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Consider the differential system

ẋ = X(t, x), t ∈ R, x = (x1, . . . , xn)
⊤ ∈ Rn, (1)

with continuous in all the variables and continuously differentiable right part over x. Let φ(t; τ, x)
denote the general solution in the form of Cauchy system (1), that is φ(t; τ, x) – the solution of
(1) with the initial condition φ(τ ; τ, x) = x. Let Ix be maximum symmetrical with respect to zero
interval of existence of solution φ(t; 0, x). Let D(X) := {(t, φ(t; 0, x)) ∈ Rn+1 : t ∈ Ix, x ∈ Rn}.
From the theorem on continuous dependence of solutions on the initial value and the definition of
D(X) it follows that D(X) is the open domain in R × Rn which contains the hyperplane t = 0.
Reflecting function of system (1) is called [3], [4, p. 11], [5, p. 62] the vector function F : D(X) → Rn,
acting according to the rule (t, x) 7−→ φ(−t; t, x). In other words, for any solution x(t) of this

system, which exists on a symmetric interval (−ξ, ξ), the identity F (t, x(t))
t≡ x(−t) is valid for

all t ∈ (−ξ, ξ). This property can be taken [4, p. 16] for the definition of a reflecting function.
From the definition of the reflecting function and the differentiability theorem on the initial value
it follows that the reflecting function F (t, x) of system (1) has partial derivatives Ft and Fx in the
region D(X).

Fundamentally important result of the theory of reflecting function is the following criterion
[3], [4, pp. 11, 12], [5, pp. 63, 64]: the vector function F = F (t, x) : D(X) → Rn is a reflecting
function of system (1) if and only if it satisfies the initial condition F (0, x) ≡ x and the system of
equations in the partial derivatives

Ft + FxX(t, x) +X(−t, F ) = 0. (2)

Equation (2) is called [4, p. 12], [5, p. 63] basic equation (the ratio) for the reflecting function.
Methods have been developed which in some cases make it possible to find the reflecting function
of system (1) without finding its solutions. Moreover, if we know only some of the properties of the
reflecting function of the system, it is possible to investigate the behavior of its solutions without
resorting to the construction of reflecting function [4–9].

Two systems are equivalent in the sense of the coincidence of reflecting functions [5, p. 75],
if their reflecting functions are equal in a domain containing the hyperplane t = 0. Since the
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solutions of equivalent systems have a number of similar properties, the task of constructing classes
of equivalent systems, and the choice of simple (for example, integrated into the final form) systems-
representatives of these classes will be important and relevant.

In this article, the linear differential systems defined for all t ∈ R are discussed, and for them
the domain D(X) determination of reflecting function coincides with the extended phase space
R×Rn, then for such systems it is natural to study the conditions of coincidence of their reflecting
functions in all extended phase space. Therefore, further as the equivalence of linear systems in
the sense of the coincidence of their reflecting functions the coincidence of the reflecting functions
of these systems throughout the extended phase space is understood.

In this article, the quasi-periodic two-frequency linear differential systems are discussed such
that their homogeneous and nonhomogeneous parts are periodic with incommensurable periods,
and the conditions of existence of the periodic reflecting functions in such systems are clarified.

Theorem 1. For the linear nonhomogeneous differential system

ẋ = A(t)x+ f(t), t ∈ R, x ∈ Rn (3)

with continuous n × n-matrix A(t) and vector-function f(t), to have the same reflecting function
as the system

ẋ = f(t), (4)

necessary and sufficient conditions are:

1) matrix-valued function A(t) is odd;

2) there is the identity

A(t)

−t∫
t

f(s) ds = 0 for all t ∈ R. (5)

At the same time, reflecting function F (t, x) of these systems, is the vector-function

F (t, x) = x+

−t∫
t

f(s) ds. (6)

Proof. Sufficiency. The general solution in the form of the Cauchy system (4) is given by φ(t; τ, x) =

x+
t∫
τ
f(s) ds. As a consequence of this presentation by the definition of the reflecting function we

easily find that reflecting function F (t, x) of system (4) is given by equation (6).
We will show that under the conditions 1) and 2) function (6) is the reflecting function of system

(3). It’s enough to make sure that function (6) satisfies the fundamental ratio (2) for reflecting
function of system (3). Substituting in it function (6), after obvious equivalent transformations we
obtain the identity:

A(t)x+A(−t)x+A(−t)

−t∫
t

f(t) dt
t,x
≡ 0. (7)

Since under the conditions 1) and 2) of the theorem identity (7) is obviously true, then function
(6) is the reflecting function of system (3). The sufficiency is proved.

Necessity. Let systems (3) and (4) are equivalent in the sense of coincidence of the reflecting
functions. As it is shown above, system (4) has a reflecting function (6). Since function (6) is also
the reflecting function of system (3), then for system (3) and this function the main identity (2)
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is satisfied. Hence we obtain identity (7). This identity is satisfied for all t and x. Assuming in it
x = 0 and replacing −t onto t, one obtains the condition 2). Thus, the identity must be satisfied

(A(t) +A(−t))x
t,x
≡ 0. (8)

Identity (8) means that the linear operator A(t) + A(−t) is null, that is A(t) = −A(−t) for all
t ∈ R.

