius of the matrix X.

 $C_{loc}(\mathbb{R};\mathbb{R}^n)$ is a space of continuous functions $x:\mathbb{R}\to\mathbb{R}^n$ with a topology of uniform convergence on every compact interval.

 $C_0(\mathbb{R};\mathbb{R}^n)$ is a Banach space of bounded continuous functions $x:\mathbb{R}\to\mathbb{R}^n$ endowed with a norm

$$||x|| = \sup \{||x(t)|| : t \in \mathbb{R}\}.$$

 $AC_{loc}(\mathbb{R};\mathbb{R}^n)$ is a set of locally absolutely continuous functions $x:\mathbb{R}\to\mathbb{R}^n$.

 $L_{loc}(\mathbb{R};\mathbb{R}^n)$ is a space of locally Lebesgue integrable vector-valued functions $p:\mathbb{R}\to\mathbb{R}^n$ with a topology of convergence in mean on every compact interval.

 $L_{loc}(\mathbb{R}; \mathbb{R}^{n \times n})$ is a space of locally Lebesgue integrable matrix-valued functions $P: \mathbb{R} \to \mathbb{R}^{n \times n}$. $\mathcal{P}_n(\mathbb{R})$ is a set of linear continuous operators $\ell: C_{loc}(\mathbb{R}; \mathbb{R}^n) \to L_{loc}(\mathbb{R}; \mathbb{R}^n)$ that transforms non-negative functions into the set of non-negative functions.

 $\mathcal{P}_n^{\sigma}(\mathbb{R};h)$, where $h \in L_{loc}(\mathbb{R};\mathbb{R}^n)$ and $\sigma = (\sigma_i)_{i=1}^n \in \mathbb{R}^n$, $\sigma_i \in \{-1,1\}$ $(i=1,\ldots,n)$, is a set of linear continuous operators $\ell: C_{loc}(\mathbb{R};\mathbb{R}^n) \to L_{loc}(\mathbb{R};\mathbb{R}^n)$ such that

$$\ell(x)(t) \geq 0$$
 for a.e. $t \in \mathbb{R}$,

whenever $x \in AC_{loc}(\mathbb{R}; \mathbb{R}^n)$ satisfies

$$x(t) \ge 0$$
 for $t \in \mathbb{R}$, $\mathcal{D}(\sigma)[x'(t) - \mathcal{D}(h(t))x(t)] \ge 0$ for a.e. $t \in \mathbb{R}$.

 $K([a,b] \times A; B)$, where $A \subseteq \mathbb{R}^m$ and $B \subseteq \mathbb{R}^n$, is a set of functions $f : [a,b] \times A \to B$ satisfying the Carathéodory conditions, i.e.,

- (i) $f(\cdot,x):[a,b]\to B$ is a measurable function for every $x\in A$,
- (ii) $f(t,\cdot):A\to B$ is a continuous function for almost all $t\in[a,b]$,
- (iii) for every r > 0 there exists a function $q_r \in L([a,b];\mathbb{R}_+)$ such that

$$||f(t,x)|| \le q_r(t)$$
 for a.e. $t \in [a,b], x \in A, ||x|| \le r$.

 $K_{loc}(\mathbb{R} \times A; B)$, where $A \subseteq \mathbb{R}^m$ and $B \subseteq \mathbb{R}^n$, is a set of functions $f : \mathbb{R} \times A \to B$ such that $f \in K([a, b] \times A; B)$ for every compact interval [a, b].