Thus, the function A(t) – odd, and as proved above, satisfies the condition 2). The necessity,
and thus the theorem is proved.

Corollary 1. If matrix A(t) is nonsingular for all t ∈ R, then systems (3) and (4) have the same
reflecting function if and only if the matrix-valued function A( · ) and the vector function f( · ) are
odd. In this case, reflecting function of systems (3) and (4) will be the function F (t, x) = x.

If the set of those t ∈ R, in which matrix A(t) is non-singular, not coincides with the R, then
condition 2) of the theorem does not necessarily mean oddness of the vector-function f( · ) which
is confirmed by the following example.

Example 1. Consider the system

ẋ = A(t)x+ f(t), t ∈ R, x ∈ R2,

in which matrix of coefficients A(t) is odd and has zero determinant for all t ∈ R. Let

A(t) =

(
a1(t) a2(t)
a3(t) a4(t)

)
, f(t) =

(
f1(t)
f2(t)

)
.

We will assume that a21(t) + a22(t) ̸= 0 for any t ∈ R. According to Theorem 1, the given system
has the same reflecting function as the system ẋ = f(t) if and only if identity (5) is satisfied. From
this identity we obtain

a1(t)

−t∫
t

f1(s) ds ≡ −a2(t)

−t∫
t

f2(s) ds, a3(t)

−t∫
t

f1(s) ds ≡ −a4(t)

−t∫
t

f2(s) ds. (9)

We will find all vector-functions f(t) = (f1(t), f2(t))
⊤, for which these identities are satisfied. Since

detA(t) = 0 for all t ∈ R and the first row of the matrix A(t) is nonzero then its second row
is proportional to the first one, and then, for the validity of these identities it is necessary and
sufficient the first of them to be valid.

Since the vector (a1(t), a2(t))
⊤ is nonzero, then the first identity in (9) is performed, if and only

if for some function h(t) satisfies the identities

−t∫
t

f1(s) ds ≡ −a2(t)h(t),

−t∫
t

f2(s) ds ≡ a1(t)h(t). (10)

In order identities (10) to be carried out, it is necessary the function h(t) to be even (as left sides
in (10) and functions a1(t), a2(t) are odd) and that the functions a1(t)h(t) and a2(t)h(t) have been
continuously differentiable (as left sides in (10) – continuously differentiable functions).

We will show that these conditions are sufficient for the existence of functions f1(t), f2(t),
which satisfy (10). Fix some even function h(t), for which the right sides in (10) – continuously
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differentiable functions. Denote −a2(t)h(t) through g1(t). Then the first identity in (10) takes the

form
−t∫
t

f1(s) ds ≡ g1(t). Differentiating it on t, we obtain

f1(t) + f1(−t) ≡ −ġ1(t). (11)

The function ġ1(t) is even, as a derivative of an odd function, and it is continuous. We will seek
solution of the functional equation (11) in the form of

f1(t) = − ġ1(t)

2
+ r1(t), (12)

where r1(t) is an unknown continuous function. Replacing in (11) the function f1(t) by the given
representation, we obtain the identity r1(t) + r1(−t) ≡ 0 in view of parity of ġ1(t), that is r1(t)
– an odd function. Conversely, it is easy to see that the function of the form (12) with an odd
continuous function r1(t) satisfies the first identity in (10). Indeed,

−t∫
t

f1(s)ds ≡
−t∫
t

(− ġ1(s)

2
+ r1(s))ds = g1(t) +

−t∫
t

r1(s)ds = g1(t) = −a2(t)h(t).

Similarly, if we denote the function a1(t)h(t) via g2(t), a solution of the second functional equation
in (10) we find in the form of

f2(t) = − ġ2(t)

2
+ r2(t), (13)

where g2(t) ≡ a1(t)h(t), and r2(t) – arbitrary odd function. Thus, the solution of the problem
on the description of the set of vector-functions f(t) = (f1(t), f2(t))

⊤, t ∈ R, satisfy (9) and it is
reduced to the problem of the description of the set of even functions h(t), t ∈ R, for which both
functions a1(t)h(t) and a2(t)h(t) would be continuously differentiable.

As we see, the vector function f(t) = (f1(t), f2(t))
⊤, the components of which are built up, and

given by equalities (12), (13), generally speaking, is not odd, whatever the elements of a degenerate
odd matrix A(t) would be , the first row of which for all t ∈ R is nonzero (a21(t) + a22(t) ̸= 0 for all
t ∈ R).

Remark 1. Considered example gives a partial solution for the following problem, formulated by
E. A. Barabanov: for a linear homogeneous differential system ẋ = A(t)x in terms of its coefficient
matrix A(t) to describe all those its nonhomogeneous perturbations f(t), at which the reflecting
functions of systems ẏ = A(t)y + f(t) and ż = f(t) coincide.

Corollary 2. Let the matrix A(t) have period ω1, and the vector function f(t) – period ω2. For
system (3) to have an ω2-periodic on t reflecting function (6) it is necessary and sufficient the
fulfillment of conditions 1) and 2) of Theorem 1 and the equality

ω2∫
0

f(s) ds = 0. (14)

Remark 2. In the case 3 when numbers ω1 and ω2 are incommensurable, Corollary 2 gives sufficient
condition for the existence of ω2-periodic on t reflecting function in a quasi-periodic system (3).
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